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A GaAs/AlGaAs based two-qubit quantum device that allows the controlled generation and straightforward
detection of entanglement by measuring a stationary current-voltage characteristics is proposed. We have
developed a two-particle Green’s function method of open systems and calculate the properties of three-
dimensional interacting entangled systems nonperturbatively. We present concrete device designs and detailed
charge-self-consistent predictions. One of the qubits is an all-electric Mach-Zehnder interferometer that con-
sists of two electrostatically defined quantum wires with coupling windows, whereas the second qubit is an
electrostatically defined double quantum dot located in a second two-dimensional electron gas beneath the
quantum wires. We find that the entanglement of the device can be controlled externally by tuning the

tunneling coupling between the two quantum dots.
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I. INTRODUCTION

Semiconductor based concepts for quantum information
processing promise a high degree of scalability. However,
the implementation of even a single qubit proves to be more
difficult in semiconductors than in alternative approaches.'~’
The reasons lie in the short decoherence times and strong
interactions between elementary excitations in solids.® While
a seven-qubit NMR quantum computer was realized already
in 2001,° the first two-qubit quantum operation in semicon-
ductors has been demonstrated with spin qubits only
recently.!0-12

At liquid helium temperatures and below, electrons in a
GaAs/AlGaAs two-dimensional electron gas (2DEG) show
mean free paths as well as phase-relaxation lengths of the
order of 10-20 um, which are remarkably long distances.'?
Indeed, Bertoni et al.'* and Tonicioiu et al.'> have proposed a
scheme for quantum computation in semiconductors that ex-
ploits these long coherence lengths for electrons propagating
through quantum wires (QWRs). In this scheme, a single
electron propagates through two parallel QWRs that repre-
sent the qubit states |0) and |1), respectively. A single-qubit
rotation gate can be realized by an electronic directional
coupler'®!” that may consist of a small window in the barrier
between the two QWRs and is able to transfer the wave
packet from one channel to the other. Single-qubit structures
have been studied theoretically by several authors'®-2! who
showed how the dimensions of the coupling window can be
utilized to tailor the transfer process. This approach allows
one, at least in principle, to apply multiple quantum gate
operations to a qubit without exceeding the relevant coher-
ence lengths.

Universal quantum computation requires not only one-
qubit but also two-qubit gates® that are responsible for the
creation of entanglement between the qubits. To this end, two
pairs of QWRs may be brought close to one another so that
the electrons in the QWRs can interact with one another in a
controlled way via their Coulomb repulsion. This concept
has been analyzed both for wave packets?>* as well as for
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stationary states.??%27 The latter investigations used simple
models that provide important proofs of principle but do not
provide quantitative predictions of realizable device struc-
tures that exhibit quantum gate operations.

While two-qubit devices have only been addressed theo-
retically in the literature, one-qubit systems have also stimu-
lated a number of experiments in both lateral’®? as well as
vertical’®3! nanostructures. However, quantum entanglement
can not clearly be exposed in single-qubit systems as en-
tanglement expresses the nonseparability of a multiqubit
state. Therefore, the following step toward the realization of
a prototype quantum gate based on coupled QWRs consists
of a two-qubit device. Also, we should keep in mind that
conceivable two-qubit experiments need realistic estimations
of an entanglement witness that is experimentally accessible
and a clear signature of the correct coherent functioning of
the directional coupler.

The aim of the present work is to theoretically study re-
alistic single- and two-qubit quantum gates by proposing
conceptually simple and experimentally realizable semicon-
ductor devices for quantum information processing. The sys-
tem proposed is based on ballistic GaAs/AlGaAs QWRs and
allows for the controlled generation and detection of en-
tanglement between an all-electric Mach-Zehnder interfer-
ometer and an electrostatically defined single-electron
double quantum dot. The Mach-Zehnder interferometer is
realized by two electrostatically defined QWRs that are con-
nected by two coupling windows. We model the electrons
that are propagating through the interferometer by stationary
scattering states, and our qubit state will be defined accord-
ingly. In fact, the original proposal of Bertoni et al. involves
the injection of electron wave packets into the pair of QWRs.
However, we chose here a time-independent approach since
(i) it is equivalent to the time-dependent one when the spatial
dimension of the wave packet tends to be larger than the
device (indeed, this is the case in our devices due to the
small source and/or drain biases leading to a well defined
kinetic energy of the electron), (ii) the structures that imple-
ment the quantum gates operate in the same way, and (iii) it
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allows us to compute realistic estimations of the charge-self-
consistent ballistic /-V characteristics of the device.

In our calculations, we include the detailed charge-self-
consistent three-dimensional device geometry, material com-
position, doping profile, and bias voltage. Importantly, we
demonstrate that the all-electric Mach-Zehnder interferom-
eter can function as a fully controllable single-qubit gate for
experimentally attainable parameters. In addition, we have
developed a Green’s function method for the quantitative
analysis of the entangled Mach-Zehnder and double quantum
dot system that includes the Coulomb interaction between
the two qubits nonperturbatively. In order to gain better
qualitative insight into the numerical results, we interpret
them in terms of an analytical model that reproduces the
computational results qualitatively. Taking both results to-
gether, we are able to show that the degree of entanglement
can be related to the dc /-V characteristics of the interferom-
eter and that the Mach-Zehnder double quantum dot device
can be employed as an externally controllable two-qubit
gate.

This paper is organized as follows. In Sec. II, we intro-
duce a method for the quantum-mechanical calculation of the
ballistic current through an interacting two-particle system.
This includes the calculation of the electronic structure and
the determination of the ballistic transmission characteristics
of the realistic three-dimensional nanostructure. In Sec. III,
we discuss numerical details of the method. In Sec. IV, we
introduce a simplified analytical scheme able to gather the
essential features of the two-qubit device. The results ob-
tained with this approach will be compared, in the following
section, with the calculations of the realistic device. Section
V focuses on the results and the discussion of the ballistic
current through the proposed GaAs/AlGaAs single- and
two-qubit QWR devices. In the same section, the degree of
entanglement between the two qubits is evaluated. The paper
concludes with final remarks and a summary in Sec. VI.

II. METHOD

In this section, we present a method for the calculation of
the stationary ballistic current of two interacting particles in
realistic three-dimensional nanostructures. We restrict our-
selves to the case where only one of the two particles (say,
particle 1) contributes to the current while the second particle
(particle 2) is assumed to be bound. Importantly, this method
accounts for many-particle effects nonperturbatively, which
is an important prerequisite of studying entanglement and,
consequently, predicting solid-state based quantum informa-
tion processing. The presently developed scheme generalizes
the contact block reduction (CBR) method for single-particle
ballistic currents that we have developed previously.’*3* In
analogy to the CBR method, we proceed in two steps that we
will describe in this section. First, we determine the equilib-
rium electronic structure of a closed two-particle system, ob-
tained by substituting the leads of our device with closed
boundary conditions. Then, in the second step, we calculate
the current-carrying states of the open two-particle system.
In fact, the closed calculation only provides a convenient
basis for the computation of the scattering states. For the
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sake of efficiency and without loss of generality, we perform
the former calculation in the Hartree approximation by solv-
ing two coupled Schrodinger and Poisson equations. Then,
we use single-particle product states as the basis for the scat-
tering states of the fully interacting two-particle device.

A. Electronic structure of particle 1

We consider a single-particle, single-band, effective mass
Schrodinger equation for this electron and include the elec-
trostatic Hartree potential in the absence of the second par-
ticle. The closed system is represented by a Hermitian
Hamiltonian with von Neumann boundary conditions for the
wave functions at the contacts (vanishing normal
derivative).333* The electronic structure of the closed device
is calculated self-consistently. To this end, we iteratively
solve the Schrodinger equation

h? 1
Hxla)=| =5V T V +E(x) - ep(x) [(x|a;)

= E){(x| ), (1)
and the nonlinear Poisson equation

Ve, (x)gg V ¢(x) =—ep[ 4], ()

until the electrostatic potential ¢ and the total charge density
p have reached convergence. The effective mass m”, the con-
duction band offset E., and the relative dielectric constant &,
are position-dependent material parameters in a general
three-dimensional nanostructure that may be composed of
several different materials. The total charge density is com-
posed of the electron density n(x) and the ionized donor
density N} (x),

p(x) == n(x) + Np(x). 3)

The latter results from the donor density Nj(x), the degen-
eracy gp, and the donor energy Ej according to the Thomas-
Fermi approximation,

Np(x)
Ep—Ep)/kgT* (4)

Nj(x) =
p(X) 1+ gDe(
The electron density is calculated quantum mechanically by
occupying the electronic states according to the Fermi-Dirac
statistics,

E?—EF>. )

2
n(x) = X|a; —_—
(x) §|< | ,>|f< T
Here, T denotes the temperature, kg is Boltzmann’s constant,
Eg denotes the Fermi level, and f is the Fermi distribution
function.

B. Electronic structure of particle 2

For the second particle, we will focus on an electron in a
closed double quantum dot that can tunnel between these
dots. The two lowest lying quantum states can be described
by an effective Hamiltonian that takes into account the en-
ergy splitting A between the ground states of the isolated

195301-2



THEORY OF SEMICONDUCTOR QUANTUM-WIRE-BASED...

quantum dots and the tunneling coupling ¢ between the two
quantum dots. This 2 X2 Hamiltonian is given by
A 1

Hy|Y)= |¥) = Ey|Y). (6)

A
2 2

Typical values for A and ¢ for lateral semiconductor quantum
dots are of the order of 10 ueV.3> We use this model Hamil-
tonian for the subsystem of the second particle and represent
the charge distribution of the electron in the ground state of
each (isolated) quantum dot by a point charge centered at x
and x, respectively. The use of a model Hamiltonian rather
than a realistic three-dimensional device Hamiltonian is not a
principle limitation of the present method but is adequate for
the concrete device geometry that we will study in detail in
this paper. The eigenstates of H, are linear combinations of
the ground states |0) and |1) of the two isolated quantum
dots,

|B) = ho|0) + hp|1), (7)

|A) = hpol0) + hyy|1), (8)

with real valued coefficients iy, (Y=A,B, J=0,1). Here, |B)
is the bonding eigenstate and |A) the antibonding eigenstate.
The corresponding eigenenergies are

1 ——

EB=_EW2+A2’ 9)
1 [:2 2

EA=§\’t +A . (10)

For vanishing 7, the eigenstates |B) and |A) reduce to |0) and

0.

C. Interaction matrix elements

The Coulomb interaction V,, between particles 1 and 2
yields the following expression for the interaction matrix el-
ements:

¢’ 3 hyshgz,
<aiY|V12|ajZ> = d x<ai|x><x|aj> E >

4me, & J=0,1 X =Xy

(11)

where |;Y) is the product state of particle 1 state |a;) and
particle 2 state |Y).

D. Ballistic transport through a system of two interacting
particles

In this second step, we develop a Green’s function method
by extending the CBR method**-* to the case of an open
device that describes a system of two interacting particles.
We stress that we will consider the two particles as distin-
guishable. This is not an approximation for the proposed
two-qubit devices but comes directly from the system geom-
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etry. Indeed, we choose the QWRs and the double dot to be
well separated from each other so that no significant tunnel-
ing between the two structures can occur. In other words, the
two wave functions, namely, the bound state in the double
dot and the scattering state in the QWRs, never overlap. This
leads to the distinguishability of the two particles based on
their spatial localization. In addition, we assume that the in-
teraction is negligible outside the device due to screening in
the contacts and/or due to barriers. In the following, the term
device denotes a finite three-dimensional region that is
coupled to reservoirs by an arbitrary number of leads. The
device may be under applied bias and contain some spatially
varying potential. The total (two-particle) Hamiltonian of the
system, including the device and the leads, can be written in
symbolic matrix form as

H 0 0 W,

o - 0 :
H, = L , (12)
tot O O HNL WNL

where Hf represents the Hamiltonian of lead X\, the Hamil-
tonian H° corresponds to the device region, and W, is the
coupling between the device and this lead (A\=1,...,N;). H’
is composed of the single-particle Hamiltonians H, and H,,
corresponding to particles 1 and 2, respectively, and the in-
teraction term V,,

H'=H,+H,+ V. (13)

The leads (acting as reservoirs) are semi-infinite and there-
fore, the total Hamiltonian H, is infinite dimensional. This
infinite-dimensional Hamiltonian can be reduced to a non-
Hermitian finite-dimensional Hamiltonian H=H+3 that de-
scribes the open device exactly.?® In this formulation, the
influence of the leads is included through a finite-
dimensional operator X =% +---+X . This is the sum of the
complex contact self-energies X, that are nonzero only in the
contact regions where the lead \ adjoins to the device. The
self-energies couple only particle 1 to the leads since particle
2 is assumed to be bound. The Hermitian Hamiltonian H°
represents the decoupled device, i.e., the device with no cou-
pling to the leads. H; as well as H, are Hamiltonians of the
closed device. In the ballistic case, all observables of interest
such as transmission functions and the current can be calcu-
lated from the retarded Green’s function G of the open de-
vice. This is defined by

GR=(E-H)'=(E-H,-H,-V;,-3)"".  (14)

The retarded Green’s function can be obtained from the
Green’s function G° of the decoupled device by the Dyson
equation

Gf=(1-G"2)"'G°, (15)
which, in turn, can be evaluated from its spectral representa-
tion

|n)n|

G'=
. E—g,+in

— 0%, (16)
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Hln)=g,|n). (17)

The direct evaluation of G® according to Eq. (15) requires
the inversion of a huge matrix that is proportional to the
number of grid points Nj of the device. By contrast, the
CBR method allows one to drastically reduce this effort by
utilizing the following exact properties of G that remain
valid in the present many-particle case. We decompose G¥

into four blocks,
R Glé G?’D
G*=\or x| (18)
DC D

where G'é is a matrix proportional to the number N of con-
tact grid points and is called the contact block. Note that
Nc-<<Np. For the contact block G’é, the following equation
holds:

GR=(1c-G220)'GY, (19)

where 1, Gg, and 3 are the corresponding contact blocks
of the unity matrix G° and 3, respectively. The key point is
that this is a linear matrix equation of the order of N, since
3, is nonzero only in the contact region. As a consequence,
this contact block is also sufficient to determine the transmis-
sion functions through the device. The ballistic current can
then be calculated from the transmission functions according
to the Landauer-Biittiker formalism.?” In the following, we
represent Glé in the mixed basis of position eigenstates of
particle 1 and energy eigenstates of particle 2,

Gi(x,x,Y.2) = 2 (x|aXa,Y|GElaZ)a)lx)). (20)

apa;

In this form, G’é represents the probability amplitude for the
propagation of particle 1 from position X; to position X;, ac-
companied by a transition of particle 2 from eigenstate |Z) to

|Y). For N# \’, the expression
T (E)=Tr THGOTE (GE). 1)

A= i(Sh -5 (22)

therefore yields the probability for the transmission of par-
ticle 1 from lead \' to lead N under the condition that ini-
tially particle 2 is in state |Z) and ends up in state |Y). Note
that the trace in Eq. (21) is taken only with respect to the
position variables of particle 1. If the final state of particle 2
is not measured, the corresponding transmission probability
is obtained by summing over all final states of particle 2,

=21 (23)
Y

In our concrete calculations (see Sec. V), we found it
most efficient to first determine the eigenstates of the single-
particle Hamiltonians H; and H, and then diagonalize the
interaction Vj, in the product basis of these single-particle
eigenstates. This procedure allows us to take advantage of
another built-in efficiency of the CBR method, namely, the
fact that only energetically low lying eigenstates of the
closed device couple to the incoming and outgoing lead
states.’*** Consequently, it suffices to take into account only
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a reduced set of eigenstates of the single-particle Hamilto-
nians H; and H, without affecting the transmission results
noticeably.

Another quantity that can be readily obtained from the
retarded Green’s function G¥ is the charge density of the
current-carrying states of particle 1. This requires one to
know not only the contact block G& but also the submatrix
GR? .. However, the calculation of the submatrix G only
requir%s one to evaluate the inverse of the small matrix 1,
-3cGes

GRe=Ghelle=GeSe)™, (24)

where the matrix G% . corresponds to GX . in the open
device.* According to Eq. (20), the latter Green’s function
reads, in the mixed basis,

ch(xi,Xj, Y,Z) = E <X,|al><alY|GgC|ajZ><a]|Xj>

@i
(25)

The total charge density of the current-carrying states of par-
ticle 1 is consequently given by

n(Xj) = 2 nZ(Xj), (26)
z

where the contribution

A

nA(x;) = 277%% dEE]AE)f! wr ) (27)

E){’Z(E) = 2 ch(xi,xj, Y,Z)F)é(xj,xj)[ch(Xi,Xj, Y,.2)]
X

(28)

results from the projection of the total charge density onto
the eigenstate |Z) of the second particle. Here, E{E denotes the
Fermi level in lead \.

III. NUMERICAL DETAILS
A. Electronic structure of particle 1

Equations (1) and (2) are coupled partial differential equa-
tions in position space that we discretize and map onto a
nonuniform tensor product grid. For the discretization of the
all-electric Mach-Zehnder interferometer, a total of 6 X 10°
grid points have been used. We employ box integration finite
differences in order to ensure flux conservation across
boundaries with different material parameters. For the solu-
tion of the nonlinear system that results from the discretiza-
tion of the nonlinear Poisson equation [Eq. (2)], Newton’s
method with inexact line search is invoked. This remaps the
problem into a sequence of linear solutions. We use the
Dupont-Kendall-Rachford preconditioned conjugate gradient
method for the solution of the resulting linear systems.?®3
The discretization of the Schrddinger equation [Eq. (1)] re-
sults in a large matrix eigenvalue system. However, since the
occupation of electron states falls off exponentially with in-
creasing energy distance from the Fermi level, only about
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250 quantum states suffice for a converged calculation of the
electron density. This allows for the use of the iterative Ar-
noldi method that is implemented in the published ARPACK
libraries.*® We found that the calculation of eigenvalues and
eigenstates can be accelerated by an order of magnitude by
invoking a Chebyshev polynomial based spectral transforma-
tion that provides an efficient preconditioning of the linear
system.*! Finally, in order to solve the coupled Poisson-
Schrodinger system, we employ an approximate quantum
charge density inside of Poisson’s equation in order to esti-
mate the dependence of the density on the potential through
Schrodinger’s equation. This corrector-predictor scheme re-
duces the number of required diagonalizations and acceler-
ates the convergence of the coupled system significantly.*?

Equation (2) requires the specification of boundary condi-
tions in order to obtain unique solutions. For the potential in
the Poisson equation, we generally use von Neumann bound-
ary conditions. Dirichlet boundary conditions are employed
at Schottky contacts and at the GaAs/air interfaces. In the
former case, the electrostatic potential at the boundary is set
equal to the Schottky barrier height, i.e., the difference be-
tween the conduction band edge and the quasi-Fermi level.
At the GaAs/air interface, on the other hand, the electrostatic
potential is determined by the experimentally known Fermi
level pinning. The Schrodinger equation for the open quan-
tum system is solved in terms of the CBR method that has
been described in detail elsewhere.’* For the calculation of
the transmission probabilities, we have taken into account
the lowest 250 eigenstates for the determination of the re-
tarded Green’s function of the closed device and the lowest
five propagating modes in each of the four leads. The self-
consistent solution of Egs. (1) and (2), for given split gates
voltages, takes approximately two days on state-of-the-art
personal computer hardware. Converged self-consistent re-
sults require typically 12 iterations in the two sets of equa-
tions.

B. Entangled Mach-Zehnder double quantum dot device

Our method for the calculation of the ballistic transport
properties through a system of two interacting particles re-
quires the diagonalization of the two-particle Hamiltonian
including the interaction. This has to be done once for every
bias point in the I-V characteristics. The diagonalization is
performed in the set of product states formed by subsets of
the single-particle eigenstates of the two noninteracting par-
ticles. We found that a subset of 100 lowest eigenstates of
particle 1 is sufficient to obtain convergent transmission
functions in the meV energy range around the Fermi level
that is relevant for this device.

IV. ANALYTICAL MODEL OF THE TWO-QUBIT DEVICE

Before presenting and discussing the numerical results,
we develop a simple analytical model of our two-qubit
Mach-Zehnder double-dot system in the present section. The
device is shown schematically in Fig. 1. The purpose of this
procedure is to be able to better grasp the physics behind the
generation of entanglement before we present the numerical
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FIG. 1. (Color online) Schematic view of the proposed quantum
transport device. The device is realized by two stacked
GaAs/AlGaAs 2DEGs. The top 2DEG (green) is depleted by exter-
nal gates to form a double-QWR based Mach-Zehnder interferom-
eter. The bottom 2DEG (blue) contains two electrostatically de-
fined, coupled quantum dots. The larger one is centered beneath and
in between the QWRs. There is a bias voltage Vg applied between
the source (S) and the three drain contacts (D;—D;) that leads to
currents (J;,J,) that are labeled accordingly. There are additional
gates acting on the device that are shown in Fig. 2. For sake of
clarity, the figure is not drawn to scale.

results of the fully three-dimensional self-consistent calcula-
tions in the next section.

The good agreement between the two approaches will be
a further confirmation of the correct functioning of the de-
vice: The results that we obtain for the entangled Mach-
Zehnder double quantum dot device are indeed the result of
a two-qubit quantum operation. Obviously, the results of the
two methods will only be in qualitative agreement with one
another, since the analytical model developed in the this sec-
tion cannot account for the full complexity of the realistic
device.

We describe the device consisting of a Mach-Zehnder in-
terferometer coupled to a double quantum dot by two
coupled qubits W and D, respectively. The basis states [0)W
and |1)V of qubit W are defined by an electron that propa-
gates through either of the two QWRs. The basis states |[0)P
and [1)P of qubit D, on the other hand, are defined by the
ground states of the isolated quantum dots. Quantum gates
can be described by unitary operators that map an initial state
|®;,) onto a corresponding final state |®g). The unitary op-
erator 7 that represents our two-qubit quantum transport de-
vice can be decomposed into a sequence of unitary operators
of less complex single- and two-qubit gates as follows:??

A A

T=R-P-V-R. (29)

The operators R and P represent single-qubit gates that act
solely on qubit W. In particular, R represents a 7r/2 rotation

gate and describes a coupling window, whereas P represents
a phase gate that adds a phase difference to the two compo-
nents of the qubit. The latter can be realized through an
additional split gate located on one of the QWRs, as ex-

plained in Sec. V. The sequence R-P-R therefore corre-

sponds to a Mach-Zehnder interferometer. The operator 1%
represents a two-qubit gate and describes the coupling of the
two qubits D and W due to their interaction. This decompo-
sition allows us to specify the action of the single-qubit gates

Rand P directly in terms of unitary operators.
We proceed by describing the entangled Mach-Zehnder
double-dot device as a stationary quantum-mechanical scat-
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tering problem. To this end, we represent the two electrons in
the pair of QWRs and the double quantum dot by the follow-
ing eight basis states for a given total energy E and a given
position x,

et 01(x) = exp(£ik )| )Y |NP - (0,/=0,1).  (30)

These states describe the two electrons as follows: The first
electron propagates along the wire axis x in either of the two
states |0)™ and |1)V, corresponding to the two QWRs. The
electron momentum at position x is denoted by k;. The sec-
ond electron occupies one of the two quantum dots, repre-
sented by states |0)° and [1)P. In this representation, the
operators in Eq. (29) correspond to 8 X 8 transfer matrices,

T=Tg-Tp-Ty Ty. (31)

This will allow us to finally determine the transmission func-
tion through the device. As a first step, we derive the transfer

matrix Ty, of the two-qubit gate 1% by solving a two-particle
Schrodinger equation. The noninteracting two-particle
Hamiltonian that describes the dynamics of the system is
given by

2
H(): &‘l‘Hz. (32)
2m

Here, H, is the model Hamiltonian that describes a pair of
tunneling-coupled quantum dots in terms of the bare splitting
A and the tunneling coupling 7 in accordance with Eq. (6).
For the Coulomb interaction between the two electrons, we
make the following ansatz:

V(x) = UIDYDPAMP O) 6L - x). (33)

This describes a localized interaction with interaction
strength U that is nonzero only for the two-particle state
[1)Y|1)P but zero for all other states. In addition, the inter-
action vanishes if the position of the QWR electron lies out-
side the spatial interval from x=0 to x=L. The resulting
quantum-mechanical scattering problem,

H=Hy+ V(x), (34)

can be solved analytically for the 8 X 8 transfer matrix Ty(E).
Since V(x) only acts on the state |1)™|1)P, T has the follow-

ing form:
1 0
T&=< o T>, (35)

where 7 is a 4 X4 submatrix that connects the states o=1,
i.e., states that contain [1)V. In order to determine this sub-
matrix, we split the x axis into three regions x<<0, 0<x
<L, and x> L. Within each region, the Hamiltonian H can
be diagonalized. Requiring continuity and differentiability,
we obtain the following explicit expression for the submatrix
7. In this expression, we have transformed the basis by using
the bonding and antibonding dot states |[A)° and |B)P from
Egs. (7) and (8) instead of the states |0)° and [1)P. In this
basis, we obtain 7= KZI/,LLK61,LLO, where the submatrices u
and « and read, for x;=0 and x,=L,
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_ (in(kB) 0 ) 36
o= 0 in(kA) ' (30

_(aBin(QB) aAin(QA)) (37)
i BBin(QB) ﬂAVX[(CIA) ’

where i=1,2. The 2 X2 matrix in(k) is defined as follows:

exp(— ikx;) )
ik exp(ikx;) — ik exp(—ikx;))"

exp(ikx;)

v, (k) = ( (38)

The coefficients ay and By and the wave vectors ky and gy
(Y=A,B) are given by (r,U>0)

U (39)
ay= s
" 4EEy + &) + AUP + 2U?
4Ey(Ey+ &)+ AU
By=——— — (40)
V4EW(Ey+ &)+ AU* + °U
| —————
ky=£V2M(E—Ey), (41)
—1\/2 (E lU— ) (42)
qy_ﬁ m 2 + &,

_1 ]
where &= é \?+(U+A)?. Note that the electron wave vectors

ky arise from the region x<<0 and from x>L, whereas gy
arises from the central region.

The next step is to determine the transfer matrices 73 and
Tp from the following representations of ideal rotation and
phase gates:

. [cos(0/2) —sin(6/2)
= . O=m2, (43)
sin(6/2) cos(6/2)
. ei¢/2 0
= ( 0 i ) (44)

where ¢ is the phase gate angle. We assume that these gates
do not introduce backscattering. In this case, we can apply R

and P separately for both directions of propagation. This
leads to unitary matrices T; and Tp with the following non-
vanishing elements:

(T)j;=cos(012), (Ti)ina=(=1)sin(62), (45)

(Ti)isai= (= 1™ sin(6/2), (i=1,4;j=1,8) (46)

(Tp);j= CXP[(— 1)’“%} (=18). (47)

This completes the calculation of the total transfer matrix 7.
The final step is to determine the transmission function
which requires us to set an initial condition for the scattering
problem. We consider the situation where the propagating
electron enters the pair of QWRs from the left in state [0)V.
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We further assume that the electron in the double quantum
dot lies initially in the binding state |B)P. The eight final state
coefficients represent the transmission amplitudes into the
four states |)V|Y)P (0=0,1, Y=A,B) for each of the two
asymptotic propagation directions (to the right or to the left).
We denote these final state coefficients by E , and E{y,Y’
respectively. By construction, the two rotation gates and the
phase gate do not introduce any backscattering. The amount
of backscattering due to the interaction V(x) depends on the
ratio of the interaction strength U and the length L of the
interaction region and can be made arbitrarily small. Thus,
the transmission amplitudes Eir’Y are negligible. In addition,
we only need the transmission probabilities 7'y and 7, that
describe the total probability of an electron to arrive at |0)"
or |1)W, irrespective of the state of the double-dot electron,

% (48)

Ty =|EgA* + |Eg

T, =|E] \[*+|E] 5. (49)

The resulting transmission probabilities 7 and T, will be
presented in the following section for different values of the
tunneling coupling. They will be compared with the numeri-
cal results obtained with the realistic model described in Sec.
II. Indeed, the above comparison will show that the two
models are able to reproduce the basic physics of the device
and that the device is able to produce an entangled state of
the two qubits.

V. RESULTS AND DISCUSSION

The method presented in the Sec. II allows us to calculate
the ballistic current through entangled two-particle systems.
Concretely, we first present results for a double-QWR based
Mach-Zehnder interferometer and show that this interferom-
eter can be employed as a fully controllable single-qubit
gate. Based on this system, we then propose a two-qubit
quantum transport device that allows the controlled genera-
tion and measurement of entanglement between the QWR
qubit and the double quantum dot qubit. The measurement
involves only the dc I-V characteristics, and no higher order
current correlations or magnetic fields are required to detect
entanglement. We would like to emphasize that the subject of
this paper is to show that these devices are well suited to
prepare arbitrary single-qubit and entangled two-qubit states.
Actual quantum computing applications, however, require
additionally the performance of these operations in a time-
resolved fashion with single electrons.

A schematic view of the proposed two-qubit device is
shown in Fig. 1. It is based on a GaAs/AlGaAs heterostruc-
ture that consists of two vertically stacked 2DEGs. The
2DEGs are locally depleted by the application of negative
voltages to appropriate metal top and bottom gates that are
not shown in this figure. For suitable gate voltages, the top
gates create a pair of parallel QWRs in the upper 2DEG that
are connected to each other by two coupling windows. For
specific energies, these coupling windows act as beam split-
ters and the QWR network behaves as an electronic Mach-
Zehnder interferometer. In contrast to electronic Mach-
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FIG. 2. (a) Vertical cross section of the GaAs/AlGaAs hetero-
structure with a single 10 nm wide GaAs quantum well that is used
for the Mach-Zehnder interferometer. GaAs is shown in black;
Al 37Gag ¢3As is shown in gray. The GaAs cap layer is 5 nm thick.
A silicon & doping layer with a concentration of 2.5 X 10'> cm™2 is
located 25 nm below the surface (dashed line). (b) Top view of the
Mach-Zehnder interferometer that depicts the side gates (black)
with voltage Vg(S) and the mid gates (gray) with voltage Vgg(M)
that define the two QWRs and the coupling windows between them.
On top of the wires, there are two additional phase gates (hatched)
at a bias of +Vgg(P).

Zehnder interferometers based on quantum Hall edge
channels,® no magnetic fields are employed. We therefore
use the term all-electric Mach-Zehnder interferometer for
this kind of device. We note that the relative phase shift
between the electronic wave function in the two QWRs is
controlled electrostatically by phase gates. These are addi-
tional top gates but may be combined with the gates that are
used to define the QWRs in the first place. The lower 2DEG
contains the two electrostatically defined tunneling-coupled
single-electron quantum dots. An electron in the upper 2DEG
couples to the electron in the double quantum dot in the
lower 2DEG by means of the Coulomb interaction. We have
designed the entire device so that the consequences of en-
tanglement become markedly evident in the observables, and
we refer to it as entangled Mach-Zehnder double quantum
dot device.

The Mach-Zehnder interferometer is operated under bal-
listic transport conditions. By applying a small dc bias volt-
age Vgp between the upper left source S and the remaining
three drain contacts Dy, D,, and D3, the device can be used
in such a way that current flows predominantly from S to D,
(denoted by J,) or to D, (denoted by J,), as indicated in Fig.
1.

A. Results: All-electric Mach-Zehnder interferometer
(single-qubit device)

First, we turn to the -V characteristics of the single-
electron device, i.e., the all-electric Mach-Zehnder interfer-
ometer alone. The calculations have been based on the
GaAs/AlGaAs heterostructure that is depicted schematically
in Fig. 2. It consists of a 5 nm thick GaAs cap layer [see
vertical cross section in Fig. 2(a)], followed by a 45 nm bar-
rier of Aly3;GageAs and a 10 nm GaAs 2DEG layer. Be-
neath, there lies a 2 um Al 3;Ga, c3As substrate. A silicon &
doping layer with a concentration of 2.5X 10'? cm™ is lo-
cated 25 nm below the surface. The electron sheet density in
the 2DEG layer has been calculated to be 2.4 X 10'! cm™2 for
the ungated sample at a temperature of 4 K.
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FIG. 3. (Color online) Top views of the equilibrium electron
density (upper panel) and electrostatic potential (lower panel)
within the upper 2DEG. The black and the white frames indicate the
position of the metal side and mid gates.

Figure 2(b) shows a top view of the structure including
the gates. The source and drain contacts (cf. Fig. 1) are not
shown in this figure. The device is 800 nm wide and
1345 nm long. Here, we distinguish three types of gates: side
gates (black), mid gates (gray), and phase gates (hatched).
Each of the two side gates is, respectively, 280 nm wide,
1345 nm long, and biased at Vgg(S)=-0.245 V with respect
to the source. The three mid gates are 40 nm wide and 200,
800, and 200 nm long, respectively. We apply a gate voltage
of Vg(M)=-0.660 V to the mid gates. They define two
QWRs (white) with a nominal width of 100 nm as well as
two coupling windows, each with a nominal length of
72.5 nm in the direction parallel to the wires. All of these
structural parameters have been chosen to guarantee optimal
device operation while allowing for its fabrication with cur-
rent technologies.

The subband spacing of the two lowest subbands in each
of these QWRs amounts to 3.1 meV. It is important for the
interferometer that the Fermi wavelength is close to the
length of the coupling windows. Indeed, our calculations
yield a Fermi wavelength of A\g=77 nm in the lowest sub-
band. In order to control the relative phase of the electron
wave function in the two QWRs, small gate voltages of
+Vsg(P) and —Vyg(P) are applied to the phase gates, respec-
tively. The two phase gates are centered on top of the two
QWRs and are each 720 nm long and 95 nm wide. A sepa-
rating layer of resist could be used to reliably insulate the
phase gates from the other gates. Figure 3 shows the equi-
librium charge density (upper panel) and the corresponding
potential (lower panel) in the 2DEG layer of the Mach-
Zehnder interferometer. The black and the white framed rect-
angles indicate the position of the metal top gates. The upper
panel shows the 2DEG to be fully depleted underneath the
gates. In addition, it is evident from the figure that the QWRs
and the coupling windows are formed indeed. The wires are
strictly one dimensional in the sense that only the lowest
subband contributes to the density. The lower panel shows
the potential barrier that separates the two QWRs. The en-
ergy scale is chosen so that the Fermi level lies at 0 meV.

Figure 4(a) shows the currents J; (solid), J, (dashed), as
well as the backscattered current J; (dotted) that flow from
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FIG. 4. (a) Stationary currents J; (solid), J, (dashed), and J3
(dotted) through the Mach-Zehnder interferometer as a function of
the phase gate voltage Vgg(P) for a nominal length of the coupling
windows of 72.5 nm. The source-drain voltage Vgp is set to 50 wV.
(b) Same as (a), but for a coupling window length of 67.5 nm.

the source S to D;, D,, and Dj, respectively. The currents
have been calculated by assuming a dc bias voltage of
50 uV and a temperature of 30 mK. The figure shows the
dependence of the currents on the voltages +Vsg(P) and
—Vsa(P) applied to the two phase gates, respectively. We first
note that the back current J; is smaller than 0.5 nA for the
entire relevant range of gate voltages and is therefore negli-
gible. In contrast to J3, the currents J; and J, strongly depend
on the gate voltage and oscillate between 0 and 4 nA for
more than 1.5 oscillation periods. The currents J; and J, are
seen to be phase shifted relative to one another by 180°,
which confirms that the device actually behaves as a Mach-
Zehnder interferometer. Note that this Mach-Zehnder inter-
ference pattern becomes damped out once the absolute gate
voltage |Vsg(P)| exceeds 15 mV because this increases the
amount of backscattering. Backscattering can be suppressed,
however, by increasing the length of the device, because the
phase shift depends linearly on the length of the phase gate,
whereas backscattering is independent of the length but in-
creases with the magnitude of |Vgg(P)|.

For comparison, Fig. 4(b) depicts the calculated currents
J1, J,, and J5 for the same device but for a nominal length of
the coupling windows that has been reduced by 5 nm. The
difference in results shows the sensitivity of the interference

195301-8



THEORY OF SEMICONDUCTOR QUANTUM-WIRE-BASED...

(a

(b)

)_

00 05 09 1.4[10°cm?]

FIG. 5. (Color online) Charge densities associated with the
current-carrying scattering states for a phase gate voltage Vgg(P) of
(a) 0 meV, (b) -3.6 meV, and (c) —7.5 meV. In all cases, the
source-drain voltage Vgp is set to 50 uV.

pattern to small changes in geometry and implies very high
demands on fabrication precision.

Figure 5 shows the charge densities of the stationary
current-carrying states of the Mach-Zehnder interferometer
for selected phase gate voltages. Figures 5(a)-5(c) corre-
spond to gate voltages of Vgg(P)=0, 3.6, and —7.5 mV,
respectively. The three graphs show that the quantum-
mechanical charge densities change predominantly near the
drain contacts on the right hand side of the device. These
changes reflect the redistribution of the total current between
J, and J,. In Fig. 5(a), the charge density is zero near the
upper right terminal but large near the lower right terminal.
This agrees with Fig. 4(a) that shows that the current J; is
minimal (J, maximal) for the corresponding gate voltage
Vsg(P)=0 mV. In Fig. 5(b), on the other hand, the charge
density is seen to be almost equal near both right drain con-
tacts, again in accord with Fig. 4(a) for V¢g(P)=-3.6 mV.
Finally, the charge density is large near the upper right ter-
minal but zero at the lower right terminal in Fig. 5(c), again
in correspondence with Fig. 4(a).

All of these effects are a consequence of the self-
interference of the electron wave function. Depending on the
relative phase between the two QWRs, the interference at the
second beam splitter leads to partial extinction either near the
upper or the lower right terminal.

B. Discussion: Switching characteristics of the all-electric
Mach-Zehnder interferometer

The dc transfer characteristics shown in Fig. 4(a) exhibit
multiple pronounced maxima and minima that can be attrib-
uted to rotations of a qubit on the Bloch sphere. Before en-
tering into the discussion of the results, let us give a rigorous
definition of the Mach-Zehnder interferometer qubit state. To
this aim, we depict the device schematically in Fig. 6, where
we show the regions of the two coupling windows and the

phase gate that perform the R and P transformations of Eqgs.
(43) and (44), respectively. We define the basis states |0) and
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FIG. 6. Schematic representation of the Mach-Zehnder interfer-
ometer. We have indicated the three quantum-operation regions,
consisting of the two coupling windows R and one phase gate P,

and four other segments where the qubit state is well defined (see
Table I).

|1) of the QWR qubit by an electron scattering state localized
in the upper and lower QWRs, respectively. This definition
holds only in the regions where the two channels are well
separated, as in the segments I, II, III, and IV of Fig. 6. By
contrast, the qubit state is not well defined within the win-
dow regions R, where the barrier between the QWRs is very
small. As an example, the approximate qubit states for the
four regions indicated in Fig. 6 are included in Table I and
specified for each of the three cases depicted in Fig. 5. In-
deed, in the calculation of Fig. 5, the split gate voltages have
been chosen in order to obtain a qubit rotation angle 6
=/2 and phase angles ¢=0, /2,7 in (a), (b), (c), respec-
tively [cf. Egs. (43) and (44)].

Since it is unlikely that one can fabricate the device dis-
cussed in Fig. 2 precisely, it is imperative to understand the
dependence of the Mach-Zehnder interferences on the vari-
ous device geometry parameters such as width and length of
the QWRs and the coupling windows not only quantitatively
but also qualitatively. A physically transparent picture can be
obtained by studying a model H shaped structure that con-
sists of a single coupling window where the depletion poten-
tials are hard-wall potentials as depicted in the inset of Fig.
7.

The coupling between the two QWRs causes the transmis-
sion to become resonant for specific energies that depend on
the length L and width W of the coupling window. These
energies are approximately equal to the energies of the bound
states in a rectangular box with the dimensions of the cou-
pling window, i.e.,

2 2

m
E(n,m) « I +

W (50)

Beam splitting, i.e., a crossover in the transmission from
channel S-D; to S-D,, requires that the corresponding trans-

TABLE I. Quantum state of the Mach-Zehnder qubit in the four
device segments indicated in Fig. 6 (columns), corresponding to the
three situations shown in Fig. 5 (rows), respectively.

Mach-Zehnder interferometer region

Charge

density I II 111 v
Figure 5(a)  [0)  [0)+[1)  [0)+]1) D
Figure 5(b)  [0)  [0)+[1)  (1+0)|0)+(1=i)|1)  i|OY+]|1)
Figure 5(c)  [0)  [0)+]1)  i|0)—i|1) il0)
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FIG. 7. Contour plot of the transmission function 7'} between
source S and drain D, as a function of kinetic energy in meV and as
a function of the coupling window length L in nm. The total width
of the structure equals W=220 nm, whereas the width of the inner
coupling windows amounts to W' =100 nm. The darker the color,
the smaller the value of T,. The dark lines therefore indicate
minima in 7. The arrows point to crossings of resonances where T
vanishes.

mission functions obey the relation T, (E) = T,(E,) = 0.5 for
some energy E,. In turn, this condition requires that there are
two sets of values (n,m) that correspond to the same energy
E, i.e., E(n;,m;)=E(n,,m,). Thus, the crucial geometric re-
quirement for quantum-mechanical switching is to achieve
an appropriate ratio of length L and width W that obeys this
condition. In order to obtain a pronounced resonance, the
values of n and m should be of the order of unity addition-
ally, since the resonances lie densely in energy for large in-
tegers. Figure 7 shows a contour graph of the transmission
probability 7, (from source S to drain D,) as a function of
the coupling window length L and the kinetic energy of the
electron. The arrows in this figure point to suitable values of
the length L where the energies of two eigenstates cross. To
further illustrate this crossover in the transmissions, Fig. 8
shows a cross section through Fig. 7 for the length L
=82 nm that is marked by the leftmost white arrow. This
crossing corresponds to the switching from channel S-D; to

1-0' '— i
S D1
D3 m_=D2

Transmission

3.0 3.3 3.6 3.9 42
Energy [meV]

FIG. 8. Transmission functions 7 (solid), 7, (dashed), and T3
(dotted), as a function of the kinetic energy of the electron in meV.
The length L of the coupling window has been set equal to 82 nm.
The other symbols have been defined in Fig. 1.
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S-D, and occurs near the degeneracy of the energy states
E(1,3) and E(2,1).

C. Results: Entangled Mach-Zehnder double quantum dot
device (two-qubit device)

In the following, we present the results for the entangled
Mach-Zehnder double quantum dot device that has been
schematically depicted in Fig. 1. For these calculations, we
have used a somewhat different set of geometry parameters
for the Mach-Zehnder interferometer in order to optimize the
entanglement. Since the calculations of the entangled system
are very demanding, we have defined the Mach-Zehnder in-
terferometer by a hard-wall potential within a 10 nm thick
slab of GaAs rather than performing a charge-self-consistent
calculation including all metal gates. We have taken the two
QWRs to be 55 nm wide and 1000 nm long, and the lateral
distance between them has been set to 20 nm. The coupling
windows now have a length of 85 nm. The resulting energy
spacing of the two lowest subbands amounts to 5.3 meV,
which is nearly twice as large as in the Mach-Zehnder device
of Sec. V A. The Fermi level Ef has been set to 1.6 meV in
the lowest subband. This Fermi level causes the two coupling
windows to act as almost perfect beam splitters, with channel
transmissions T(Ep) =~ T,(Eg)=0.5. For the calculation of
the interaction between the Mach-Zehnder interferometer
and the double quantum dot, we assume a vertical distance of
80 nm between them. The larger of the two quantum dots
with a lower ground state energy is located exactly under-
neath the center of the Mach-Zehnder interferometer,
whereas the smaller one lies 60 nm away in the direction
perpendicular to the QWRs. The double quantum dot system
is modeled by the Hamiltonian given in Eq. (6). The posi-
tions of the Mach-Zehnder interferometer and the double
quantum dot relative to each other have a large influence on
the operation characteristics of the device. The present con-
figuration exploits the idea that the interaction between the
electron in the QWRs and the electron in the larger quantum
dot is identical for both wires. The electron in the smaller
quantum dot, on the other hand, lies closer to the QWR
between gates D, and D5 and interacts mostly with the elec-
tron in that wire. Consequently, a phase difference in the
electron wave function for the two QWRs is exclusively in-
duced by the electron in the smaller dot.

At first, we study the transfer characteristics of the device
for a situation where the tunneling between the quantum dots
is inhibited (r=0). The ground states of the larger and the
smaller quantum dot are assumed to differ by A=10 ueV.
The resulting current in the QWRs is shown in Fig. 9 by the
dashed curves. We obtain the typical interference pattern that
we have also found in Sec. V A for the all-electric Mach-
Zehnder interferometer. The asymmetry with respect to the
sign of the gate voltage is caused by the asymmetric position
of the phase gate along only one of the two QWRs in com-
bination with the additional repulsive potential due to the
electron in the double quantum dot.

We now allow the electron in the double quantum dot to
tunnel between the two dots (=10 weV). The currents J,
and J, that correspond to this situation are shown in Fig. 9 by
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FIG. 9. Currents J; and J, in nA as a function of the phase gate
voltage Vsg(P) in mV for two different quantum dot tunneling cou-
plings ¢ in ueV. The inset is a simplified version of Fig. 1.

the solid curves. We still obtain the Mach-Zehnder interfer-
ence pattern, but the visibility is markedly reduced. Let us
define the visibility by

v= (L= I/ + )]y w0 (51)

i.e., for zero phase gate voltage Vgg(P). Figure 10 shows the
visibility as a function of the tunneling coupling. The visibil-
ity is almost 1 for vanishing tunneling coupling and de-
creases monotonously with increasing tunneling. The visibil-
ity is therefore uniquely related to the magnitude of the
tunneling coupling. The above effect can be explained as
follows. If the tunneling probability is high, the double-dot
electron can easily change its state. In this regime, it is also
easy for the double dot to measure the path of the interfer-
ometer particle, thus causing decoherence and destroying the
interference. For low tunneling probability, on the other
hand, the electron that sits initially in the large dot is insen-
sitive to the Coulomb interaction with the interferometer.
When the tunneling is completely suppressed, the state of the
dot is fixed and the interferometer electron is unable to
change the dot state. While the electrons are still interacting

1.0}

Visibility
©o o o ©
M Do @

o
o
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Tunneling coupling [peV]

FIG. 10. Visibility as defined in the text, corresponding to the
interference pattern of Fig. 9, as a function of the tunneling cou-
pling in ueV.
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FIG. 11. (Color online) (a) Contour plot of the stationary charge
density of the current-carrying states, in units of 10" cm™. The
upper (lower) panel shows the single-particle electron density in the
QWRs when the electron in the quantum dot occupies the bonding
(antibonding) state. The quantum dot tunneling coupling amounts to
t=10 ueV. (b) Same type of figure, but with the Coulomb interac-
tion between the electron in the wires and the electron in the quan-
tum dot switched off. In case (b), the two possible paths of the
scattered electron can interfere with one another. In case (a), how-
ever, the electron propagating in the lower wire changes the double-
dot state and loses its capability to interfere with the other path, thus
reducing the visibility (see text).

due to their charge in this case, the path of the interferometer
particle is not measured by the double dot.

Figures 11(a) and 11(b) show the electron density [Eq.
(27)] in the entangled Mach-Zehnder double quantum dot
device. To be precise, the figures depict the projection of the
probability densities of the current-carrying two-particle
states onto the eigenstates of the isolated double quantum dot
for a tunneling coupling of t=10 ueV and vanishing phase
gate voltage Vgg(P). In particular, Fig. 11(a) shows the inter-
acting case, whereas Fig. 11(b) shows the noninteracting
case where the electron-electron interaction between the
electrons in the Mach-Zehnder interferometer and the quan-
tum dot electron has been switched off. Thus, the two figures
illustrate the effect of the Coulomb interaction on the charge
density. In each of the two figures, the upper panel corre-
sponds to the ground state and the lower panel corresponds
to the excited state of the double quantum dot, respectively.
In the interacting case (a), we find a finite probability of the
electron in the double quantum dot to be in the excited state.
This has to be compared to the case of vanishing interaction
(b), as well as to the case of zero tunneling coupling. In each
of the latter cases, the probability of the electron in the
double quantum dot to be in the excited state is zero. This is
shown in Fig. 11(b). Note that for cases (a) and (b), the total
probability densities that are given by the sum of the two
projected probability densities are almost identical near the
left contacts but differ significantly near the right contacts. In
(a), the total probability density near the upper right contact
is only partially extinct by interference, whereas in (b), the
total probability density vanishes near the upper right con-
tact. This indicates that the interaction between the Mach-
Zehnder interferometer and the double quantum dot destroys
the self-interference of the QWR-electron wave function.
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FIG. 12. Transmission functions 7 and 7, as a function of the
phase angle in rad for the analytical model of the entangled Mach-
Zehnder double quantum dot device. The full line is for a finite
tunneling coupling #=50 in units of #2/2mL?, whereas the dashed
curve is for vanishing tunneling coupling that corresponds to no
entanglement.

D. Discussion: Visibility and von Neumann entropy of the
entangled Mach-Zehnder double quantum dot device

The results that we have obtained for the entangled Mach-
Zehnder double quantum dot device are indeed the result of
a two-qubit quantum operation. In order to show this, we
apply the analytical model developed in Sec. IV to our two-
qubit device. Figure 12 shows the transmission probabilities
T, and T,, computed from Eqs. (48) and (49), for two differ-
ent values of the quantum dot tunneling. Indeed, the com-
parison with Fig. 9 shows that the model is able to reproduce
the basic physics of the device and to yield transmission
probabilities 77 and T, that qualitatively agree with the re-
sults obtained by the numerical simulations described in
Secs. IT and III. In particular, Figs. 9 and 12 show a similar
dependence of the visibility on the tunneling coupling. The
reason for the suppression of the visibility is the entangle-
ment of the two qubits. In fact, from the point of view of the
individual qubit, its entanglement with the other one is noth-
ing else but decoherence, and this decoherence partially sup-
presses the interference of the electron wave function in the
two QWRs. In other words, the reduced density matrix of
each of the qubits, obtained by tracing out the degrees of
freedom of the other qubit, represents a mixed state if and
only if the two qubits are entangled. Thus, the observed sup-
pression of the visibility is both a direct measure of the de-
gree of entanglement between two qubits and of the decoher-
ence undergone by the QWR qubit.

We stress that our approach does not include other sources
of decoherence as, for example, electron-phonon interaction
or charge fluctuations in the metallic split gates that define
the structure. Therefore, our reduction of the visibility is ob-
viously ascribed to the quantum entanglement of the two
qubits. On the other hand, in real experiments, the visibility
will be reduced by the coupling of the interferometer with
any external degree of freedom and not only with the other
qubit. What makes our results functional to experiments is
the estimation of the visibility decrease against tunable pa-
rameters of the realistic device, as, for example, the tunnel-
ing coupling of the second qubit. In fact, it is unlikely that
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the effect of the environment will be tuned by the same pa-
rameters that affect the amount of entanglement between the
two qubits. The phonon effects on the interferometer, for
example, are determined solely by the temperature, the struc-
ture composition, and the energy of the traveling electrons.
Thus, our proposed device demonstrates—from a modeling
perspective—a controlled generation of two-qubit entangle-
ment. The predicted behavior of the visibility against various
system parameters may serve as an entanglement witness in
experimental realizations of the system.

In the remainder of this section, we show that the relation
between the visibility of our device, as defined in Eq. (51)
and depicted in Figs. 10 and 12, and the entanglement can be
quantified in terms of the von Neumann entropy of the re-
duced density matrix”* that is a measure of the degree of
entanglement.

To simplify the derivation, we generally assume that
backscattering is negligible in the directional couplers and
phase gates. This reduces all matrices to size 4 X4 and al-
lows the analytical evaluation of the transmissions 7; and T,
in Egs. (48) and (49). The density matrix of the final state is
then given by

p= 2 2 EnyE, oV MY P (52)
0,0'=0,1 Y,Y'=A,B

The amount of entanglement of the final two-qubit state is
given by the von Neumann entropy of the reduced density
matrix, namely,

§=-Tr Pred IOg Pred> (53)

where the reduced density matrix p,.q is obtained from p by
tracing out the electron in the double quantum dot. This
yields the 2 X2 matrix

<T1 z ) (54)
Pred = Z* T2 s
where the so-called coherence Z is given by

Z= E(r),AEqTA + E(),BETB' (55)

With the eigenvalues of the reduced density matrix,
1 e
pe= (L N4(ZP =TTy + 1), (56)

the von Neumann entropy reads
S=- 2 p;logp;. (57)
i=+,—

We now show that the eigenvalues p, of p,4 can be ex-
pressed in terms of the visibility v, Eq. (51), of the interfer-
ence pattern according to

1
ps=5(1%v). (58)

First, we determine the explicit expressions for the transmis-
sion functions as a function of the angle ¢ of the phase gate.

To this end, we first apply the /2 rotation gate R and the
two-qubit gate V onto the initial state |®;,). The probabilities
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|A,.y|* of the four two-particle basis states |)V|V)P (o
=0,1, Y=A,B) of the resulting state are given by

1 1
Aosl’= 5 cosZ(Ewi y>),

1 1
Apal* = 2 SmZ(E(ﬁi 7)>, (59)

where + and — correspond to 0=0 and o=1, respectively,
and B and y are angular constants that depend on the two-

particle interaction V. They describe the linear combination
of the dot-electron states |B)? and |A)P within the two-
particle wave function. The explicit expressions of 8 and 7y
do not enter the final result of this section. The expressions in
Eq. (59) reflect the fact that the probabilities for the electron
in the QWR to be either in state |0}V or in state [1)V are

equal. The next step consists in applying the phase gate P

and the second 7/2 rotation gate R. This procedure yields
the final state probability amplitudes

r 1 .
Eyy= TE[GXP(KZ")A(),Y +A;y],
\‘r

1
E?,Y= E[_ exp(ip)Agy+A y]. (60)
\!

Note that the gates R and P, being single-qubit transforma-
tions, do not change the degree of entanglement of the two
electrons. For the transmission probabilities 7; and T,, we
finally obtain

Tio== % |Agpl|A lcos(d+ ) = |AgallA; alcos(d+ 8y),

0| =

(61)

where the signs * correspond to 7'} and T, respectively. The
phase angles are defined by &,y=arg(Ag,)—arg(A;,) and
analogously for 5. By inserting the expressions for A, y into
Eq. (61), the transmission probabilities read

1
T),= 5[1 + \cos? B sin? 8+ cos? ycos? Scos(+ ) |
(62)

where 5:%(53—5A) and ¢, is a constant phase shift. This
result shows that the transmission probabilities 7 and 7,
yield a sinusoidal oscillation as a function of the phase angle
¢. By comparing the definition [Eq. (51)] of the visibility
with this result for the transmission probabilities, we see that
the visibility can be written in the form

v =1cos? Bsin® 8+ cos® y cos? 5. (63)

Now, we evaluate the expression |Z|>~T,T, within Eq. (56)
and obtain
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FIG. 13. Calculated von Neumann entropy, as defined in the
text, of the entangled Mach-Zehnder double quantum dot device of
Sec. V C as a function of the tunneling coupling in peV.

1 1
|Z]> - T,T,= Z(COSZ Bsin? 5+ cos? ycos® §—1) = Z(v2 -1).

(64)

Inserting this result into Eq. (56), we finally obtain the asser-
tion in Eq. (58).

This result proves that the von Neumann entropy of the
reduced density matrix depends monotonously on the visibil-
ity. A visibility of v=1 corresponds to vanishing von Neu-
mann entropy (zero degree of entanglement), while for a
visibility of v=0, we find a von Neumann entropy of S=1
(maximum degree of entanglement). While the relation Eq.
(58) between visibility v and von Neumann entropy S may
not hold rigorously for the realistic entangled Mach-Zehnder
double quantum dot device, it is nevertheless interesting to
calculate S for this device as a function of the tunneling
coupling, invoking the relation in Eq. (58). The result is pre-
sented in Fig. 13 and shows that the degree of entanglement
of the realistic device monotonously increases with increas-
ing tunneling coupling.

VI. CONCLUSION

We have theoretically analyzed semiconductor single- and
two-qubit quantum gates based on electrostatically defined
QWRs and quantum dots. We predict the detailed three-
dimensional geometry, material composition, doping profile,
and bias voltage of an all-electric Mach-Zehnder interferom-
eter. Our calculations of the electronic structure and ballistic
transport properties of this device show that the proposed
device is a fully controllable single-qubit gate for electrons
that propagate in QWRs. The fabrication of the Mach-
Zehnder interferometer is within the reach of present-day
technology, but full control of the electronic beam splitters
requires a very high fabrication precision in the range of a
few nanometers.

Based on this all-electric Mach-Zehnder interferometer,
we predict a two-qubit quantum transport device where the
electrons in the interferometer couple to a single-electron
double quantum dot by Coulomb interaction. We have calcu-
lated the ballistic transport properties of the three-
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dimensional two-qubit device with an interacting two-
particle quantum transport method and designed the device
geometry for optimal entanglement. By means of an analyti-
cal model of the device, we have illustrated the qualitative
physics of the two-qubit device and showed that the visibility
is a faithful measure of the entanglement. In particular, we
have found that the visibility can be controlled externally by
tuning the tunneling coupling between the two quantum dots
of the second qubit. The device realizes a nontrivial two-

PHYSICAL REVIEW B 76, 195301 (2007)

qubit gate that allows the controlled generation and straight-
forward detection of entanglement from dc current-voltage
characteristics.
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