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We have recently proposed an approximation for the dynamical exchange-correlation (XC) potentials of
time-dependent current-density functional theory beyond the local density approximation [Phys. Rev. Lett. 97,
036403 (2006)]. The novel feature of the approximation is that the dependence of the dynamical XC potentials
upon the density gradient and other inhomogeneity parameters (e.g., the Laplacian of the density and the
kinetic energy density) is introduced by applying the generalized gradient approximation (GGA) and meta-
GGA to the calculation of the XC stress tensor. The scheme may allow a more accurate treatment of the
dynamical properties of an inhomogeneous system, while reducing to the exact form for slowly varying
densities and slowly varying external potentials. In this work, we present in detail the derivation of this XC
potential, spell out the underlying assumptions, and explain their physical basis.
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I. INTRODUCTION

The popularity of time-dependent density functional
theory!? (TDDFT) for electronic structure calculations has
been dramatically growing in recent years. Formally it is an
exact many-body theory. In practice, the dynamical
exchange-correlation (XC) potential must be approximated.
The simplest approximation is the adiabatic approximation,’
which makes use of the ground-state XC potential but re-
places the ground-state density n,(r) with the instantaneous
density n(r,t)—namely,

5[110(1') fxc([”o] > I')]
any(r) '

ng(r)=n(r,1)

Vie(lnlse,n =

(1)

where €, is the equilibrium XC energy per electron. This
approximation—which openly ignores the history of the sys-
tem prior to time t—has been widely used to calculate the
single-particle low-lying excitation energies*> and van der
Waals coefficients® of molecules and solids. However, it has
several well-known limitations, both qualitative and quanti-
tative. On the qualitative side, it does not allow for
dissipation”® and fails completely for multiparticle
excitations!? or charge transfer processes''~!3 or similar
problems'# for excitations in spatially separated systems that
do not involve charge transfer. On the quantitative side, it
significantly overestimates'>~'® the dielectric polarizability of
insulators and in many cases underestimates the excitation
energies.'”

The first attempt to go beyond the adiabatic local density
approximation (ALDA) was made by Gross and Kohn?®
(GK). They proposed a time- or frequency-dependent linear-
order correction to the ALDA. This, however, was later
found?!?? to violate the “harmonic potential theorem” and
other exact conditions. After a careful analysis of this diffi-
culty, Vignale and Kohn?® (VK) concluded that (i) the dy-
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namical XC potential is an “ultranonlocal” functional of the
density, and thus a consistent local density approximation
does not exist; (ii) a local density approximation is still pos-
sible if the current density j(r,z) rather than the electron
density n(r,7) is chosen as the basic variable. Based on these
observations, VK introduced the time-dependent current-
density functional theory.?® In practice, they derived an ex-
plicit frequency-dependent expression, within linear re-
sponse theory, for the XC vector potential A, (r,7) and the
associated XC electric field E, (r,f)=—(1/c)dA(r,t)/ ¢
(where c is the speed of light) of a system of slowly varying
density (characterized by a local wave vector g=|Vny|/n,)
and slowly varying external potential (characterized by wave
vector k).

In this theory the Fourier transform in time of the induced
XC electric field E, (r,w)=(iw/c)A,.(r,») (where w is the
angular frequency of the external perturbing field) is given
by24

eEy ,(r,0) = ﬁ#VXACLDA(r, )+ Lr?,,APh‘ic(r,w), (2)
ny(r) a

where e is the absolute value of the electron charge, d,
=0/ dr,, and w,v are Cartesian indices with the convention
that repeated indices are summed over. The first term on the
right-hand side of Eq. (2) is the ALDA part, and the second
is the frequency-dependent dynamical correction. The quan-
tity AP?A’L‘C is the dynamical XC stress tensor of the homoge-
neous (h) electron liquid, evaluated at the local density:

1)
AP};’zC - :Uv;lc(”o’ ) (u'u,, - —fum)
éfﬂ h h,0
+ 2 [Kxc(n()’ w) - Kxc (no)]uaa’ (3)

the divergence of which gives the linear-order correction to
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the ALDA. Here u ’u
fined as

, 1s the negative of the strain tensor de-

—du,—d,u (4)

u s

wv
where u,,(r,w)=—j,(r, w)/(zwn(,) is the Fourier transform in
time of the elastic displacement field. In Eq. (3), Kxc(no,co)
and u" (ny, ) are the XC parts of the bulk modulus and
shear modulus, respectively,” and

Kho(no) noﬁz(no )/&n(z) (5)

is the low-frequency (w— 0) limit of the bulk modulus. The
nonadiabatic part of Eq. (2) includes dissipation and retarda-
tion effects, and allows in principle for multiparticle excita-
tions. The dissipation arises physically from the production
of multiparticle excitations and mathematically from the
presence of a component of the effective electric field in
phase with the current.

The expressions (2) and (3) for the XC potential were
originally derived under the assumption that g,k <kg, /v,
where k. is the local Fermi wave vector and vy is the Fermi
velocity. That is, both the density and the external perturbing
potential are slowly varying on the length scales of k;l (~
interelectron distance) and vi/ @ (~ distance traveled by an
electron during a period of the perturbing field). In practice,
the theory has been applied with some success to situations
that do not strictly satisfy these conditions,'>!%2>-27 Jeading
in some cases to considerable improvement upon the ALDA.
However, difficulties persist in those cases in which the con-
dition ¢ <kg, w/vE is severely violated—for example, in the
calculation of atomic transition energies®® and in all situa-
tions involving well-localized orbitals.

Recently we have proposed'® a way to construct the dy-
namical XC potential for time-dependent current-density
functional theory beyond the local density approximation.
This theory is valid for small and slowly varying strain ten-
SOT Uy, but does not assume slow variation of the ground-
state density. In this theory, the XC field has the same form
of VK, that is,

eEy ,(r,®) =4, g(r,w)+ ( 00
but now, at variance with Eq. (2), AP"C " (r, w) is the dynami-
cal XC stress tensor of the inhomogeneous electron liquid.
As we shall see, in the low-frequency limit, the vector po-
tential part of the XC electric field E, , [the second term of
Eq. (2)] does not vanish, so the dynamical XC electric field
does not reduce to the static XC electric field. The relevancy
of the XC electric field in the context of static DFT has been
discussed earlier by Harbola and Sahni,® Wang and
coauthors,® and Holas and March.?' Under an approxima-
tion of local isotropy, which will be fully described in the
following sections, this stress tensor is still connected to the
strain tensor by the local relation (3), involving only two
elastic constants K,. and u,. which are now position-
dependent functionals of the ground-state density. In particu-
lar, we have found that the high-frequency (w— ) limits of
the bulk modulus and the shear modulus, denoted by K, and
M., Tespectively, can be expressed as

——d, AP, (r,®), (6)
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Kalnghir) = 5 Tlng)im) + 5 WDl

meelnolir) = T c[nolir) = —Wiellnolir),  (7)
where TC([nO];r)zT([no];r)—TS([no];r) is the correlation
part of the kinetic energy density and W, ([n,];r) is the XC
part of the potential energy density. Here T([n,];r) and
T5([ny];r) are the kinetic energy densities of the interacting
and noninteracting systems, respectively. The kinetic corre-
lation and the XC potential energy-density functionals can be
obtained, for example, from the generalized gradient
approximation®>33 (GGA) or from the meta-GGA,** or from
their hybrids, as we shall discuss in Sec. V C. By making the
viscoelastic moduli explicitly dependent on parameters that
measure the inhomogeneity of the ground-state density (e.g.,
the gradient of the density, the orbital kinetic energy density,
or the Laplacian of the density) we hope to reduce the diffi-
culty that VK encounter when applied to systems that have
strongly inhomogeneous densities (e.g., atoms and mol-
ecules) and are exposed to low-frequency fields (e.g., in mo-
lecular transport problems® and low-lying excitations of
molecules?). As discussed in Secs. V and VI, the inhomoge-
neity parameters may improve the description not only for
the infinite-frequency part [Eq. (55)] (essentially by the im-
provement of the ground-state description) but also for the
finite-frequency part [Eq. (62)] of the tensor of elasticity
through our interpolation formulas [Eq. (71)].

In this paper, we present a detailed derivation of the
theory first outlined in Ref. 18. The derivation makes use of
the geometric formulation of TDDFT developed by
Tokatly.?¢ In the next section we will briefly review the main
points of that formulation and show how to calculate the
stress tensor of an inhomogeneous system in the comoving
(Lagrangian) reference frame. In Sec. IIT we review the lin-
ear response formulation of the problem in terms of the ten-
sor of elasticity and show that the latter naturally separates
into frequency-independent and frequency-dependent parts.
In Sec. IV we define the exchange-correlation stress tensor
and the associated tensor of elasticity. In Sec. V we calculate
the high-frequency limit of the XC stress tensor in the labo-
ratory frame. This calculation leads to Eq. (7). First we in-
troduce three approximations to express the stress tensor in
terms of the ground-state kinetic and potential energy densi-
ties of exchange correlation. Then we subtract from it the
part that pertains to the adiabatic approximation. Finally we
show how to calculate the kinetic and potential energy den-
sities of exchange and correlation from the static DFT. In
Sec. VI, we discuss the frequency dependence of the stress
tensor and apply to the present version of the theory the
standard interpolation scheme between high- and low-
frequency limits. The low-frequency limit of the bulk modu-
lus within the GGA is calculated in the Appendix.

II. TIME-DEPENDENT DEFORMATION FUNCTIONAL
THEORY OF THE STRESS TENSOR

One of us (I.LV.T.) (see also Refs. 36-39) has recently
developed a geometric formulation of TDDFT and called it
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“time-dependent deformation functional theory” (TDDefFT).
The main idea is to consider dynamics from the point of
view of a local observer moving with a flow of the electron

fluid. In this noninertial reference frame the stress tensor P e
[see Eq. (19) for definition] as well as any other observable is
a universal functional of the deformation tensor g,,,, and of
the ground-state density n, provided the system evolves from
the ground state. In the linear response regime, as we will
show below, the deformation tensor is easily expressed in
terms of the current density and TDDefFT effectively be-
comes a time-dependent current-density functional theory.

In order to calculate the universal functional ﬁﬂv[no,g /w]
one needs to go to the above mentioned “comoving frame”—
i.e., a reference frame that moves with the local velocity
v(r,7) of the electron liquid and in which, therefore, the par-
ticle density is time independent and the expectation value of
the current is zero everywhere. The transformation to the
comoving frame allows us to separate the “trivial” kinemati-
cal effects associated with the translation and rotation of a
small volume element of the fluid, from the more challeng-
ing dynamical effects arising from the deformation of the
volume element. Even though the density remains constant,
the Hamiltonian is still time dependent, since it contains the
time-dependent deformation tensor as well as a fictitious
time-dependent vector potential describing inertial forces in
the accelerated frame (see details below). The apparent para-
dox of the situation disappears once it is understood that the
inertial forces generated by the vector potential exactly bal-
ance the forces created by the deformation tensor, ensuring
the vanishing of the current and hence, by virtue of the con-
tinuity equation, the constancy of the density. The Hamil-
tonian, however, does not explicitly involve the time-
dependent part of the physical external potential: this
potential enters the problem only implicitly through the de-
formation tensor, which it generates. In fact, the dynamics is
completely controlled by the deformation tensor and the con-
dition of zero current density. In this sense the many-body
problem in the comoving frame is wuniversal: that is, for a
given ground-state density ny(r) any observable (e.g., the
stress tensor) depends only on g,,(r,?), not on the time-
dependent external potential that gives rise to it.

Let us summarize the main steps in the formulation of the
“universal many-body problem” for the stress tensor.

For a given velocity field v(r,7)—defined as the expecta-
tion value of the current density divided by the expectation
value of the density operator—the nonlinear transformation
function r(&,7) mapping the “old” coordinates r to “new”
coordinates & is defined as the solution of the Cauchy prob-
lem

t(&n)=v(x(&0.), r(£0)=§ (8)

Physically the transformation function r(£,1) is the trajectory
of an infinitesimal fluid element, while the “new” indepen-
dent coordinate & is the position of that element at the initial
time r=0. A local observer moving along this trajectory sees
a stationary particle density distribution and zero current
density. In the classical continuum mechanics the transfor-
mation of coordinates r— & is commonly referred to as the
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transformation from Eulerian to Lagrangian formulations of
the theory. The time-dependent transformation of coordinates
r— & induces a change of metric (dr)*=g,,dé,dé,, where
gu(&.1) is the Green’s deformation tensor

_OrgOrg
0¢,, 0¢,

It is convenient to introduce the “displacement field”
u(&,1) in the following manner. Integrating both sides of Eq.
(8) over t, we immediately obtain

r(t)=&+u(én), (10)

8uv 9)

where
u(é& )= f di'v(&t)
0

is the displacement of a fluid element from its initial position
&. Notice that to first order in u the deformation tensor con-
tains the same information as the strain tensor, i.e.,

g;w=5/.w_u;w (11)

[see Eq. (4)], and the time derivative of u(r,?) is simply the
current density divided by the ground-state density. In the
linear response regime therefore the deformation functional
theory reduces to current-density functional theory.

The “universal many-body problem” for the stress tensor
in the comoving frame requires that we solve the time-
dependent Schrodinger equation for the many-body wave
function |®(¢)) in the comoving frame,

i8|(1) = HID(1). (12)

with the Hamiltonian

A

H=T+W+V,, (13)

which includes the kinetic energy
~ — ~
2 v@ (. e, \Ngg[ . e U
T:fdg S Z&M+;A’u - lﬂ,,+;«4,, gl
(14)

the interaction potential energy

<v

- f “* f dg'wllg ) V(&P (EVHEN D (15)

[w(lgg)=€*/lg g is the Coulomb interaction potential], and
the potential energy of interaction with a static potential
Vo(€) [responsible for the ground-state density 725(€)],

Vo= f dEV(E)F (O &), (16)

but no time-dependent external potential. Here V(&) is the
ground-state external potential in the laboratory frame with r
replaced by &, g?/(f) and fo(f) are the field operators that

satisfy the usual fermionic commutation relations, and /¢ ¢ is
the length of geodesic connecting points & and & in the
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space with metric g,,(£,1) [for slowly varying metric [ gg 18
explicitly defined immediately below Eq. (23)]. In Eq. (14)
the tensor g is the inverse of g,,,, and g is the determinant
of g,,. The Green’s deformation tensor enters the Hamil-
tonian in Eq. (12) as an effective metric. A crucial feature of
the Hamiltonian is the presence of the effective vector poten-
tial LA, which is determined from the self-consistency equa-
tion

A& == @O (©9,048) - [0,7 @1HHIP(0).
0

(17)

Here 71,(£) is the particle density in the comoving frame. By
construction 775(€) is independent of time and equal to the
initial ground-state density ny(£):

io(&) = (@[ (&) O D (1)) = (P (0)] ¢ (&) )| D(0)).
(18)

Physically the vector potential LA(&,7) describes an inertial
force that cancels the stress forces on every fluid element and
thus ensures the vanishing of the current density at every
point. Indeed, Eq. (17) shows that the diamagnetic part of the
current density [the left-hand side of Eq. (17)] exactly can-
cels the paramagnetic part [the right-hand side of Eq. (17)],
causing the net current density to vanish.

The self-consistent system of equations (12)—(17), supple-
mented with the initial condition |®(0)) (the ground state),
uniquely determines the many-body wave function |®(¢)) as
a universal functional of 7z and g,,,. From the knowledge of
the wave function one can calculate the stress tensor

P, (&.1) as follows:

B olg )0 =(@0|P,(Hl0W).  (19)

where ﬁw(g) is the stress tensor operator in the comoving
frame,

Pol® =T+ W,,(8). (20)

The kinetic and potential parts of the operator ﬁw(g) are
defined via variational derivatives of the corresponding terms
in the Hamiltonian [see Egs. (14) and (15)]:

2 W

S

2 2 2
T, &=F0 Wud=F_—0. (21)
a Vg 68" a \E ogt

General representations of T (&) and W, (&) can be

found in Ref. 36. These compllcated expressmns may be
dramatically simplified by assuming that the deformation
tensor is slowly varying so that its spatial derivative can be
neglected. In this case, the expectation value of the kinetic
part is given by
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1 ~ e Suv wp. - ~
v= r[ﬁ#&vrm (&€ at)|§'=§—_L4 §"Pa,041(8) |,
mvg
(22)

where p,(&, & ,1)=(J (&) Y(&')) is the single-particle density
matrix, and the expectation value of the potential part is
given by

‘sﬂl

 Eabp w(I€']])

e e e

(23)

Here |- &'|= \/gw(gﬂ—g;)(gy—g;) is the length of geodesic
in the limit of homogeneous metric,

1
ﬁZ(g’gl’t) = f d)\ﬁ2(§_ (1 - )\)§,7§+ )\gl’t)’ (24)
0

and p,(&, & ,0) = (E) Y (&) Y(€)Y(€)). Note the change of

notation for p to p.

In the Kinetic stress tensor (22) we have disregarded the
terms with vector potential A since they do not contribute to
the stress tensor of Eq. (19) in the linear response regime (the
expectation value of the current density is zero in the ground
state). However, such terms should be included in general.

Equations (12)—(21) allow us in principle to calculate the

stress tensor P (T, 1) in the comoving frame. The stress ten-
sor in the laboratory frame will be finally obtained from the
transformation

5“—’§Pag(§<r 0.0, (25)

P (r,t) = o, or

where &(r, 1) is the inverse of the function r(£,1). In the next
section we will show how this problem simplifies in the lin-
ear response regime.

III. LINEAR RESPONSE FORMULATION

In the linear response the deformation tensor slightly de-
viates from the & symbol and is given by Eq. (11). To first
order in the displacement it makes no difference whether the
u is considered as a function of r or &.

Expanding the Hamiltonian (13) to first order in the dis-

placement field, we arrive at a linearized Hamiltonian H ; of
the form

) =F+~ Jd§Pw(§)u,w(§t)+ fdﬁ(g)-A(ét)-
(26)

where H and 13#,, are the Hamiltonian and the stress tensor
operator®#0 calculated at Euclidean metric and zero vector
potential. The reader is reminded that the effective vector
potential JA(&,1) in Eq. (26) is determined self-consistently
from the zero-current condition of Eq. (17). Hence the only
“external” parameter that controls the linear dynamics is the
strain tensor u,,,(&,1).

195126-4



TIME-DEPENDENT DENSITY FUNCTIONAL THEORY.:...

The problem we have formulated in the previous section
is amenable to treatment by standard linear response
theory.”*! Indeed, we can use the Kubo formalism? to calcu-
late the expectation values in Egs. (17) and (19). Assuming
that the strain tensor u,,, is periodic in time with angular
frequency w, we can write for the stress tensor

P, (£0) =P8+ f dE' 0 up &€ 0 uup(E 0),
(27)

where Pi?v(g) is the equilibrium stress tensor calculated in

the ground state of H,

PL(8) = (D(0)[P,,(8)|D(0)), (28)

and Qmﬁ(g,g' ,w) is the tensor of elasticity in the comov-
ing frame—a fourth-rank tensor with, in general, 21 indepen-
dent components.

Looking at Egs. (20)—(23) for the stress tensor operator,
we see that there are two qualitatively different contributions

to the linear response of IBM,, [i.e., the second term on the
right-hand side of Eq. (27)].
The first contribution arises from the fact that the stress

tensor operator has an explicit dependence on the displace-

ment field via the metrics g,,,. The dependence of P 1y ON gy
is instantaneous in time (i.e., a change in metric is immedi-
ately reflected in the stress tensor) and is represented by a
frequency-independent contribution to the tensor of elastic-

ity:
ﬁi};);(fs w) =fdg’éivaﬁ(g’gr)uaﬁ(frsw)' (29)

Formally Q7

wap &, &) is the expectation value of the func-

tional derivative of P (&) with respect to g,4(€'), evaluated
at the Euclidean metrics (g,,=9,,):

5P, (8
58 aﬂ(gr) g=1 '

o

Qs 6:€') = (30)

We have adopted the superscript to emphasize that
this part of the tensor of elasticity, being frequency indepen-
dent, will not go to zero in the limit of infinite frequency. In
fact, we will see that this is the only contribution in the
high-frequency limit. Note that there is no contribution com-
ing from the explicit dependence of Tﬂv(f ,1) upon the vector
potential [not shown in Eq. (22)]. This is because the re-
sponse of the kinetic stress tensor to the change in vector
potential \A (i.e., T, %j,0A,+j,0A,) vanishes due to the
zero expectation value of the current ({j =0). Evaluation of
the derivative of the stress tensor ﬁw(g, w) with respect to

the deformation tensor g,z at the ground state of I:IO and
Euclidean metrics leads to
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~ d S
szaﬁz{ ;(:néaﬂav’ﬁ?q §’=§_ﬁaaaﬁﬁ(§)
( 5VB+ Va5,u,ﬁ Vﬁaﬁ)vzﬁ(g)
1/1
-5 55aﬁ5m5vj = 001 0pi0yj = 8OO
aw(|€'])
X | d& ———p A& E
[, e -
£ L5m(€)
d _ﬂ_é ~eq S(E—&).
Xf '3 L a|§| (§§)} (£-§&)
(31)

The second contribution to the linear response of P Ly COMES
from the fact that the state in which we calculate the average

of ISW is not the ground state but a time-dependent state

which evolves under the action of H(7). In calculating this
part of the response we just set g=1 and LA=0 in the stress
tensor operator. Thus we have

PONEw) = f dE'AQ ,,apEE  0Up(E 0), (32)

where Aémﬂ(g, &', w) is a combination of the stress-stress
response function and the stress-current response functions

evaluated with the Hamiltonian H (¢). Tts formal expression is

3Byl 6800 = B lB:F €M, + [ at

OALE")

Xl OHED 5

uaﬁ,:O‘
(33)

The first term on the right-hand side in Eq. (33) comes
from the response to the second term in the Hamiltonian
(26). Similarly the second term in Eq. (33) describes the
sress produced by the effective vector potential [the response
to the third term in the Hamiltonian (26)]. The variational
derivative entering the second term is a formal linear re-
sponse kernel that connects the self-consistent vector poten-
tial to the strain tensor:

A8
a,B(g )
This variational derivative can be straightforwardly calcu-

lated from the linear response version of the self-consistency
equation (17):

Uap(§').

u B_O

A8 = f d§’

A8 = Jdg (Gl &3 LEMALE)

—2#' f dE G &) P op(EMitap(€). (34)
1o

195126-5



TAO, VIGNALE, AND TOKATLY

The complete formula for the tensor of elasticity in the
comoving frame can then be written as

Opvap &€ 0) = Oryop £ E) + AQ,yup( .6 w). (35)
From the general properties of Kubo response functions

we see that AQ wvap(§. €, ) vanishes in the high-frequency
limit (so does the self-consistent vector potential ,A). This

confirms that ijmﬂ(g,g') is indeed the correct high-
frequency limit of the tensor of elasticity.

Finally, we must transform the stress tensor back to the
laboratory frame, according to the transformation rule of Eq.
(25). Since ﬁiji(g, ) and ﬁfz(g, w) are already linear in the
displacement field, they are not altered by the coordinate
thansformation: all we need to do is replace & by r. However,
the equilibrium term, Pj3(§) of Eq. (27), does generate
linear-order contributions when substituted in the transfor-
mation of Eq. (25). Making use of Egs. (27) and (10), we
obtain two additional contributions

u u
(3) — _E o (&
PO)(r,w) = (% ot 5ﬁyarﬂ>paqﬁ(r) (36)

and

Jd
PO)(r,0) = — u,—P(x). (37)

ar,
The last contribution comes from the fact that in trans-
forming back to the laboratory frame, we first replace the
argument & by r—u and then make a Taylor expansion of

P?M,,(f,w) about u=0. This contribution can also be ex-
pressed as

eq .
Pif)(r,w) =- f &*r'a - Vr,no(r’)w, (38)
! ony(r')

where we have used the fact that the equilibrium stress tensor

P:’fV is a translationally invariant functional of the ground-
state density.

Finally, the linear response of the stress tensor is the sum

of the four contributions given by Egs. (29), (32), (36), and

(37).

IV. EXCHANGE-CORRELATION STRESS TENSOR

Since the noninteracting kinetic part and the Hartree po-
tential part are usually treated exactly in the time-dependent
Kohn-Sham equation, we only focus in what follows on ap-
proximating the XC stress tensor, which has two contribu-
tions: the kinetic part and the interaction part. The XC part of
the kinetic stress tensor is defined as the difference between
interacting and noninteracting kinetic stress tensors. (Notice
that, unlike the interaction part of the kinetic energy, which
has no exchange contribution, the interaction part of the ki-
netic stress tensor has both exchange and correlation contri-
butions.) Precisely, in the comoving frame we have

Tl €0) =T, (£ 0)- T, (£0), (39)

where TSV is the kinetic stress tensor of a noninteracting
system with the density ny(£€) of the interacting system.
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The XC part of the interaction stress tensor, denoted by

Wic, e 1s Obtained from the interaction stress tensor of Eq.
(23) after subtracting the Hartree contribution—i.e., after re-
placing the two-particle density matrix p,(&,&’.t) by

o(§)px(&.&'.1) = pa(§.£.1) - g(Hng(§).  (40)

The full XC stress tensor is then given by

Pi(&0) = Ty yul &,0) + Wy u(€,0). (41)

In linear response theory, it is given by an equation com-
pletely analogous to Eq. (27):

Pl(£.0)= P8 + f g O} g &€ uap(€ ,0),
(42)

where chfq(g) is the XC stress tensor [Eq. (41)] evaluated at
Euclidean metric and zero vector potential (i.e., at the ground
state) and 0%, (&£ @) =07 (£,8)+A0, (£, £ ,0).
Here QZC;Zﬁ is the infinite-frequency part of the tensor of
elasticity evaluated at the ground state. Aé;‘fmﬁ. is the finite-
frequency part. The terms arising from the transformation to
the laboratory frame are still given by Egs. (36)—(38), with
the full stress tensor P}, replaced by the XC part P},

V. HIGH-FREQUENCY LIMIT

Obviously, the tensor of elasticity is a very complicated
object. Even after taking into account the symmetries
0 vap=Qvuap=OQuvpa=CQapur there are still in general 21
independent components.*~ Each component is a function of
& and &', as well as frequency. It is clear that, in order to
make progress, some rather drastic approximation is needed.

In this section we begin to develop an approximation
scheme on the premise that the XC part of the one-particle
density matrix and the XC hole can be locally replaced by
their spherical average. A similar approximation®*=* is im-
plicit in many state-of-the-art methods for calculating the
electronic structure, such as the GGA and the meta-GGA. To
begin with, we completely disregard the range of nonlocality
of Q"Mcmﬁ(f,f’)—i.e., the fact that it depends on two spatial
arguments. The possibility of this approximation depends
only on the assumed slow variation of the strain tensor. Then,
by making a local spherical approximation, we will reduce

the number of independent components of 0%, , from 21 to
2—namely, the local bulk modulus and the local shear modu-
lus. The only difference from the conventional LDA will be
that the local viscoelastic constants depend not only on the
local density, but also on its derivatives and other inhomoge-
neity parameters. In the high-frequency limit, the whole
scheme is justified a posteriori from the fact that the calcu-

lation of Q% is really a static ground-state calculation, for
which commonly used semilocal functionals of the static
DFT should be quite accurate. In the following, we will ex-
amine the construction in greater detail.
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A. Three approximations

(i) In the static DFT, the XC hole underlying a semilocal
functional is usually constructed to simulate the spherical
average* 4 of the exact hole py(r,r+u),

(i) = f Ay (ereu), 3)
4ar

The justification for this is that the XC energy does not de-
pend upon the details of the angular dependence of the hole.
To make a connection with the static DFT, we assume here
that we can locally replace the exact XC hole p,.(&,&') in
the comoving frame, defined in Eq. (40), with its spherical
average over the separation vector &':

_ ) dQg

Pre(§.8) = —pxc(f ). (44)
With this local spherical-symmetry assumption, the interac-
tion part of the equilibrium XC stress tensor is immediately
simplified to

xc,u,v(g) 3 ,lLV xc(g)’ (45)

where W, (&) is the expectation value of the potential energy
density operator of Eq. (15) calculated at Euclidean metric
and zero vector potential minus the Hartree energy.

The spherical-symmetry assumption is exactly true for a
slowly varying density, while it is not well satisfied and
sometimes even severely violated for a strongly inhomoge-
neous system. From the performances of a ladder*’ of den-
sity functionals in the static DFT, we see that a density func-
tional may be very successful in practice even though it is
not well formally justified for some conditions.*® However,
this extrapolated assumption leaves us some space for further
improvement.

(i) We further assume that the XC part of the one-particle
density matrix, p; .(&,&'), is of spherical symmetry. Under
this assumption, we can locally replace p;.(&,&') by its
spherical average

T Pixl(£.8), (46)

5 N dQg
pl,xc(g’g ) =f 4

where p) (&,€') is defined as the difference between the
interacting and  noninteracting  one-particle  density
matrices—i.e., P (& E)=p,(£,&)-p5(£,€). Note that
p1(€,8)=p) (&, =y(&). Thus the kinetic part of the equilib-
rium XC stress tensor can be written as

xc;w(g) 3 ,uV xc(g) (47)

T,. is the XC part of the kinetic energy density functional.
We see from the coupling-constant integration formula®® that
only the correlation part of the kinetic XC stress tensor sur-
vives in this approximation. Furthermore, the infinite-
frequency part of the complicated tensor of elasticity simpli-
fies to
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Oliapp=BT[no]:6) + Weelnol; )18 - ),

Ol = [Te[n]:8) = 2Wyol[n; O10(E - €. (48)

Combining the local spherical approximations for the ki-
netic and potential parts of exchange-correlation we finally
arrive at

P& = 8,,P*([7].8), (49)

where P*“®1 is the local equilibrium XC pressure defined as

ch,eq([ﬁo]’é;) — 2TC([ﬁ0];§) ';' ch([ﬁo];f) - (50)

This expression is then inserted in Egs. (36) and (38),
allowing us to calculate the contributions “(3)” and “(4)” of
the XC stress tensor in the laboratory frame:

Py (r,0) = f dr' Qg0 1 ugp(r’ ), (51)

Jd3r'u Vrrno(r,)w’ (52)
ony(r')

P (4)(r w)

where

Ol = 3P0 8,00, 508,00 —)  (53)
is a component of the infinite-frequency part of the tensor of
elasticity and P*>*4 is defined by Eq. (50). As we shall see in
Sec. VB, P;C;(‘U(r,w) only contributes to the low-frequency
limit of the tensor of elasticity AQ};,,q canceling the low-
frequency limit of the longitudinal part of AQX wvap [see Eq.
(60)], while PXC (3)(1. w) contributes to the infinite-frequency
part.

The complete infinite-frequency part of the tensor of elas-
ticity in the laboratory frame is obtained as

Olvap= ffyﬁﬁ(r ')+ O)ap(rr’). (54)

(iii) Finally we assume that the strain tensor of Eq. (4) is
slowly varying in space so that its spatial derivative can be
neglected. Notice that we are not assuming that the ground-
state density ny(r) is slowly varying, only that the strain
tensor (the deformation) is. With this assumption, together
with the two local spherical-symmetry assumptions de-
scribed above, we are able to express the infinite-frequency
part of the tensor of elasticity in terms of only two quantities
K. and p:

K, 0,0,
N L PPN MU

0,00,8+ 0,00
4 e el )]5(r—r’), (55)

where K, and u, are the local bulk and shear moduli of the
1nhom0geneous system given by Eq. (7). To arrive at Eq.
(55), we just substitute Egs. (48) and (53) into Eq. (54).
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B. Subtraction of the adiabatic contribution

Let us summarize the situation at this point. The linear
response of the XC stress tensor is the sum of four contribu-
tions:

PZCV(I',(,()) = 5MVch,eq([n0];r)
8P [ny]:r)

dno(r")
+ [Q;C;z[}(r) + Aéxﬂcvaﬁ(r’ w)]uaﬂ(rv (,U) ] (56)

where Q7% e B(r) is the quantity in the square brackets of Eq.
(53).

Define the adiabatic approximation for the XC stress ten-
sor as

- 5MVfd3r'u-Vrrn0(r’)

PXM(r,1) = P([n]ir, 1), (57)

where n=n(r,r) is the instantaneous density and
ch;eq([n] ;r,1) is the equilibrium XC stress tensor with n(r)
replaced by n(r,7). In linear response,

n(r,t) =no(r) = V- [ng(r)u(r,n]. (58)

Linearization of the adiabatic approximation, together with

the local-symmetry assumptions of Eqgs. (44) and (46), yields

ch ad(r (1)) ch,eq([no];r)
8P <i([ny]ir)
On(r')
(59)
Finally, subtracting Eq. (59) from Eq. (56) we obtain the
linear-order correction to the adiabatic stress tensor in the
laboratory frame:

- 5"”’f &Ar'V’ - [ny(rHu(r’,w)]

AP (r,0) = [0} 5(r) + AD), (1, @) Juag(r, )

- —2”—”1<20(r)uw. (60)

Here we have again made use of the assumption of slow
variation of the strain to pull u(r, ) out of the integral (no-
tice that u,,=-2V -u). Kgc(r) is the zero-frequency limit of
the XC bulk modulus defined by

dny(r’) (61)

and can be calculated from the static DFT, as discussed in the
next subsection. In the uniform-electron-gas limit, P*%4 is
simply a function of the ground-state density and K° (r) re-
duces to Kh 0(no) of Eq. (5).

The tilde used for the r-dependent tensor of elasticity in
Egs. (54), (56), and (60) is only a reminder that these quan-
tities are calculated in the comoving frame. In linear re-
sponse, they can be considered as a function of either & or r.

Imposing the two local spherical-symmetry assumptions
and the local deformation approximation on the finite-
frequency part of the tensor of elasticity, we finally have
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AK,(r,
Mﬁ 5ﬂ+Ach(r w)

5”“5“'3). (62)

The finite-frequency parts of the bulk and shear moduli
AK, (r,w) and Au, (r,w) will be constructed in the next
section.

Mm’g( r,w)=

><<_ Sus0ups | Bpadipt
3 2

C. Construction of K., u.., and Kgc from the static DFT

The frequency-independent parts of the bulk and shear
moduli K, u”, and K. given by Egs. (7) and (61), respec-
tively, are expressed in terms of the kinetic correlation and
XC potential energy density densities 7.(r) and W, (r) of the
ground state.*’

In the static DFT, T,(r) and W, (r) can be constructed
from the coupling-constant average nge.([ny);r) via a
coupling-constant integration formula.>*3! For example,
within the LDA, GGA,? or meta-GGA functional,”® we have

To([no):r) = - nof[rsqrwsl,sz, Dl (63)

S

Jd
Wio(r) = ngeg + noa—[rsec(rx,sl,sz, L (64)
r

N

)1/3

where rs(r)=a51(3/477n0 , ap is the Bohr radius, and

S1,82,... are dimensionless variables,
S§1=85= |Vn0|/2k1:l’l0, (65)
§5=Ty(r)/T(r). (66)

Here Ty=|Vny|*/8n, is the von Weizsicker kinetic energy
density and T(r) is the Kohn-Sham orbital kinetic energy
density. Therefore, the knowledge of €.(r) enables us to
estimate 7,(r) and W (r). In particular, the meta-GGA func-
tional has achieved consistent accuracy in both condensed
matter physics*® and quantum chemistry>*3 and has been
extended to describe systems in a magnetic field*®>7 or sys-
tems formed with van der Waals interactions.® This com-
pletes our construction of the infinite-frequency part of the
XC elastic moduli of Eq. (7).

In addition Kgc can be obtained by substituting Egs. (50),
(63), and (64) into Eq. (61). As an illustrative example, we
calculate it within the GGA. The result is shown in the Ap-
pendix.

VI. FREQUENCY DEPENDENCE

The most challenging task in this work is the calculation
of the truly dynamical part of the tensor of elasticity

Wﬁ(g &', w) of Eq. (32). This has been expressed in Eq.
(62) in terms of two dynamical viscoelastic coefficients
AK, (o) and Au,.(w) (to lighten the notation, the depen-
dence on r via the local density and its derivatives has been
suppressed). A full-fledged calculation of these coefficients is
out of our reach for the time being. However, we propose an
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approximate expression for the frequency dependence of
AK, (o) and Au,.(w), based on the following facts.

First we notice that (like all causal response functions)
AK, (o) and Ap, (w) satisfy the dispersion relations

* do' Im AK (o)

Re K, (w) - K., =P J - . (67)
e T w —w
“ do' Im Ap, (0

Re ftye(0) - i, = P J do’ImBpncd@) = g)
e T w —w

where P represents the Cauchy principal value. So the prob-
lem is “reduced” to the calculation of the imaginary parts of
AK, (w) and Ap,(w). Since Im AK (w)=Im K, .(w) and
Im Ap, (w)=Im u,.(w), the real parts of K, and u,. in Egs.
(67) and (68) include both infinite-frequency (K, and u.,)
and finite-frequency [ReAK, (w) and ReAu, (w)] contribu-
tions. Furthermore, it follows from Egs. (67) and (68) that
these imaginary parts satisfy the sum rules

* dwlm AK
K()zc - Kfc = J _w - XC(w) s (69)
—oe T w
e} ” dU) Im AMXC(w)
Iu’gc T My = J — > (70)
—oe T w

where K, and u;, have been constructed in Secs. V B and
V C. The idea then is to choose reasonable forms for the
frequency dependences of Im AK . .(w) and Im Au,.(w), such
that they satisfy Egs. (69) and (70), respectively, and cor-
rectly reduce to the uniform-gas limits in a system of slowly
varying density.

The choice of these forms is heavily influenced by well-
known results of the theory of the homogeneous electron
liquid. For a system of uniform density in the limit of zero
frequency, Im Au,.(w) ~ @ and Im AK,(w) ~ @® for o —0.
For large frequency, on the other hand, both Im Au,.(w) and
Im AK, (o) decrease as w™>?. We assume that these behav-
iors remain valid in the inhomogeneous system, with coeffi-
cients that depend only on the local density. Thus we neglect
gradient corrections to both the high- and low-frequency
parts of the viscosity spectra. This, however, does not mean
that Im AK,.(w) and Im A, (w) are free of gradient correc-
tions. In the homogeneous electron gas both spectra exhibit
considerable structure at intermediate frequency (about twice
the plasmon frequency w,), and the formulas introduced in
Ref. 61 take this into account through a term designed to
produce a peak at 2w,. A similar term must also be intro-
duced in the present interpolation formulas, if we wish them
to reduce to the homogenous electron gas formulas in the
limit s— 0. But the sum rules Egs. (69) and (70) force the
coefficient of this term to be a function of s: this is the
mechanism through which our inhomogeneous spectra be-
come s dependent at intermediate frequency.

More precisely, our interpolation formulas for Im AK ()
and Im Ap, (w) are based on the following four conditions:
(i) in the high-frequency limit, second-order perturbation
theory™® gives Tm AK, =-njmme*/9(mw)*? and Tm Ap,,

PHYSICAL REVIEW B 76, 195126 (2007)

=—16n(2)77me4/ 15(mw)*?; (i) in the low-frequency limit,
ImAK,. vanishes as O(w®), while ImApu,=
—w(me?/ m)%kpSy(n,), where S3=(3/4)S5 and S5 is given by
Eq. (16) of Ref. 61; (iii) at intermediate frequency, we re-
quire that Im AK, (w) and Im Ay, (r, ) have peaks around
w=2w), (Where w,=\4mnye*/m is the plasmon frequency) as
observed in the homogeneous electron gas;®*¢! (iv) K, and
My must satisfy the sum rules (69) and (70). Among these
conditions, only the last one takes the inhomogeneity param-
eters explicitly into account.

To satisfy the four conditions, we choose Im AK, (r, ®)
and Im A, (r,w) to be of the simple form

Im A/-l’xc == anfT(l', (,U) >

4
Im AK, . = — wngfL(r,w) - 3 Im Ap,e, (71)

where

fry = apmy/(1+ by @) + dy e L@,
aym = no(mez/noﬂ')szSé(T),

bL(T) = 16[3ai(T)/(4r3Ci(T))] s N

Brr)=3/2,
dym =4 B]?:(T)/ ™
—7n ww"%
X _4 OAL(T) - 2(4?‘?6‘1@)/3)1/10013‘/&) N
w, 1
? F( z)

(72)
with @=w/w,, ¢ =23/15, cp=16/15, Ap=(u).—us)/ng,
and A =(K2 —KZ)/ni+4A/3. Among the inputs K, ui,

<o and ,ugc, the last is the least accurately known. Even so,
an estimate of this quantity for the uniform electron gas is
available within the random phase approximation (RPA).®
The calculation beyond the RPA is still under study.

At the VK (LDA) level, the high- and low-frequency lim-
its of the XC elastic moduli only depend upon the ground-
state density. At the GGA level, while K} and u, addition-
ally depend upon the first derivative of the density, K(,ZC
depends not only on the density gradient, but also on the
Laplacian of the density, as shown in the Appendix. To show
the effect of the inhomogeneity on the elastic moduli, we
calculate all these quantities within the GGA.?* For simplic-
ity, we assume that the second derivative of the density is
zero. The effect of the density gradient on the bulk and shear
moduli is displayed in Figs. 1-3. From these figures, we see
that the finite density gradient introduces significant correc-
tions to the values of K™(ng), K™*(ny), and u(ny).

In continuum mechanics, the bulk and shear viscosities

Hw)=-Im AK, (r,w)/w (73)

and
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FIG. 1. The zero-frequency bulk modulus Kgc (in units of
2w,n) as a function of r, for several values of the reduced gradient
s=|Vng|/[2(372)3]. s=0 corresponds to the uniform electron gas.

7w) ==Im Ap(w)/w (74)

have direct physical significance.®® So we calculate these two
quantities as functions of frequency by substituting K., K°,,
and pu.. into Eq. (71) for several values of the reduced den-
sity gradient s in the physical range of 0<s=3 at a fixed
density. As shown in Figs. 4 and 5, the viscosity spectra have
an interesting evolution as functions of the density gradient.
The viscosity at first increases with increasing density gradi-
ent. However, this trend is reversed in the large-gradient
(s — ) limit. In this limit the exchange energy density of the
GGA (and meta-GGA) takes the same form as in the uniform
gas, but enhanced by a factor 1.804, while the correlation
part vanishes.’> Therefore the viscosity spectra tend in the
s— 0 limit to s-independent functions, qualitatively similar
to those of the homogeneous electron liquid.

Strong variations with s are also found in the real parts of
the bulk and shear moduli, which are calculated from Eqs.
(67) and (68) and are shown in Figs. 6 and 7. From these

-0.35 I I I I

FIG. 2. The high-frequency bulk modulus K. (in units of
2w)yng) as a function of r, for several values of s.
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0.14

0.1

0.08

l'LXC

0.06

0.04

0.02

FIG. 3. The high-frequency shear modulus ;. (in units of
2w),ng) as a function of r, for several values of s.

figures we see that in the range of 0 <s=<3 the shear modu-
lus u,. of the inhomogeneous system is smaller than that of
the homogeneous electron gas for most frequencies. These
variations may lead to a better description of the optical
properties of atoms, molecules, and molecular polymers.62

VII. CONCLUSION

In conclusion, we have presented a detailed derivation of
the recently proposed gradient-corrected frequency-
dependent XC potential. The proposed potential should allow
a more accurate treatment of moderately to strongly inhomo-
geneous electronic systems (e.g., molecular junctions), for
which the nonadiabatic local density approximation may not
be adequate. At the same time the potential remains essen-
tially exact for slowly varying densities and slowly varying
time-dependent fields. Granted the smallness and slow varia-
tion of the strain u,g(r), the quality of our approximation
depends only on how well the GGA and the meta-GGA treat

0.12

0.08 | SN

0.06 | \ S 1

C(w)

004t /T N 1

0.02

-0.02 1 1 1 1

FIG. 4. The bulk viscosity {(w) (in units of fng) for several
values of s at r,=3. The same RPA value of u,.(0) for all s is taken
from Table I of Ref. 60.
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(o/on

FIG. 5. The shear viscosity 7(w) (in units of Ang) for several
values of s at r,=3. The same w,(0) for all s is employed as in Fig.
4.

the static inhomogeneous system. As a simple example, we
have employed the GGA functional to calculate the bulk
modulus and the shear modulus of an electron gas with linear
variation of the density. In practical applications, the dynami-
cal potential based on the meta-GGA may be more
accurate,® in particular for finite systems.

The procedure employed to construct the nonadiabatic
part of the XC field is summarized as follows. First we find
the infinite-frequency limits K, and u,. of the bulk and
shear moduli, respectively [see Eq. (7)], by making use of
semilocal density functionals to calculate the kinetic energy
density of correlation (exchange does not contribute) and the
XC potential energy density [see Egs. (63) and (64)]. Com-
bining these with the zero-frequency limits K°, [Eq. (61)]
and ,u,gc, we calculate the frequency-dependent imaginary
parts of the bulk and shear moduli by means of the interpo-
lation formula (71). Their real parts are then obtained from
the dispersion relations (67) and (68). Finally the dynamical
XC stress tensor AP,,,(r,w) is constructed from Eq. (3) by

-0.09 :
1.
01 4
-0.11 7
012 F 5 1
E _013 L "’/’ 4
0 _ /

& 014 f 6=3/ 4

o)

T 015 3 1
016t eSS T =
-0.47 pi -+ 1
o018 T e 1
-0.19 1 1 1 1 1

0 1 2 3 4 5 6
w/mp

FIG. 6. The real part of the finite-frequency bulk modulus
ReK,(w) (in units of 2w,n,) for several values of s at r,=3.
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FIG. 7. The real part of the finite-frequency shear modulus
Repuy(w) (in units of 2w,ng) for several values of s at r,=3.

replacing ch(no, ), ,ul,zc(no, ), and Kl;’co(no) with the corre-
sponding parts for the inhomogeneous system.
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APPENDIX: LOW-FREQUENCY LIMIT OF THE BULK
MODULUS

Self-consistent implementations of time-dependent DFT
require the dynamical XC potential, the divergence of the
stress tensor, which may be calculated from the bulk and
shear moduli.

At the GGA level, P**®1 is an explicit functional of the
ground-state density n,. The functional derivative of Eq. (61)
can be written as

SP([nglir) [ 9P ([ngl:r)
Sng(r') dng(r)
Xo(r-r').

P ([nlir)
'V ngy(r)

(A1)

Applying Eq. (A1) to the GGA functional of Ref. 33, we find
the low-frequency limit of the bulk modulus,

K0 "o pee_ 1 ae;'“if+ 1 Fe™ 1 G
T3 em? gy 12arg o 6wt
2
ngrs 0G G
—0——+@ -(norY ), (A2)
3 dny 3 "9V ng
where
9t 1 4
¢ = 2cpay ln(1+—>— 2001 , (A3)
ary 0,/ 0,+0;
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Pt 1 1+20)0;?
5= | dee Q) — Q0] + M
ary Q1+ 0 01+ 0
(A4)
are the local contributions. Here Qu=—2co(1+ayr,),
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+3B5r 2 +2(p+ 1) Byr?)]. and Q= (co/2)[-Byr;> +3B5r;
+4p(p+1)r°""], and all the parameters are given in Table I of
Ref. 64. The nonlocal terms are calculated from

B {B Al 2<A é)]
G__(1+,8Bt2/7) D2(2+A ) ary ry) |

01=2¢(Bir)+ Borg+ Bar) >+ By’ Q1 =col BT P42, (AS)
|
G 3t 2B 7At A A Art JA A i
G ___per |28 5 —5Q2+AP)| — ) — 2+ A2)<—+7 ) +—
ong  no(1+ BBFIy) 3D dry ry) 3D ar ry) D
2r(0A _A\[oA A dA A PA
% j<—+7 )( )(1+Az2)+2Az2(2+Az2)< 4o )
3 \or ary 1y ar‘Y T 6 (?r
2rA N(0A A\[(oA _A
- 3D3 (2+At (1 +24) — ar. 5+7r—
2 434 4
t B Af dA A\l 7B oA A
_ B¢ 2_2[ 2(2 A2)< )M__ry‘\_z <—+7—)}, (A6)
vyng(1 + BBt/ y)7| ry D ary g 3 3D \dry, 1

B 2A%*

9G B(;SVnO{ 1 {

aVnO:16(4)”3rng/3 1+ BBty B r_s 3
2,6

—(Q2+AA)(1+ 2At2)< aA i‘)]

s s

241 JA A
e 2 +AP) - 7(4 + 3At2)(— - —)

dr, T

s s

27 | B _Af 2( A)] )
_y(1+,BBt2/7)2D2{_ - 02(2 Af)| So- T |(e2an) (A7)

In Egs. (A5)—(A7), t=(cs/ ¢p)/ r” 2, where ¢=(372/16)" and s is the reduced density gradient defined in the context, ¢=[(1
£0B4(1-0731/2, y=0.031091, B=0.066725, E=expl—"/(yd)], A=BI[UE-1)], dA/dr=PBEe™ ) or) /[y (E
—1)2],B=(1+At*)/D, and D=1+Ar*+A%". In the uniform-gas limit, all the G terms vanish and we are left with the local

density approximation for the moduli.
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