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Electronic structure calculations are presented for Cu2−xS using the full-potential linearized muffin-tin or-
bital method. In the simple cubic antifluorite structure, Cu2S is found to be semimetallic both in the local
density approximation �LDA� and using the quasiparticle self-consistent GW �QSGW� method. This is because
the Cu d bands comprising the valence band maximum are degenerate at the � point and the fact that the Cu s
band, which can be considered to be the lowest conduction band, lies slightly below it at �. Small deviations
from the ideal antifluorite positions for the Cu atoms, however, open a small gap between the Cu d valence and
Cu s-like conduction bands because the symmetry breaking allows the Cu s and Cu d bands to hybridize.
Supercell models are constructed for cubic and hexagonal chalcocite Cu2S as well as cubic digenite Cu1.8S by
means of a weighted random number structure generating algorithm. This approach generates models with
Wyckoff site occupancies adjusted to those obtained from experimental x-ray diffraction results and with the
constraint that atoms should stay within reasonable distance from each other. The band structures of these
models as well as of the low-chalcocite monoclinic structure �Cu96S48� are calculated in LDA with an addi-
tional Cu s shift obtained from the QSGW-LDA difference for the antifluorite structure. Even with this cor-
rection, smaller band gaps of about 0.4–0.6 eV �increasing from cubic to hexagonal to monoclinic� than
experimentally observed �1.1–1.2 eV� are obtained for the Cu2S composition. Decreasing the Cu content of
Cu2−xS in the range 0.06�x�0.2 is found to essentially dope the p-type material by placing the Fermi level
0.2–0.3 eV below the valence band maximum but also to increase the gap between highest partially filled
valence band and lowest conduction bands to about 0.7–1.0 eV. This results from a reduced Cu d-band width.
Thus, the optical band gap or onset of optical absorption increases in part but not exclusively due to the
Moss-Burstein effect. The total energies of the structures are found to increase from monoclinic to hexagonal
to cubic to antifluorite. This is consistent with the fact that the simple antifluorite structure is not observed and
that the systems change from monoclinic to hexagonal to cubic with increasing temperature, under the assump-
tion that the electronic energy of the system dominates the free energy. We find that Cu2S is unstable toward
the formation of Cu vacancies even in thermodynamic equilibrium with bulk Cu metal. The experimental data
on the band gaps and optical absorption are discussed. We find no evidence for indirect band gaps in the
hexagonal materials and argue that the experimental results are consistent with this in spite of previous reports
to the contrary. The presence of a second onset of absorption located about 0.5 eV higher than the minimum
band gap observed in experiment is explained by a rise in conduction band density of states at this energy in
our calculations. The calculated increase in gap with decreasing Cu concentration is in agreement with experi-
mental observations.
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I. INTRODUCTION

Copper sulfides, in particular, Cu2−xS, were used in some
of the earliest thin-film solar cells.1,2 The earliest report men-
tions an unusually high photovoltaic effect in CdS, which
was possibly due to Cu from the contacts diffusing into the
CdS.3 It is naturally a p-type semiconductor �due to slight
nonstoichiometry with less than two Cu atoms per S� and
was used in conjunction with n-type CdS.4 In fact, Cu2S in
these early solar cells was prepared by Cu infiltrating the
CdS lattice and replacing Cd atoms.5,6 While solar cells with
efficiencies up to 9% were achieved,1 the solar cells suffered
from long-time deterioration in air7 and further development
of them was mostly stopped.6 Recently, a renewed interest in
Cu2S has occurred because now Cu2S can be grown in nano-
particle form,8–11 and this opens the way to new potential
applications, including new approaches to photovoltaics.12–15

In spite of this rather long-standing interest in Cu2S, very
little is definitely known about its electronic structure. In
particular, there have not been any computational investiga-
tions, to the best of our knowledge. So, all we know about
the band structure are the gaps obtained from optical absorp-
tion measurements7,16–18 and photoconductivity.19 Different
indirect gap schemes were proposed based on the optical
data but were never confirmed by calculations. The main
reason for this is no doubt the complex crystal structure. In
the crystallography literature, elucidating the structure of the
various mineral forms of Cu2−xS has been a long-standing
and challenging problem.20–28 The main reason for this is
that the positions of the Cu atoms within the close-packed
sublattice of S atoms are not well defined. They depend on
temperature and, at elevated temperatures the Cu atoms, are,
in fact, unusually mobile, thus making Cu2S a partially ionic
conductor.29 Under these circumstances, crystallographers
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can only determine a statistical distribution of Cu atoms.
This unusually mobile behavior of the Cu atoms is inter-

esting in its own right but it also presents a challenge in
computation of the electronic structure. It could possibly lead
to strong phonon scattering and electron-phonon interactions.
The strong phonon scattering coupled with relatively high
conductivity could be interesting for thermoelectric proper-
ties, although this has not yet been pursued. At present, it
seems mostly a problem, because it can easily lead to dete-
rioration by Cu leaking out of the material and changes in
stoichiometry over time.

In this paper, we first consider a simplified crystal struc-
ture with high symmetry, namely, the antifluorite structure.
To our surprise, the electronic structure in this case turned
out to be semimetallic. Band gaps are usually underestimated
by the local density approximation. The metallic band struc-
ture, however, is confirmed by a recently developed “quasi-
particle self-consistent GW” �QSGW� method.30–34 A com-
parison of the QSGW with local density approximation
�LDA� results and analysis of the atomic orbital character of
the bands provide important insights in the electronic struc-
ture. In particular, it shows that the Cu s orbitals need to be
shifted slightly upward.

In the next step, we describe a method for generating
model crystal structures using a weighted random number
generator. The resulting models are shown to represent the
experimental statistical distribution of the Cu atoms quite
well. However, they require fairly large structural models for
which, unfortunately, we cannot yet apply the QSGW ap-
proach. The LDA band-structure calculations show that the
complexity of the crystal structure is essential to open a band
gap. However, the band gap is much smaller than the experi-
mentally reported values. Applying the insights of the com-
bined LDA-QSGW study of the simpler antifluorite structure,
we then attempt to correct the band gaps by including semi-
empirical shifts of the relevant Cu s states. We also discuss
the effects of nonstoichiometry, i.e., a lower Cu concentra-
tion, and estimate effective masses. We provide a critical
examination of the experimental data in comparison with our
calculated results, including some results on recent nanopar-
ticles. This shows that our calculations still underestimate the
band gaps by about 0.6 eV, but nevertheless, significant in-
formation on the nature of the band structure is obtained
from our calculations. For example, our calculations allow us
to clarify the band gaps to be direct rather than indirect. They
explain the occurrence of a second onset in the optical ab-
sorption at about 0.5 eV above the gap and explain the in-
crease in gap with decreasing Cu content. Our analysis of the
total energies also shows the intrinsic instability of Cu2S
toward Cu-vacancy formation.

The paper is organized as follows. In Sec. II, we describe
the computational approach. In Sec. III, we summarize what
is known about the crystal structure from the literature and
review the nomenclature of the various mineral forms. Sec-
tion IV is divided in sections on the simple antifluorite struc-
ture �Sec. IV A�, the derivation of our model structures �Sec.
IV B�, and the band-structure results for the model structures
�Sec. IV C�. Finally, in Sec. IV D, we comment on the rela-
tive total energies of the various models we have studied. In
Sec. V, we critically review the experimental data on optical

absorption in comparison with our calculated results. A sum-
mary of the main results concludes the paper �Sec. VI�.

II. COMPUTATIONAL METHODS

The main ingredients of our computational method are the
density functional theory35 in the local density approxima-
tion �LDA�,36 the full-potential linearized muffin-tin orbital
method �FP-LMTO�,37,38 and a recently developed form of
the GW method,39,40 called the quasiparticle self-consistent
GW �QSGW�.30–34

The FP-LMTO uses a basis set of augmented smoothed
Hankel functions.38 This allows one to fine tune the shape of
the orbital both inside the muffin-tin sphere and outside it so
that a fairly small accurate basis set of only two sets s , p ,d
and s , p orbitals per atom can be used, thus allowing us to
easily treat large unit cells. The basis set can be augmented
with extra orbitals per l channel and higher l values when
necessary for higher accuracy. For example, for the QSGW
calculations, a basis set including f orbitals and a second set
of s-d were employed. The potential is free of shape approxi-
mations, and the smooth parts of the charge density, poten-
tial, and wave functions are tabulated on a real space mesh.
The Brillouin-zone integrations were carried out using a
regularly spaced mesh with a mesh size adapted according to
cell size. For instance, for the simple antifluorite structure,
the reciprocal unit cell is divided into 6 in each direction,
while for the largest cells, a division into 2 or even 1 is
already found to be sufficient.

The one-electron eigenvalues in density functional theory,
in particular, in the local density approximation, are not re-
liable to predict one-electron excitations, i.e., the band struc-
ture, and, as a result, typically underestimate band gaps of
semiconductors severely. This is because the theory is de-
signed to describe the total energies of the ground state only.
A better theory for one-electron excitations is provided by
Hedin’s GW method.39 In this approach, the quasiparticle
excitation energies Ei are obtained from

�−
1

2
�2 + vH�r���i�r� +� ��r,r�,Ei��i�r��d3r� = Ei�i�r� ,

�1�

in which atomic Hartree units are used, vH is the Hartree
potential, and ��r ,r� ,E� is a nonlocal and energy dependent
self-energy operator. In the GW approximation, � is obtained
from the one-electron Green’s function G and the screened
Coulomb interaction W; hence, the name GW. More pre-
cisely, ��r ,r� ,E� is the time to energy Fourier transform of
��12�= iG�12�W�1+2�, in which 1 and 2 stand for the posi-
tion �plus, if necessary, spin� and time of particles 1 and 2.
The dynamically screened Coulomb interaction W�12�
=v�12�+�W�13���34�v�42�d34 involves the polarizability
�, which, in the random phase approximation �RPA�, is
given by ��1,2�=−iG�1,2�G�2,1�. Since � is determined
through G, so is W. Therefore, � may be viewed as a func-
tional of G.39,40

The calculations here, at least for the simplest possible
structure, are carried out using the QSGW approx-
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imation.32,34 Because it is new, we briefly describe its main
ideas. Hedin’s GW approximation is almost invariably imple-
mented with further approximations made. The most impor-
tant among these are the pseudopotential approximation
�which treats the core with LDA and then pseudizing it� and
the lack of self-consistency �G and W are generated from
LDA eigenfunctions and eigenvalues, i.e., GLDAWLDA�. Be-
cause GW is a perturbation theory, the results clearly depend
on the starting point. Thus, the errors in energy bands can
originate from �i� the validity of the RPA approximation to �
and �ii� the validity of the GW approximation to �. The size
of both of these errors depends on �iii� the starting Green’s
function G and, finally, �iv� further simplifications to an ex-
act implementation of the GW approximation. These further
approximations �iv� have plagued the GW community be-
cause calculated results of the same quantities tend to vary
between different groups, much as what occurred in the early
days of the LDA. However, the most recent all-electron
implementations of GW such as the method used in the
present work30–34 largely eliminate these errors. However, in
recent years, it has been recognized that �iii� is also critical;
CuBr is an important example of this.33 One may thus also
expect it to be important for the present case of Cu2S.

QSGW is a prescription to minimize errors �i� and �ii�
through an optimal choice of �iii� within the GW framework.
A self-consistency condition is especially constructed so as
to bring the Green’s function G around which the perturba-
tion theory is done as close as possible to the exact G, so as
to minimize the size of the perturbation. More specifically,
the exchange-correlation potential of the unperturbed Hamil-
tonian is chosen to be

Vxc =
1

2�
ij

��i	
Re ���i�ij + Re ��� j�ij��� j� , �2�

where Re indicates that only the Hermitian part is taken and
�i are the eigenvalues of the unperturbed Hamiltonian. Thus,
the effective potential in the starting one-particle Hamil-
tonian, which determines G and �, is itself determined by �,
and this provides another self-consistency requirement. For a
full discussion of the justifications of this approach, we refer
the reader to Ref. 34.

With an all-electron implementation of GW and the self-
consistency condition, energy bands are predicted with uni-
formly good accuracy for a wide range of semiconductors;
moreover, the errors remaining are highly systematic.32,34

Self-consistency improves agreement with experiment and is
sometimes essential: the band gap of CuBr, for example, is
1.56 eV in the GLDAWLDA approximation,33 far below the
observed fundamental gap of 
3.1 eV. Self-consistency
brings the gap to within 
0.2 eV of experiment, not only for
CuBr but also for a wide range of semiconductors.32 Detailed
discussions of standard LDA-based GW and QSGW can be
found in Refs. 33 and 34.

QSGW overestimates semiconductor band gaps slightly. A
key point that distinguishes QSGW from all other approaches
is that the error is highly systematic. Most of the error can be
qualitatively understood from the omission of excitonic ef-
fects in the calculation of �. In any case, we can reasonably

expect that QSGW calculations predict energy bands of Cu2S
and CuBr accurate to 
0.2 eV for a given crystal structure.

Since QSGW is too expensive for the rather complicated
structures we study here, we used QSGW only for the simple
cubic antifluorite structure. We adopt the LDA but adjust the
LDA potential to approximately match QSGW bands of bulk
Cu2S in this particular structure and then use the same po-
tential for the more realistic structures. From the analysis of
the QSGW compared to the LDA results, we learn that pri-
marily, the Cu s orbital energy needs to be shifted upward. In
the FP-LMTO method, this can be done by adding a projec-
tor operator to the Hamiltonian,

Vs = �	s	
s�	s� , �3�

where 
s is a shift and �	s	 is the appropriate partial wave
taken at the linearization energy inside the sphere, in this
case, the Cu s partial wave at its linearization energy.

III. CRYSTAL STRUCTURE

The crystal structure of Cu2−xS is rather complex and the
nomenclature somewhat confusing. The various forms all
consist of either a cubic or hexagonal close-packed lattice of
S atoms with Cu atoms occupying various interstitial sites
with different statistical probabilities. One distinguishes dif-
ferent phases depending on the Cu content and depending on
the temperature range.

Stoichiometric Cu2S is called chalcocite, although occa-
sionally, one finds this also spelled as chalcosite.16 Following
Potter,20 one distinguishes three different modifications,
a monoclinic phase called low chalcocite below
103.5±1.0 °C, a hexagonal phase called high chalcocite be-
tween the previous temperature and 436±10 °C, and a cubic
phase above this temperature. The crystal structure of the
monoclinic phase was fully determined by Evans23 and is, in
fact, closely related to that of high chalcocite. It is essentially
a superstructure of the hexagonal lattice with slight distor-
tions, containing 48 f.u. Cu2S. For the hexagonal high-
chalcocite structure, only a statistical distribution of the at-
oms over the various Wyckoff sites could be determined, and
different authors report somewhat different distributions. For
example, Will et al.25 include Cu at 2b, 4f , 6g, 6h, and 2a
sites and S at 2c sites. As is well known, the Wyckoff sites
differ by their local symmetry, and the number indicates how
many equivalent sites of this type there are in a unit cell. The
crystallographers determine the relative occupancies of these
sites by generating the corresponding x-ray diffraction inten-
sities and by searching for a best fit to the data. Wuensch and
Burger21,22 only include Cu at 2b, 4f , and 6g, while
Sadanaga et al.26 include atoms at 2b, 4f and 12k positions.
As will be discussed later, in the model of Will et al., the
distance between the Cu 6h and S 2c site is 1.05 Å, which
seems unreasonably close. Since all S sites are occupied, it
seems that we cannot allow any Cu atoms in 6h sites. Ap-
parently, such restrictions were not included in the best fit
determination.

Cu1.8S is distinguished as a separate phase and is called
digenite. Some authors distinguish low digenite and high di-
genite based on observed phase transitions by differential
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thermal analysis, but all crystals identified as digenite are
found to be cubic and based on an fcc sublattice of S. This
structure is then similar to cubic chalcocite except that only
9/10 of the Cu sites are occupied. The simplest form imag-
inable for a cubic Cu2S would be the antifluorite structure, in
which the Cu atoms occur in the 8c Wyckoff positions, i.e.,
the �1/4 ,1 /4 ,1 /4� positions. However, the Cu atoms appar-
ently do not �or at least not exclusively� occupy this highly
symmetric position but instead occupy various other lower
symmetry Wyckoff positions, such as the 192l sites.
Morimoto et al. proposed a specific model for Cu9S5 based
on a rhombohedral cell which corresponds to a 5�5�5
cubic cell and with atoms at or close to the body diagonal.
This unit cell would exactly contain 1 f.u. Cu9S5. This
model, however, does not provide the best fit to the diffrac-
tion data, and others such as Will et al.25 determined differ-
ent site occupancies over a few different Wyckoff sites,
which were furthermore found to differ at different tempera-
tures. All the above models for digenite correspond either to
naturally found minerals or to synthetic crystals produced
from mixtures of pure Cu and S powders heated in silica
vessels and then cooled rapidly. The various phases at differ-
ent temperatures were obtained by heating the crystal during
the diffraction measurement. On the other hand, this does not
exclude that crystals of composition Cu1.8S could exist in the
hexagonal modification. Specifically, the Cu2−xS obtained by
the Clevite process,5 i.e., by substituting Cu in a CdS wurtz-
ite crystal, is likely to have a hexagonal sublattice of S at-
oms. Furthermore, this structure appears most relevant to the
Cu2S used in solar cells. For example, all data on the optical
absorption and band gaps, to the best of our knowledge,
come from hexagonal material. Also, the recently studied
nanoparticle Cu2−xS with different x have hexagonal
structures.9

To keep the nomenclature clear, we will reserve the name
digenite for the cubic modification of Cu1.8S only and will
consider the hexagonal ones simply as Cu-deficient hexago-
nal high chalcocite. In fact, the cubic form of high chalcocite
Cu2S is also called high digenite according to Will et al.25

because above 500 °C, only Cu2S exists. It thus appears that
the terms chalcocite and digenite refer to the hexagonal and
cubic forms, respectively, regardless of the exact composi-
tion. To be unambiguous, we will use the terms cubic and
hexagonal chalcocite when we refer to Cu2S and digenite for
the cubic form of Cu1.8S. Another form of Cu-deficient hex-
agonal chalcocite is known with a separate name, namely,
Cu1.96S, which is known as djurleite.27 A full structure deter-
mination of djurleite was carried out by Evans.23 Similar to
low chalcocite, it is a monoclinic structure and can again be
considered as a superstructure of hexagonal chalcocite with
just a slightly reduced Cu concentration. The djurleite unit
cell corresponds to Cu62S32, i.e., just two Cu atoms missing
from a 32 f.u. Cu2S.

To complete the discussion of Cu2−xS, we mention that
CuS is known as covellite. Its structure and electronic struc-
ture were studied by Gotsis et al.28 It is also a hexagonal
structure consisting of alternating layers of CuS and
Cu-S2-Cu.

In summary, for our present purposes, it appears neces-
sary to consider both hexagonal and cubic underlying S lat-

tices. It seems reasonable to start with the simplest cubic
antifluorite structure. Although this was never observed to be
the true crystal structure, it serves as a high-symmetry start-
ing point from which to discuss the cubic modifications of
high chalcocite and digenite. Finally, we need to consider at
least a few different Cu compositions because experimen-
tally, a clear correlation between Cu content and band gap
has been found. Except for monoclinic low chalcocite and
djurleite, no full structural models are available, so we will
need to construct models first to reproduce as possible the
observed Wyckoff site occupancies. This is described below
in Sec. IV B.

IV. RESULTS

A. Antifluorite band structure

The first and the simplest model we consider for Cu2S is
the perfect antifluorite �AF� structure. Full-potential LDA
calculations give the optimal lattice constant of 5.45 Å,
about a 3%–5% underestimate with respect to the experi-
mental lattice constant of digenite �5.57 Å� �Ref. 25� or cu-
bic chalcocite �5.762 at 500 °C� �Ref. 25� with the corre-
sponding cohesive energy of −12.69 eV. We plot the LDA
band structure for this case in Fig. 1 calculated at the theo-
retical equilibrium lattice constant. For the moment, ignore
the color coding of the bands, which will be explained
shortly.

It is clear that this system is metallic or semimetallic. At
first sight, it seems to have a zero band gap, but we will
argue shortly that one should rather consider it to have a
negative band gap of −1 eV �or overlap of 1 eV� at the �
point. This contradicts with the experimental results of the
semiconducting nature of the Cu2S.7,16–18 One possible rea-
son for this contradiction is that the AF structure is strongly
oversimplified compared to the experimentally reported
structures. However, LDA is known to underestimate band
gaps and may turn a small band gap semiconductor into a
semimetal. Typically, for example, the binding energy of
Cu d bands might be expected to be underestimated by LDA
and this may lead to an underestimate of the gap if there are

FIG. 1. �Color online� Energy bands of Cu2S in the antifluorite
structure and the LDA with the Cu s band highlighted in red. The k
points shown correspond to the usual fcc Brillouin zone.
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anion p states above it that are interacting with it.
A first important step is to identify the nature of the bands

by inspecting the partial densities of states �PDOS�. Figure 2
shows that the nature of the valence band maximum �VBM�
is predominantly Cu d-like. A similar nature of the VBM is
also observed for other Cu compounds, such as Cu2O and
CuBr. Comparison of our calculated PDOS with experimen-
tal photoemission data for Cu2O �Ref. 41� and CuBr �Ref.
42� shows that our densities of states are in good agreement
with the x-ray photoelectron spectroscopy spectra, without
significant downward shifts of Cu d with respect to the Fermi
level. Thus the same can be expected for Cu2S.

More details on the nature of the bands are obtained by
plotting the bands with a color in proportion to the weight of
certain atomic orbitals. In Fig. 1, the bands are colored red in
proportion to the Cu s contribution to the eigenvector at each
k point with blue as the complementary color. Thus, com-
pletely blue means zero Cu s, while entirely red means 100%
Cu s. Similarly, in Fig. 3, the Cu d contribution to the bands
is highlighted.

These plots clearly reveal that the lowest conduction band
has a strong Cu s component except right near the center of

the Brillouin zone where the Cu s band occurs below the
triply degenerate VBM. The latter is clearly a predominantly
Cu d-like state. This suggests that the Cu s band has in some
sense crossed the Cu d band, and the apparent zero band gap
is due to the degeneracy of the Cu d band at �. If Cu s-like
states were to move up somewhat above the Cu d-bands in a
more accurate treatment than LDA, possibly a gap could
open.

To check this possibility we next performed calculations
of AF Cu2S using the QSGW approach. In Fig. 4, the QSGW
and LDA results are compared with each other. The Cu s
state at the � point is indeed seen to move up by about
0.8 eV but not enough to open a gap. Thus, QSGW calcula-
tions confirm the metallic nature of hypothetical AF Cu2S.
The “quasiparticle self-consistency” aspects of QSGW are
important here. In LDA, the band gap, defined as �1c−�15v,
is −0.88 eV; in GLDAWLDA, it is −0.41 eV; in GLDAWLDA but
setting the quasiparticle renormalization factor33 Z=1, which
is often found to be a better approximation, we obtain
−0.29 eV; and, finally, with QSGW, we find −0.11 eV.
Based on experience with other semiconductors and, in par-
ticular, with CuBr,33 we expect this to be accurate to within
0.1 eV.

The above comparison suggests that at least in part, we
can overcome the LDA error by shifting up the Cu s states.
In Fig. 5, we compare the bands of antifluorite Cu2S in
QSGW with the LDA+shift results in which only the Cu s
partial waves are shifted up. This shows that we can now
indeed reproduce the correct position of the Cu s vs Cu d
VBM at the � point, but we still underestimate the conduc-
tion band at k points away from � and overestimate the
bands deeper in the valence band. Thus, it provides a way to
somewhat correct LDA but does not entirely reproduce GW.

The fact that the VBM is triply degenerate suggests that to
explain the semiconducting nature of Cu2S, the distortions
from the high-symmetry AF structure are essential. One
might expect that these will break the degeneracy of the Cu d
state at � and hence possibly open a small gap. To test this
idea, we first considered a simple cubic Cu8S4 cell based on
the antifluorite structure but with small random displace-
ments of the Cu atoms away from the �1/4 ,1 /4 ,1 /4� posi-
tion. The displacements taken were of order of 0.05–0.10 in
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FIG. 2. �Color online� Partial densities of states for Cu2S in the
antifluorite structure obtained in the LDA.

FIG. 3. �Color online� Cu2S, AF, the Cu d contribution to the
bands is highlighted in red.

FIG. 4. �Color online� Comparison of QSGW �green solid� with
LDA �blue dashed� bands for Cu2S in the AF structure.
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reduced coordinates. It was found that indeed this opened a
small band gap of order of 0.2 eV, as can be seen in Fig. 6.
Furthermore, it now becomes clear that the lowest conduc-
tion band is Cu s-like even at the � point. Thus, shifting Cu s
states upward by about 0.8 eV as suggested by the QSGW
calculation for AF could lead to a gap of order 1 eV. Since
this structure is still rather unrealistic, we do not describe it
in further detail.

B. Weighted random number generated structures

In order to obtain a more realistic description of the elec-
tronic structure, we first need to create structural models that
take the structural complexity into account and agree as close
as possible with the x-ray diffraction studies. To this end, we
developed a “weighted random number” algorithm. In order
to be able to still use a standard band-structure approach, we
continue to use periodic boundary conditions but construct a
supercell. This supercell then contains a large enough num-
ber of sites of each Wyckoff site type that we can occupy
some of them with Cu atoms and leave others empty in the
same proportion as dictated by the experimental observa-
tions. At the same time, we need to make sure that the atoms
are staying within a reasonable distance from each other. For
example, in the cubic chalcocite structure �at 500 °C�, Will
et al.25 find that Cu atoms occur in three types of Wyckoff
positions, 8c with representative coordinates �1/4 ,1 /4 ,1 /4�
and occupancy 2.06/8, 4b with representative coordinates
�1/2 ,1 /2 ,1 /2� and occupancy 0.38/8, and 192l with repre-
sentative coordinates �0.1067,0.166,0.2826� and occupancy

5.56/8. The S atoms occur at the 4a positions �0,0,0� with
4/4 occupancy. These numbers refer to the conventional cu-
bic fcc unit cell, i.e., a cube with S atoms on the corners and
in the face centers. If we construct a 2�2�2 supercell, it
will contain 32 S and 64 Cu atoms. This means that we have,
for example, 8�192=1536 l-type positions in our supercell.
Out of these, only �5.56/8�64�44 should be occupied by a
Cu atom. To generate such a structure, we start by listing the
different types of Wyckoff positions, in this case, c, b, and l,
and assigning an interval of length equal to its relative occu-
pancy to each, such that their total adds up to an interval of
length 1 when stacked together. We then pick a random num-
ber with uniform distribution between 0 and 1, and depend-
ing on which interval it falls in, we decide to place an atom
in the corresponding Wyckoff type. For instance, if the ran-
dom number lies between 0 and 2.06/8, we assign it to the c
type; if it lies between 2.06/8 and �2.06+0.38� /8, we assign
it to b; and if it is higher than 2.44/8, we assign it to an l
position. Next, a second random number generator picks any
of the equivalent Wyckoff sites available of that type in the
entire cell. For example, if we had an l position, we pick an
integer random number between 1 and 1536 and accordingly
pick the specific site to place the first Cu atom. Then, we
repeat this procedure but in each step, we check that the
chosen site is not closer to any of the previously placed Cu
atoms or the S positions than a reasonable cutoff distance. If
this criterion is not satisfied, we reject the specific position
and pick a new random number but of the same type. Of
course, we check the distance not only to atoms in the cell

TABLE I. Cu64S32 cubic supercell: experimental �Ref. 25� and computer generated occupancies and
reduced coordinates of one of the representative Wyckoff positions in the cell �space group 225 Fm3m�.

Atom
Wyckoff

site
Expt.
�%�

Model
�%�

Number
of atoms x y z

S 4a 100 100 32 0 0 0

Cu�1� 8c 25.75 25.0 16 0.25 0.25 0.25

Cu�2� 4b 4.75 3.1 2 0.5 0.5 0.5

Cu�3� 192l 69.5 71.9 46 0.1067 0.166 0.2826

FIG. 5. �Color online� Band structure of antifluorite Cu2S. Com-
parison of QSGW �green solid� with LDA+Cu s shift �red dashed�.

FIG. 6. �Color online� Energy bands of Cu2S in a structure
slightly distorted from antifluorite. The k points are X= �

a �1,0 ,0�
and R= �

a �1,1 ,1�.
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but also to their image positions in the neighboring cells
obtained from the periodic boundary conditions. We repeat
this procedure for a certain number of iterations until all
atoms are placed. The cutoff distances are adjusted if neces-
sary. Finally, the resulting structure is visually inspected us-
ing the XCRYSDEN program.43

Using this procedure, we generated structures for cubic
chalcocite, hexagonal chalcocite, and digenite. The resulting
cells and their occupancies of Wyckoff sites are compared
with the experimental ones in Tables I–III.

For digenite, Will et al.25 give a slightly different occu-
pancy for the structure at 300 °C than at 400 °C. The differ-
ence is that at 300 °C, no atoms were found in the 4b posi-
tion. We constructed a model for both; the only difference is
that at 300 °C, we have 18 atoms at 8c positions and none at
4b.

We note that for hexagonal chalcocite, we used experi-
mental data from Wuensch and Buerger21 because in the
structure proposed by Will et al.,25 Cu atoms are placed in 6h
positions which occur too close to S atoms to be realistic.
Also, Wuensch and Buerger proposed that the S atoms sit in
the 2d instead of 2c positions, but these again are too close to
some of the Cu atoms. We thus chose the crystallographi-
cally equivalent 2c positions. The cubic and hexagonal chal-
cocite structures are shown in Figs. 7 and 8, respectively.
Full structural data can be obtained from the authors upon
request. One may notice that the hexagonal structure has a
layered look with alternating layers of mixed Cu-S and pure
Cu layers. The same type of structure is observed in the
monoclinic low-chalcocite form23 shown in Fig. 9 and in the
djurleite structure23,27 and even in covellite.28 Such layers
can also be recognized to exist in the cubic form along the
�111� close-packed planes in Fig. 7.

C. Band structure of model structures

In Fig. 10, we show the band structure of the hexagonal
chalcocite Cu32S16 model both in the LDA and including a

shift of the Cu s partial waves taken equal to that used for the
antifluorite structure. The Cu s character of the bands is high-
lighted in red. The lattice constant was taken to be the ex-
perimental one as given in Will et al.,25 a=4.033 Å, c /a
=1.6709. We can see that in LDA, only a very small band
gap of about 0.04 eV opens at the � point between Cu s-like
conduction band and a Cu d-like valence band, similar to the
situation we had for the slightly distorted antifluorite struc-
ture. Adding the Cu s shift leads to a larger gap of 0.50 eV at
the � point. We may also notice that the conduction band at
� is still Cu s-like, but along the �-M axis, another band
which has no Cu s character crosses this band and has a
minimum at about the same value of 0.5 eV. So, the system
is close to a direct to indirect crossover. Still, this value is
significantly smaller than the experimental gap reported for
chalcocite, which is about 1.2 eV. We will address the pos-
sible origins of this discrepancy in Sec. V.

By fitting a parabola to the bands near the � point, we can
make a rough approximation to the effective masses. For our
Cu32S16 model, we obtain the effective electron mass me

*

�0.3 and the hole mass mh
*�0.8. We ignore here the aniso-

tropy of the mass tensor and only consider the curvature
along the �-M direction. This leads to an approximate exci-
ton mass mx, given by

1

mx
=

1

me
* +

1

mh
* , �4�

of 0.2. These values are important to give guidance to some
of the intended applications of Cu2S nanoparticles and for
solar cell applications. These values are rather typical for
semiconductors.

For the monoclinic structure, we find an LDA gap of
0.024 eV, while adding the Cu s shift gives us a band gap of
0.58 eV. The experimental lattice constants were used for
this calculation.

Similar results are obtained for the cubic cell as can be
seen in Fig. 11. This calculation was done at the experimen-
tal lattice constant of a=5.762 Å, corresponding to cubic
chalcocite at 500 °C. After the Cu positions were determined
by the weighted random number generator algorithm, they
were relaxed using a conjugate gradient method. This allows
atoms to settle into their equilibrium positions but only
slightly changes them, so that the occupancy of the Wyckoff
sites does not change. Little change in the band structure is
obtained between the initial and relaxed structures. Including
the Cu s shift, we obtain a direct gap at � of 0.40 eV. The
valence band maximum is found to move away from � to-

TABLE II. Cu58S32 digenite-400 supercell: experimental �Ref.
23� and computer generated occupancy. The positions are the same
as in Table I.

Atom
Wyckoff

site
Expt.
�%�

Model
�%�

Number
of atoms

S 4a 100 100 32

Cu�1� 4b 2.8 1.7 1

Cu�2� 8c 27.8 29.3 17

Cu�3� 192l 69.4 69.0 40

TABLE III. Cu32S16 hexagonal supercell: experimental �Ref. 21� and computer generated occupancies
and positions �space group 194 P63/mmc�.

Atom
Wyckoff

site
Expt.
�%�

Model
�%�

Number
of atoms x y z

S 2c 100 100 16 2/3 1/3 1/4

Cu�1� 2b 43.5 43.7 14 0 0 1/4

Cu�2� 4f 35.5 31.3 10 1/3 2/3 0.568

Cu�3� 6g 21.0 25.0 8 0 1/2 0
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ward the R= �� /2a��1,1 ,1� point, and a slightly smaller in-
direct gap of 0.35 eV is found. The conduction band mass in
this case was found to be somewhat larger, me

*�0.37, and
the valence bands are too flat to obtain a reasonable estimate
from the k-point values we have calculated, indicating a very
high hole mass in this case.

Next, we present results for models with x�0 �Fig. 12
and 13�. First, we consider the cubic digenite structure. This
structure can be considered as containing 10% vacancies. We
studied both the 300 and 400 °C models of Will et al., but
both gave very similar band structures as expected since they
differ only in whether the 4b site has a slight occupation or
not. We show the results only for the 300 °C �in Fig. 12�.

It is notable that a much higher band gap �about 0.8 eV� is
obtained than for chalcocite even in the LDA. Adding the
Cu s shift, however, does not add much: it becomes 1.06 eV.
Furthermore, we can see that now the Fermi level lies about
0.3 eV below the VBM. Since optical transitions can only
take place between filled and empty states, and assuming that
only vertical transitions occur, this means that the onset of
optical absorption occurs at 1.37 eV. We conclude that add-
ing Cu vacancies increases the band gap directly as well as
through the Moss-Burstein effect.44,45 The direct increase in
the gap can be traced back to arise mainly from a reduction
in the valence bandwidth. If one aligns the bottom of the

valence bands and simultaneously the S s-like deeper va-
lence bands, one can see in a density of states �DOS� plot
that the conduction band minima align but the VBM is re-
duced in energy. Clearly, by reducing the number of Cu at-

FIG. 7. �Color online� Cubic chalcocite Cu64S32 model cell.
Large blue spheres, Cu; small yellow, spheres, S.

FIG. 8. �Color online� Hexagonal chalcocite Cu32S16 model cell.
Small blue spheres, Cu; large yellow spheres, S.

FIG. 9. �Color online� Monoclinic chalcocite Cu96S48 cell.
Small blue spheres, Cu; large yellow spheres, S.

FIG. 10. �Color online� Energy band structure of hexagonal
chalcocite model Cu32S16 in LDA �top� and with Cu s shift �bot-
tom�. The Brillouin zone has the usual hexagonal high-symmetry
points but with twice the lattice constant so all reciprocal k lengths
are halved.
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oms, Cu d bands are removed from near the VBM, which
consists of antibonding combinations of Cu d bands with
S sp. This is similar to an effect noticed by Persson and
Zunger for CuInSe2.46 They showed a lowering of the va-
lence band maximum near surfaces and interfaces where the
Cu coordination is reduced.

Next, we consider our hexagonal models in which we
remove either 1, 2, or 3 randomly selected Cu atoms. These
models correspond to 3.125%, 6.25%, and 9.375% Cu va-
cancies. As an example, the band structure of the Cu30S16 is
shown in Fig. 13. As in cubic digenite, the gap increases and,
secondly, the Fermi level moves below the valence band
maximum. The system strictly speaking becomes metallic.
One can consider it as a heavily p-type doped material. This
leads to a further increase of the effective optical gap through
the Moss-Burstein effect.44,45

In Table IV, we summarize our results on the band gaps
obtained thus far. Because essentially, the band gap in all
materials appears to be direct or close to the smallest direct
gap, we define the gap as Eg=E��CBM�−E��VBM�. We define
the conduction band minimum �CBM� as the first empty
band with positive mass and the valence band maximum as

the highest band with negative mass below it. Usually, there
is a level at � or close to � just below the Fermi level. The
Fermi level in each of these cases was calculated from a 2
�2�2 k-point mesh using the tetrahedron method even
though the self-consistent calculations were done with a
single shifted k point. In Table IV, the position of the Fermi
level EF is given relative to the VBM. The onset of optical
absorption is labeled as Ea and is the difference between the
CBM and the Fermi level.

First, considering the three structures, we can see that the
gap increases from cubic to hexagonal to monoclinic. Sec-
ond, considering the effect of Cu concentration, we can see
that the gap increases with decreasing Cu content. The gap
increase is even more spectacular in the cubic case. We
should also keep in mind that digenite corresponds to the
highest concentration of Cu vacancies considered, namely,
10%. Nevertheless, the Fermi level does not move so deep
below the VBM because the density of states is higher near
the VBM in cubic compared to in hexagonal materials as we
have already seen from the effective masses. The increase in
gap with decrease in Cu content qualitatively agrees with
experimental reports.7,16 For Cu1.8S, a gap as high as 1.75 eV
was reported.15

To assess the effects of the uncertainty in the structure on
the gaps, we have repeated the calculations for digenite with
a slightly different structure, which, however, generated the

TABLE IV. Band gaps and related quantities in various Cu2−xS
models, including Cu s shift correction.

Structure Eg EF Ea

Hexagonal Cu32S16 0.50 0.00 0.50

Hexagonal Cu31S16 0.55 −0.34 0.88

Hexagonal Cu30S16 0.62 −0.35 0.97

Hexagonal Cu29S16 0.66 −0.42 1.08

Monoclinic Cu96S48 0.58 0.00 0.58

Cubic chalcocite Cu64S32 0.40 0.00 0.40

Cubic digenite Cu58S32 1.06 −0.32 1.38

FIG. 11. �Color online� Energy bands of cubic chalcocite model
Cu64S32 including Cu s shift and highlighting Cu s in red. The k
points are X= �

2a �1,0 ,0� and R= �

2a �1,1 ,1�.

FIG. 12. �Color online� Energy band structure of Cu58S32

digenite-300 including Cu s shift. The k points are the same as in
Fig. 11.

FIG. 13. �Color online� Energy band structure of hexagonal
Cu30S16 including Cu s shift and highlighting Cu s band contribu-
tion in red.
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same statistical distribution, i.e., the same number of atoms
on each type of Wyckoff site. The band gaps differed by less
than 0.1 eV. The Fermi level positions in the valence band
also differed by less than 0.1 eV. This structure gave a
0.1 eV higher LDA gap but a 0.07 eV lower Fermi level
position below the VBM, so the net difference in optical gap
was only 0.03 eV. Adding gap corrections does not alter this
finding. Thus, we conservatively conclude that the error bar
arising from statistical fluctuations in the structure is at most
0.1 eV.

In Fig. 14, we plot the total density of states of various
models. The valence band maxima are aligned and the posi-
tion of the Fermi level is indicated for the cases with x�0.
From the area under the curve between the VBM and the
Fermi level, we can make a rough estimate of the hole con-
centration. For example, for Cu31S16, we obtain 0.6 holes per
unit cell, which amounts to 8�1020 cm−3. This also makes
sense because we essentially removed ten d states with the
Cu atom but 11 electrons, so we have about one hole left in
the VBM. For the other cases, we obtain indeed approxi-
mately two and three times this value. These hole concentra-
tions are comparable to the ones obtained in the study by
Partain et al.7 of Cu2S exposed to heat treatments in moist air
lasting from 1 h to a few hours.

Considering next a DOS in the conduction band region,
we may notice that the DOS is fairly low near the minimum,
but at about 0.5 eV above the CBM, an increase with a peak
occurs and another one occurs 0.5 eV higher. This corre-
sponds to the onset of contributions to the DOS from the
higher conduction bands as can be seen by comparison with
the band plots.

Finally, in Fig. 15, we plot Cu PDOS for the hexagonal
Cu32S16 model. We can see that the dominant contribution in
the valence band is Cu d. In the conduction band, Cu s and
Cu p states seem to have about equal weights, but they are
about ten times lower than the d-DOS near the VBM. Be-
cause of the dipole selection rule 
l= ±1, we can expect
mainly Cu d to Cu p-like transitions near the gap.

D. Total energy differences

The cohesive energies per Cu2S unit for the various struc-
tures are summarized in Table V. The lowest energy is found

for the monoclinic structure. This is in agreement with the
fact that this is the structure observed at low temperature. We
can tentatively correlate the ordering in terms of increasing
energy with the temperature ranges in which the different
structures occur. Experimentally,25 one finds the hexagonal
form to be the stable form in the range 103–436 °C and the
cubic form at high temperature. To compare stability of dif-
ferent structures at different temperatures, we should com-
pare free energies E−TS instead of the energies at zero tem-
perature calculated here. The question becomes at what
temperature the entropy term overcomes the energy differ-
ences. The entropy arises presumably primarily from
phonons and, in particular, in this system from the high mo-
bility of the Cu atoms. Assuming that the vibrational entropy
is higher for the hexagonal than for the monoclinic case and
still higher for the cubic case, one could tentatively draw the
schematic diagram given in Fig. 16. Calculating the vibra-
tional contributions to the free energy as function of tem-
perature is beyond the scope of this study. The diagram is
only a suggestion.

The antifluorite structure has the highest energy, and this
is consistent with the fact that the ordered cubic structure is
not preferred. As was mentioned before, the cubic chalcocite
can be viewed as Cu atoms in slightly irregular positions in
the S lattice rather than all rigidly placed at the high-
symmetry 8c Wyckoff positions.

Comparing the total energies of the structures with Cu
vacancies requires a consideration of the chemical potential

Cu for Cu atoms. If we take the latter to be their cohesive

TABLE V. Cohesive energies in Cu2S for different
structures.

Ecoh

�eV/Cu2S�

Monoclinic −12.99

Hexagonal −11.44

Cubic −11.06

Antifluorite −10.50

-2-2-2-2 -1.5-1.5-1.5-1.5 -1-1-1-1 -0.5-0.5-0.5-0.5 0000 0.50.50.50.5 1111 1.51.51.51.5 2222
Energy (eV)Energy (eV)Energy (eV)Energy (eV)

0000

10101010

20202020

30303030

40404040

50505050
D

en
si

ty
of

st
at

es
(s

ta
te

/e
V

ce
ll)

D
en

s i
ty

of
st

at
es

(s
ta

te
/e

V
ce

ll)
D

en
s i

ty
of

st
at

es
(s

ta
te

/e
V

ce
ll)

D
en

s i
ty

of
st

at
es

(s
ta

te
/e

V
ce

ll)

CuCuCuCu
2222
SSSS

mono Cumono Cumono Cumono Cu
2222
SSSS

CuCuCuCu
1.93751.93751.93751.9375

SSSS
CuCuCuCu

1.8751.8751.8751.875
SSSS

CuCuCuCu
1.81251.81251.81251.8125

SSSS

FIG. 14. �Color online� Total density of states in various struc-
tures of Cu2−xS. The Fermi level is indicated by the vertical lines
for the x�0 cases.
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energy in bulk fcc Cu, i.e., assuming thermodynamic equi-
librium with a bulk Cu reservoir, we can calculate


E�n� = E�Cu32−nS16� − E�Cu32S16� + n
Cu �5�

as a measure of the stabilization of the system by Cu vacan-
cies. Using 
Cu�4.3 eV/atom, we obtain 
E�n� to be −3.0,
−3.6, and −2.6 eV for n=1,2 ,3. Normalizing per Cu2S unit,
this comes down to −0.19, −0.22, and −0.16 eV. The fact
that these numbers are negative means that the system favors
introducing some vacancies when in equilibrium with bulk
Cu. In other words, the Cu atoms will rather go to the bulk
Cu than staying in the Cu2S. This indicates an intrinsic in-
stability of Cu2S, which is an important qualitative result.
For example, in an oxidizing environment, one might want to
use the chemical potential of Cu in a copper oxide, such as
Cu2O. This will be even more negative than in bulk Cu and
thus it will be even more favorable to move a certain number
of Cu atoms from Cu2S to Cu2O. This is consistent with the
known problem of long-term instability of Cu2S in air, in
particular, in oxidizing environments.

V. DISCUSSION

One of the main goals of our paper is to determine the
band gap of the system and the nature of the band gap, direct
or indirect. Experimentally, the information on band gaps is
mainly concerned with hexagonal materials obtained by the
Clevite process. The most reliable measurement is probably
the photoconductivity measurement of McLeod et al.19

which gave 1.18±0.03 eV. Most of the information on the
nature of the band gap comes from optical absorption mea-
surements. However, all of these studies show a considerable
amount of free-carrier absorption, more specifically due to
holes associated with a certain degree of nonstoichiometry,
i.e., the presence of Cu vacancies. Thus, the optical absorp-
tion does not really go to zero but only through a minimum
between the interband and intraband absorption. This makes
extracting a reliable band gap value difficult. Typically, what
most authors7,16 do is to model the Drude-like low energy
absorption and subtract it from the data. After this subtrac-
tion, the remaining absorption coefficient � is then plotted

either as �� or as �2 as function of photon energy. A linear
behavior in the former case is considered as evidence for an
indirect band gap and a linear behavior in the latter case is
taken as evidence for a higher energy direct gap. In this way,
for example, Partain et al.7 arrive at a lowest indirect gap of
1.16 eV, followed by a direct gap of 1.28 eV. Furthermore,
they find another change in slope in the �2 versus energy
curve at 1.8 eV, which indicates the presence of a second
direct absorption onset, which they ascribe to a second
deeper lying valence band with maximum at �. Other au-
thors have arrived at slight variants of this scheme as dis-
cussed by Partain et al.7

Before comparing with our results, we should note that
the question of a direct or indirect gap is somewhat question-
able in this material if one takes the strongly disordered na-
ture of this material into account. The fact that Cu atoms are
somewhat randomly distributed among different Wyckoff
sites means that, strictly speaking, there is no periodicity, and
hence, one can expect violation of momentum conservation
in optical transitions to some extent. Secondly, the unit cells
we need to obtain a reliable model of the structure are rather
large. This means that k points which would be at the
Brillouin-zone edge of the simple cubic or hexagonal struc-
ture are now folded on the � point and become direct.

Closer inspection of the experimental data reveals that
near the minimum, the optical absorption coefficient is typi-
cally still of order of 104 cm−1. This is high for an indirect
transition. In Si, for example, the optical absorption coeffi-
cient, a few 0.1 eV above the onset, is 2 orders of magnitude
smaller.47 The only reliable way of determining the indirect
nature of a band gap is to study its low temperature behavior
and identifying the separate onsets for phonon absorption
and emission. The subtraction of the Drude-like absorption
adds considerable uncertainty and makes it effectively im-
possible to determine the nature of the gap. Sure enough,
plotting �� as function of photon energy emphasizes the low
energy region absorption, whereas plotting �2 as function of
photon energy suppresses this region. Thus, it is no surprise
that one finds somewhat higher onsets for the latter plot.
Given the uncertainties of the subtraction of the free-carrier
absorption, however, one cannot really consider this as reli-
able evidence for the presence of a direct and an indirect gap.

In our calculations, we find a direct gap at � for all the
hexagonal and hexagonal based materials, including the
monoclinic case. Only for the cubic chalcocite did we find a
slightly higher VBM away from the � point, but this is most
likely unrelated to the experimental observations of Partain
et al.7 and Mulder16 which were all concerned with hexago-
nal material.

Considering the DOS in Fig. 14, we already noticed the
increase in DOS at about 0.5 eV above the CBM. This could
well explain the observation of a second direct onset as
found in the experimental results.7 It turns out, however, that
this is due to transitions to higher conduction bands rather
than from a deeper valence band as suggested by the
experimentalists.7

For pure Cu2S, we found a minimum direct gap of
0.5–0.6 eV if we include the monoclinic structure. As men-
tioned earlier, the monoclinic structure is essentially a super-
structure closely related to the hexagonal structure. We
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should keep in mind that our model for hexagonal Cu2S is
still only a representative model with about the right distri-
bution of atoms over the Wyckoff sites, but there is still
possibly quite some uncertainty on the actual band gap due
to slight variations in the positions of the atoms. We estimate
this to be of order of 0.1 eV. Under these circumstances, one
can actually expect an exponentially decaying band gap tail.
This situation is commonly observed in material with a large
number of point defects or in amorphous material and is
sometimes called an Urbach tail. It leads to a relatively weak
absorption coefficient with a cutoff that is difficult to deter-
mine precisely. In fact, the DOS near the CBM is relatively
weak. Thus, one possibility is that the gap of pure Cu2S is
indeed somewhat lower than previously thought experimen-
tally. The low absorption tail could possibly be hidden under
the subtracted Drude absorption. In that case, the reported
optical gaps might correspond to our higher onsets, i.e., the
peaks in conduction band DOS at 
0.5 and 
1.0 eV higher
than our minimum gap. These could then correspond to the
experimental minimum gap and their second onset. Ulti-
mately, however, we do not believe it to be the case based on
the following observations on nanoparticles.

Recent studies on nanoparticles of Cu1.8S have shown a
broadband luminescence peaking at energies of about
2.39–2.52 eV depending on the size of the particles.9,11 In
nanoparticles, one expects an upward shift of the gap due to
size quantization,


Eg =
�2�2

2mxR
2 , �6�

with R the radius of the particle and mx the exciton mass. For
Cu1.8S, a gap of 1.75 eV was reported.15 With our estimated
masses from the previous section, we can estimate that a
0.55 eV shift is possible for a 1 nm diameter particle and
would lead to 2.3 eV. We do not exactly know the size of the
particles, but they are unlikely to be much smaller. Unlike
absorption, luminescence can easily arise from below band
gap states but can hardly overestimate the gap. Thus, it ap-
pears that our gaps are really still underestimated by about
0.6 eV. For Cu2S, we obtain as highest possible estimate the
value of the monoclinic phase, which is 0.6 eV, while the
experiment indicates 1.2 eV. For Cu1.8S, we obtain a value
of 1.1±0.1 eV, which then seems consistent with an optical
gap of 1.7–1.8 eV experimentally.

It is, in fact, likely that our calculation still suffers from
the LDA problem of underestimating the band gap. As we
saw in Sec. IV A, the shift of Cu s-like states did not fully
agree with the QSGW band structure and, in particular, still
underestimates the conduction band at points away from �.
We also found in Fig. 15 that the states near the conduction
band minimum also have considerable Cu p-like character.
Furthermore, with our procedure, we have only shifted up
the Cu s partial waves inside the spheres in energy, but a
considerable part of the conduction band wave function may
correspond to the interstitial region. All of this makes it
likely that we are still underestimating the gap correction. It
might be possible to add a more complete self-energy cor-
rection by additional shifts, but we have not yet attempted
this.

While our calculations apparently are not yet accurate
enough to reproduce the absolute gaps, they may be expected
to be more reliable to estimate gap changes between different
structures. An important insight is that the presence of Cu
vacancies not only leads to p-type doping and hence the
Moss-Burstain effect but also to a direct opening of the gap.
Our models with 3%–9% vacancies led to optical gaps of
order of 1.0–1.3 eV. About 0.2–0.4 eV of that gap increase
is due to the placement of the Fermi level below the VBM,
i.e., the Moss-Burstein effect, but this still leaves about 0.1–
0.2 direct effect on the gap. It is fair to say that most real
samples have some residual Cu vacancies and are not exactly
Cu2S. In fact, for example, the starting system in the study of
Partain et al.7 had a hole concentration of order of 1020 cm−3,
which we estimate to correspond to about 0.2% Cu vacancies
or Cu1.996S. This may, in some small part, also contribute to
the larger gaps found experimentally.

The gap is between mostly Cu d valence states and a mix-
ture of Cu s and Cu p-like partial waves in the conduction
band. One might expect that the d-p transitions are dominant
because the d-s transitions are dipole forbidden. However,
we should emphasize that this really means partial waves at
the given energy rather than strict atomic Cu 4p orbitals. The
conduction band really consists of itinerant free-electron-like
electrons, or one can also think of them as Cu sp antibonding
states with S sp. Compared to pure Cu, it is as if we have
reduced the Cu d-band width by dispersing S atoms between
them and moved up the free-electron-like Cu sp electrons
slightly by their interaction with the S atoms. This is what
leads to a band gap in the spectrum, compared to a Cu d
band overlapping the free conduction electrons in metallic
Cu. The conduction electrons in Cu2S are thus rather free
electrons with a fairly low effective mass, of about 0.3me as
we estimated earlier. The holes, however, correspond to Cu d
bands and have a rather high mass, in particular, in cubic
material. This is important for the mobility in the materials
and relevant to their intended uses as solar cell material.

We find somewhat lower gaps in cubic than in hexagonal
modifications, but it is presently not clear if this is borne out
by experiment because all experimental data on the gaps ap-
pear to correspond to hexagonal material. Nonetheless, it is
perhaps worth pointing out that this is the usual situation for
semiconductors which can exist both in wurtzite �hexagonal�
and zinc-blende �cubic� forms. These also usually show a
slightly lower gap in the cubic form.

VI. CONCLUSIONS

The main focus of this paper is the electronic band struc-
ture of Cu2−xS. Large cell models for the hexagonal and cu-
bic phase were constructed using a weighted random number
algorithm that reproduces the statistical distribution of Cu
atoms over the various Wyckoff sites in good agreement with
experimental x-ray diffraction results. The structural models
obtained show that in all phases, there are mixed Cu-S layers
along close-packed planes with additional Cu atoms in be-
tween these layers. The band structure and density of states
were calculated for the simple antifluorite structure as well as
for the above model structures and the reported monoclinic
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structure, which can be considered as having a nearly hex-
agonal structure. Models with slightly reduced Cu concentra-
tion, 0�x�0.2, were also constructed and their electronic
structure calculated.

Based on a comparison of the band structures of the
simple antifluorite structure in LDA and in the QSGW
method, and an analysis of the atomic orbital character of the
bands, we added a simple correction to LDA by shifting up
the Cu s derived bands. Although the antifluorite structure
was found to remain metallic even after this correction to
LDA, this is caused mainly by the degeneracy of the Cu d
VBM due to the high symmetry of this structure. Breaking of
this symmetry leads to the opening of a gap even in LDA,
and this gap is then slightly increased by the Cu s shift. The
band gaps of the larger and more realistic Cu2S models in-
crease from the cubic �0.4 eV� to the hexagonal �0.5 eV� to
the monoclinic �0.6 eV� phase, but all gaps are significantly
lower than the experimental values of about 1.1–1.2 eV
found for the hexagonal structure. This probably indicates
that our Cu s shift is not fully capturing the quasiparticle
self-energy correction that would be obtained in a QSGW
calculation. This is not too surprising because it is after all a
very simplified correction. We also estimate from calcula-
tions of two slightly different structures with the same statis-
tical distribution that the error bar on the gap arising from the
structural uncertainty is at most 0.1 eV.

We find that the minimum band gap is direct in both the
hexagonal and closely related monoclinic structure super-
cells. In reality, the distinction between direct and indirect
band gaps for this material is difficult to make because of the
disordered nature of the Cu distribution over different Wyck-
off sites. This disorder implies that the electronic structure in
Cu2S has some similarities with that of an amorphous mate-
rial, rather than a fully crystalline material. It should be kept
in mind that band structures correspond to periodic boundary
condition models but remain just representative models, not
fully capturing the full complexity of the disordered state of
these materials. The essentially direct nature of the gap is
actually consistent with the fact that experimental data show
absorption coefficients of order of 10−4 cm−1, a few 0.1 eV
above the gap even after intraband absorption is subtracted.
This is 2 orders of magnitude higher than typical for an in-
direct band gap absorption. The typical experimental proce-
dure of fitting a straight line in a plot of �� as function of
photon energy to determine a minimum indirect gap is not
reliable here because of the necessity to subtract a significant

free-carrier absorption and the fact that the band gaps can be
expected to have an exponential tail due the almost amor-
phous nature of the Cu-atom distribution.

The experimental data found evidence for a second onset
at about 0.5 eV above the minimum. This is consistent with
an increase in density of states in the conduction band in our
models at this energy, rather than the presence of transitions
from a deeper valence band as previously suggested by ex-
perimentalists.

Reducing the Cu concentration of the samples is found to
increase the optical absorption coefficient in two ways: �1�
the Cu d band is slightly narrower, thus increasing the gap
directly, and �2� the Fermi energy moves below the VBM,
creating a degenerate hole doped system, which reduces the
lowest possible optical transitions by the Moss-Burstein ef-
fect. For 0.06�x�0.2, doping concentrations were found to
be of order of �0.8–2.4��1021 holes/cm3 and the Fermi
level moved about 0.2–0.4 eV below the VBM. The trend
agrees with the experimental trend of an increasing gap with
decreasing Cu concentration. The gap is essentially between
Cu d-like valence states and Cu sp-like conduction states.

The total energies of the system at zero temperature were
found to increase from monoclinic to hexagonal to cubic
phase, and the suggestion was made that the different tem-
perature stability ranges of the different phases occur be-
cause of differences in vibrational free energy contribution
between the different phases.

We found that the creation of Cu vacancies in Cu2S is
actually favorable even when the system is assumed to be in
thermodynamic equilibrium with bulk Cu. This shows that
Cu2S is intrinsically unstable toward the formation of
Cu2−xS. This instability can be expected to be even stronger
in an oxidizing environment since this would lower the
chemical potential of Cu.
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