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Propagation of light waves in one-dimensional and two-dimensional photonic lattices made of uniformly
twisted �helical� arrays of evanescently coupled optical waveguides is theoretically investigated and shown to
provide a classic wave optics analog of the quantum dynamics of a Bloch particle in an electromagnetic field.
For a one-dimensional waveguide array, it is demonstrated that the behavior of discretized light in the array
exactly mimics the wave packet dynamics of a quantum harmonic oscillator on a lattice, with the existence of
quasiharmonic and quasi-Bloch oscillations. For a two-dimensional twisted waveguide array, it is shown that
propagation of discretized light exactly mimics the quantum motion of an electron in a two-dimensional
crystalline potential subjected to a uniform magnetic field, orthogonal to the crystal plane, combined with a
repulsive harmonic electrostatic force.
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I. INTRODUCTION

The study of discretized light in photonic lattices, such as
in arrays of evanescently coupled optical waveguides,1,2 has
in recent years received continuous and increasing interest
from both fundamental and applied viewpoints.3,4 It has been
pointed out on several occasions that the tunneling dynamics
of classic light waves in coupled waveguides closely re-
sembles the quantum dynamics of an electron in crystalline
potentials �see, for instance, Refs. 3 and 4�. In particular,
using properly engineered photonic lattices, one can simulate
with light waves the coherent motion of a Bloch electron
subjected to an external dc or ac electric field �see, for in-
stance, Refs. 5–10�. As the monitoring of the electron motion
in crystals is a complicated task and unavoidable dephasing
and many-body effects may even prevent the observation of
coherent dynamical effects, visualization of optical beam re-
shaping can be performed with great accuracy �see, for in-
stance, Refs. 11–13�, making photonic lattices a rather
unique laboratory tool to investigate in real space coherent
wave packet dynamics. Such a remarkable possibility has
been successfully exploited to experimentally investigate in
photonic lattices the classic wave optics analogs of a variety
of coherent phenomena originally predicted for electrons in
crystalline potentials subjected to a static or time-periodic
electric field, including Bloch oscillations,7,8,11,12,14,15 Zener
tunneling,11,14–16 and dynamic localization.17–19 A powerful
means to simulate in one- or two-dimensional periodic opti-
cal structures the effect of a constant or time-dependent elec-
tric field in the corresponding quantum mechanical problem
is to bend the array in the longitudinal direction.6,9,10,17,20–22

In fact, in the reference frame of the waveguides the bending
of the array introduces a noninertial force which is related to
the local waveguide curvature by a Newtonian equation of
motion.10,23 Diffraction control and the optical analogs of
Bloch dynamics based on bent waveguides have been experi-
mentally demonstrated for one-dimensional waveguide ar-
rays in Refs. 12 and 17–20. Recent advances in the manu-
facturing of two-dimensional high-precision fiber waveguide
arrays24 and of periodic waveguide structures of arbitrary

two-dimensional geometry by using femtosecond laser
writing25–27 have also motivated theoretical investigations on
discretized light behavior in two-dimensional photonic lat-
tices with an arbitrary complex bending shape.22 On the
other hand, an outstanding problem of solid state physics is
to understand the motion of electrons in a crystalline poten-
tial under the action of a magnetic field, or more generally of
combined electric and magnetic fields �see, for instance,
Refs. 28 and 29�, a problem which dates back to the funda-
mental works by Bloch,30 Jones and Zener,31 Peierls32 and
later on put on a more rigorous basis by Slater33 for electric
fields and by Luttinger34 for magnetic fields using a Wannier
function expansion technique �for a review, see for instance,
Ref. 35�. In particular, the problem of two-dimensional
Bloch electrons in an applied magnetic field has been inten-
sively studied for several decades and related to various phe-
nomena such as the quantum Hall effect or superconductivity
in the presence of magnetic field. In the simplest semiclassi-
cal approximation, which is valid for suitable wave packets
which are spread over many lattice spacings and for weak
external fields, the electron dynamics subjected to slowly
varying external scalar and vector potentials is that of a clas-
sical charged particle with an effective Hamiltonian in which
the crystalline potential is simply accounted for by replacing
the free kinetic energy term by an energy band of the crystal.
The ability offered by optics to visualize in the real space the
wave packet dynamics of a corresponding quantum Bloch
particle motivates to extend previous optical analogs of one-
dimensional or two-dimensional Bloch motion in dc or ac
electric fields6,9,10,12,17,19 to include the effect of a magnetic
field.

In this work, we study theoretically the propagation of
light waves in one-dimensional and two-dimensional peri-
odic arrays of weakly coupled waveguides which are uni-
formly twisted in the longitudinal direction, and show that
the reshaping of an optical beam is analogous to the coherent
dynamics of an electronic wave packet in a crystalline po-
tential subjected to a uniform magnetic field, orthogonal to
the crystal plane, superimposed to an electrostatic inverted
parabolic potential. The geometric twist of the optical struc-
ture along the propagation direction is in fact responsible for
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the appearance, in the reference frame of the waveguides, of
noninertial Coriolis and centrifugal forces �see, for instance,
Refs. 36 and 37�, which are analogous the former to a mag-
netic �Lorentz� force and the latter to an electrostatic �repul-
sive� harmonic force. In the one-dimensional array, the mag-
netic field does not influence the wave packet dynamics and
the twisted one-dimensional optical lattice mimics the dy-
namics of a quantum harmonic oscillator on a lattice,38–40

which has received a great interest in the past recent years
after its realization in Bose-Einstein condensates.41–45 In our
case, in spite of the fact that the harmonic oscillator is actu-
ally inverted, owing to the discrete translational invariance of
the lattice and thus of the periodicity of the band structure,
we retrieve the same dynamical scenario as in a confining
harmonic potential on a lattice. In the semiclassical limit, the
beam dynamics is governed by a pendulum equation, with
the existence of two different kinds of orbits corresponding
to harmonic and Bloch oscillations. Owing to nonequidistant
spectrum, these oscillations are, however, damped �the opti-
cal analog of quantum mechanical dephasing�. In the twisted
two-dimensional array, the wave packet dynamics is more
involved since the magnetic �Coriolis� force acts in addition
to the two-dimensional electrostatic �centrifugal� force. The
beam trajectory, as predicted by a semiclassical analysis, fol-
lows a complex flowerlike path in the transverse plane,
which is again smeared out owing to quantum mechanical
dephasing.

The paper is organized as follows. In Sec. II, the basic
equations describing light propagation in a helical array of
weakly coupled optical waveguides is presented, and the
optical-quantum analogy between spatial beam propagation
along the array and coherent temporal evolution of a Bloch
electron in an electromagnetic field is highlighted. Section III
deals with the case of a one-dimensional helical array, where
discretized light behaves similarly to a quantum harmonic
oscillator on a lattice. Beam dynamics in a two-dimensional
helical waveguide array is considered in Sec. IV, and the
results predicted by the semiclassical analysis are compared
with full numerical simulations of the paraxial wave equa-
tion. Finally, in Sec. V, the main conclusions are outlined.

II. LIGHT PROPAGATION IN HELICAL WAVEGUIDE
ARRAYS: GENERAL ASPECTS

A. Basic model and quantum-optical correspondence

The starting point of our analysis is provided by a rather
standard model describing propagation of monochromatic
light waves at wavelength � in an array of weakly coupled
optical waveguides which is uniformly twisted along the
propagation direction Z with a spatial twist period �. In the
weak guidance approximation, where the refractive index
n�X ,Y ,Z� of the optical structure weakly deviates from the
substrate �cladding� index ns,

46 the scalar and paraxial field
approximations can be used and propagation of the electric
field envelope ��X ,Y ,Z�, in a given polarization state, is
governed by the Schrödinger-like wave equation �see, for
instance, Refs. 17, 19, 22, and 36�,

i�
��

�Z
= −

�2

2ns
�X,Y

2 � + V�X,Y,Z�� , �1�

where X, Y, and Z are the Cartesian spatial coordinates in the
laboratory reference frame, �X,Y

2 = ��2 /�X2�+ ��2 /�Y2� is the
transverse Laplacian, �=� / �2�� is the reduced wavelength,
and V�X ,Y ,Z�= �ns

2−n2�X ,Y ,Z�� / �2ns��ns−n�X ,Y ,Z� is
the optical potential. The formal optical-quantum correspon-
dence between light propagation along the optical structure
and the temporal evolution of a nonrelativistic quantum par-
ticle constrained to move on the two-dimensional �X ,Y�
plane is readily obtained by replacing the temporal variable t
in the quantum problem with the spatial propagation distance
Z in the optical system, the Planck constant � with the re-
duced wavelength �, the particle mass m with the substrate
refractive index ns, and the time-dependent quantum poten-
tial V�X ,Y , t� with the Z-dependent optical potential
V�X ,Y ,Z�. To study light propagation along the helical ar-
rayed structure, it is worth introducing a rotating reference
frame �x ,y ,z� that follows the twist of the structure �see, for
instance, Ref. 36�,

x = X cos � + Y sin �, y = − X sin � + Y cos �, z = Z ,

�2�

where ��z�=�0
z	�
�d
=	z and 	=2� /� is the �uniform�

twist rate �see Fig. 1�. In the rotating reference frame
�x ,y ,z�, the optical structure turns out to be invariant along z
and the wave equation �Eq. �1�� takes the form

i�
��

�z
= −

�2

2ns
�x,y

2 � + V�x,y�� − 	Lz� , �3�

where

Lz � i��y
�

�x
− x

�

�y
	 �4�

is the component of the angular momentum operator along
the z direction. The equivalence between Eq. �3� and the
two-dimensional nonrelativistic Schrödinger equation for a
particle of mass ns and charge q in the periodic potential
V�x ,y�, subjected to time-independent electric and magnetic
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FIG. 1. Schematic of �a� one-dimensional and �b� two-
dimensional �square lattice� uniformly twisted waveguide arrays.
The reference frame �x ,y� of the waveguide structure uniformly
rotates along the propagation z direction with a rate d� /dz=	
=2� /�, where � is the helical pitch.
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fields derived from the vector and scalar potentials A and �,
is readily established by observing that Eq. �3� can be cast in
the equivalent form

i�
��

�z
=

1

2ns



k=x,y
�pk − qAk�2� + V�x,y�� + q�� , �5�

where px=−i�� /�x, py =−i�� /�y are the momentum opera-
tors, and where we have set

qA�x,y� = ns	�− yux + xuy�, q��x,y� = −
ns	

2

2
�x2 + y2�

�6�

for the vector and scalar potentials. Note that the correspond-
ing magnetic field B=��A is uniform and orthogonal to the
�x ,y� plane of motion, whereas the electric field E=−��
corresponds to an elastic repulsive force. Note also that the
classic magnetic and electric forces experienced by the par-
ticle of mass ns in the electromagnetic field, given by Fm
=qv�B and Fe=qE, are nothing else than the Coriolis and
centrifugal forces appearing in the noninertial rotating refer-
ence frame �x ,y ,z�. Therefore, the twist of the optical struc-
ture along the propagation z direction introduces, in addition
to an electric force as in case of bending previously studied
in Refs. 6, 9, 10, 17, and 22, a magnetic force which depends
on the particle velocity. The effect of the twist on discretized
light propagation along the array turns out to strongly depend
on the dimensionality of the array. In the case of a one-
dimensional array of weakly coupled waveguides placed,
e.g., along the x axis, the magnetic force is orthogonal to the
array line and it is not expected therefore to influence dis-
crete light diffraction, which is ruled by the interplay be-
tween the periodic optical potential in the x direction and the
repulsive �inverted� one-dimensional harmonic potential due
to the centrifugal force. As shown in Sec. III, this optical
system provides a remarkable example in classic wave optics
to investigate the coherent dynamics of a quantum harmonic
oscillator on a lattice.38,39 Conversely, for a two-dimensional
array of waveguides, the reshaping of a light beam results
from the interplay between the periodic lattice, the magnetic
force, and the two-dimensional repulsive harmonic potential,
as discussed in Sec. IV. Before discussing in details the dy-
namics of discretized light in one-dimensional and two-
dimensional helical waveguide arrays, it should be pointed
out that in the present work, we will limit ourselves to con-
sider a sufficiently small twist rate so that a light beam in
each waveguide of the array adiabatically follows its helical
path. Different dynamical regimes attained at moderate or
high values of the twist rates, corresponding to strong radia-
tion losses due to the centrifugal force or to adiabatic stabi-
lization and averaged-potential regimes �see, for instance,
Refs. 47 and 48�, will not be considered in the present analy-
sis.

B. Coupled-mode equations

The formulation �Eq. �5�� of the wave propagation prob-
lem allows one to directly apply the general theory by
Luttinger34—originally developed for electrons in periodic

crystalline potentials subjected to an electromagnetic field—
to study the optical beam evolution in the case of a two-
dimensional periodic array of helical waveguides. This pro-
cedure will be briefly reviewed in Sec. IV. However, for
nonperiodic or for a one-dimensional chain of weakly
coupled waveguides, one can proceed by a suitable extension
of the coupled-mode equation approach,1,2 which is a much
more common and known procedure in the optical context to
study light propagation in weakly coupled waveguides. To
this aim, let us consider a chain of weakly coupled and iden-
tical waveguides placed at the positions R1= �x1 ,y1�, R2

= �x2 ,y2� , . . ., R
= �x
 ,y
� , . . ., in the �x ,y� plane, and assume
for the potential V�r� the expression V�r�=
R


Q�r−R
�,
where r= �x ,y�, Q�r��ns−ng�r�, and ng�r� is the refractive
index profile of the single waveguide. Let u�r−R
� be the
fundamental mode profile of the single waveguide centered
at R
, and let us look for a solution to Eq. �5� in the form

��r,z� = 

R


c�R
,z�u�r − R
�

�exp�i�ns	/���− xy
 + yx
��exp�− i�0z� , �7�

where �0 is the propagation constant of the fundamental
mode of the single waveguide and where the slow evolution
of the amplitudes c�R
 ,z� with z comes from the weak
coupling of adjacent waveguides and from the presence of
the electrostatic potential �. Note that, as compared to the
usual mode expansion approach adopted to derive coupled-
mode equations in weakly coupled waveguides �see, for
instance, Ref. 2�, we have included in Eq. �7� the additional
phase terms exp�i�ns	 /���−xy
+yx
�� which arise due to
the presence of the vector potential A in Eq. �5�. To under-
stand such additional phase terms, let us apply the
operator H
= �1 /2ns�
k=x,y�pk−qAk�2+Q�r−R
� to w
�r�
=u�r−R
�exp�i�ns	 /���−xy
+yx
��. Taking into account that
u�r−R
� is strongly localized at around r�R
, we may ap-
proximately set qA�r��qA�R
�=ns	�−y
ux+x
uy� for the
vector potential entering in H
, so that one has H
w
�r�
���0w�r�, i.e., w
�r� is the natural eigenmode of H
. To
derive the evolution equations for the mode amplitudes
c�R
 ,z�, we follow a rather standard procedure2 and substi-
tute ansatz �7� into the wave equation �Eq. �5��. This yields

i�

R


dc�R
,z�
dz

w
�r�

= 

R


c�R
,z��V�r� − Q�r − R
� + q��r��w
�r� . �8�

Multiplying both sides of Eq. �8� by w
�
* �r�, integrating in dr,

and taking into account the strong localization of the modes
w
�r� and that �drw
�

* �r�w
�r���R
,R
�
, one finally obtains

the following coupled-mode equations:
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i
dc�R
�,z�

dz
= − 


R


�
�
 exp�i�
�
�c�R
,z�

−
ns	

2�R
��
2

2�
c�R
�,z� , �9�

where we have set

�
�
 = −
1

�

 dru*�r − R
���V�r� − Q�r − R
��u�r − R
�

�10�

and

�
�
 =
	ns

�
�− x
�y
 + x
y
�� =

q

�



R


R
�
A�r� · dr . �11�

The integral on the right hand side in Eq. �11� has to be
performed along the straight line connecting the points R


and R
�. Note that, as compared to the straight array, the
change of coupled-mode equations induced by a uniform
twist of the array along the propagation direction is twofold:
�i� to introduce the additional phase terms exp�i�
�
� in the
coupling coefficients �
�
, which are given by the Peierls
integrals �Eq. �11�� for the vector potential, and �ii� to intro-
duce a shift in propagation constants represented by the last
terms on the right hand side in Eq. �9� and originating from
the electrostatic �centrifugal� potential q�.

III. LIGHT PROPAGATION IN A ONE-DIMENSIONAL
HELICAL ARRAY: THE CLASSICAL ANALOG

OF A QUANTUM HARMONIC OSCILLATOR ON A
LATTICE

Let us consider, as a first example, the case of a one-
dimensional helical waveguide array made of a chain of
equal waveguides placed along the x axis at equal distances a
each other �see Fig. 1�a��, so that V�x ,y�=
n�ns−ng�x
−na ,y��, where n is an integer number. In this case, consid-
ering only the nearest neighboring interaction terms in the
sum on the right hand side of Eq. �9� and dropping the un-
important equal shift terms �

, the coupled mode equations
�Eq. �9�� assume the simplified form

i
dcn

dz
= − ��cn+1 + cn−1� − �n2cn, �12�

where we have set cn�z�=c�Rn ,z�, Rn=naux,

� =
1

�

 dxdyu*�x − a,y��n�x,y� − ng�x,y��u�x,y� , �13�

and

� =
	2nsa

2

2�
. �14�

Note that in this case the Peierls phase terms exp�i�n�n�,
which account for the presence of the magnetic field, vanish.
This is physically due to the fact that the magnetic �Lorentz�
force is orthogonal to the �x ,z� plane containing the one-

dimensional waveguide array and therefore it does not influ-
ence the light transfer between adjacent waveguides of the
array. In their present form, Eq. �12� is formally analogous to
the discrete equations describing the dynamics of a quantum
harmonic oscillator on a lattice �see Refs. 38 and 39�, apart
from the fact that in our case the harmonic potential is in-
verted, i.e., the harmonic force is repulsive rather than attrac-
tive. However, owing to the periodicity of the tight-binding
lattice band curve, the dynamical scenario is the same in the
two cases. This can be formally shown by making the sub-
stitution cn�z�=an�−z�exp�i�n�: the evolution equations for
the amplitudes an�z� are given again by Eq. �12� but with �
replaced by −�. In the quantum physics context, a realization
of a quantum harmonic oscillator on a lattice has been re-
cently attained in Bose-Einstein condensates in a periodic
optical lattice trapped by an harmonic confining
potential.41,42 The spectral and dynamical properties of a
quantum harmonic oscillator on a lattice have been studied in
great details, and we refer the reader to, e.g., Refs. 38–45. In
particular, the eigenmodes c̄n

� and eigenvalues E� of Eq. �12�
�cn�z�= c̄n

� exp�iE�z�� can be expressed in terms of Mathieu
functions.38,43 A physically interesting case is that corre-
sponding to a weak twist rate such that ���, i.e., to

	 ��2��

nsa
2 . �15�

In this case, Eq. �12� possesses two different classes of
eigenstates depending on their energy E� and based on the
localization of these modes �see, for instance, Ref. 43�. The
low-energy modes are extended around the n=0 waveguide
and nearly equally separated in energy by �E��2���.
These are basically the discrete counterpart of the eigenstates
of the continuous quantum harmonic oscillator. Conversely,
the high-energy modes are localized on the two sides of the
n=0 waveguide and correspond to pairs of nearly degenerate
Wannier-Stark ladders with increasing energy spacing as the
energy E� increases.39,42,43 The existence of such a two kinds
of eigenstates is reflected into the two rather different dy-
namical regimes of a wave packet of the quantum harmonic
oscillator on a lattice in dependence of its initial energy. This
can be conveniently understood by means of a semiclassical
analysis of the wave packet dynamics.39,41,44 To this aim, let
us notice that the solution to the coupled-mode equations
�Eq. �12�� can be written as cn�z�= f�
=n ,z�, where the con-
tinuous function f�
 ,z� satisfies the Schrödinger-like equa-
tion i��f /�z�=Hf with the Hamiltonian

H = − 2� cos�p
� − �
2, �16�

where p
=−i� /�
 is the momentum operator. For the Ehren-
fest theorem, the semiclassical equations for the mean values
�
� of wave packet position �in units of the array period a�
and �p
� of momentum are given by

d�
�
dz

= � �H
�p

� = 2��sin p
� � 2� sin�p
� , �17�
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d�p
�
dz

= − � �H
�

� = 2��
� . �18�

To understand the physical meaning of the mean value of
momentum �p
� in our optical system, let us assume that at
the input plane z=0, the waveguide array is excited by a
broad beam in the x direction �of, e.g., Gaussian shape� tilted
by a small angle �0 with respect to the paraxial z axis, i.e.,
f�x ,0���f�x ,0��exp�±i�0x /��, where the amplitude �f�x ,0��
is a slowly varying function of x on the spatial length of the
array period a. Owing to the discreteness condition x=na
imposed by the lattice, �0 should be reported inside the in-
terval −�B��0��B, where

�B =
�

2a
�19�

is the Bragg angle. Since x=
a, one then has �p
�
� ±�0a /�: The mean value of momentum �p
� is thus pro-
portional to the tilting angle of the optical beam with respect
to the paraxial z direction. Note that at the incidence angle �0
equal to the Bragg angle, one has �p
�=�, and thus in gen-
eral one can write �p
�= ±���0 /�B�. In terms of classic ray
optics, the Hamiltonian equations �Eqs. �17� and �18�� can be
viewed as the paraxial ray equations describing the propaga-
tion of optical rays in a fictitious dielectric medium, �
� and
�� /a��p
� being the spatial and angular ray displacements
�see, for instance, Ref. 49�. On the other hand, the semiclas-
sical dynamics expressed by the Hamiltonian systems �Eqs.
�17� and �18�� is equivalent to that of a classical pendulum.
In fact, after introduction of the translated momentum q
= �p
�−� from Eqs. �17� and �18�, it follows that q satisfies
the pendulum equation,

d2q

dz2 + �2 sin q = 0, �20�

where �=2���. It is well known that the orbits of the clas-
sical pendulum depend on the value of the mechanical en-
ergy E= �1 /2��dq /dz�2−�2 cos q=2�2�
�2+�2 cos�p
�,
which is a constant of motion �note that E=−2�H�. In par-
ticular, for E�Ec, the motion of the pendulum is vibrational,
whereas for E�Ec, it is rotational, where Ec=�2=4��. In
fact, the trajectories of the dynamics in the phase space
��
� , �p
��, shown in Fig. 2 and calculated by numerical inte-
gration of Eqs. �17� and �18�, indicate that the isoenergy ray
orbits belong to two different classes, corresponding to the
rotational �open orbits, for E�Ec� and vibrational �closed
orbits, for E�Ec� regimes of the pendulum. The energy E of
the orbit is determined by the beam launching conditions at
the input plane z=0 of the array: if the light beam is centered
at the waveguide n0 with a tilting angle �0 with respect to the
z axis, one has

E = 2�2n0
2 + �2 cos���0/�B� . �21�

Open and closed orbits are separated by a separatrix, corre-
sponding to the orbit with energy E=Ec. Optical rays corre-
sponding to closed orbits oscillate around the central wave-
guide n=0, whereas optical rays corresponding to open

orbits oscillate on the sides of the central waveguide n=0.50

The closed orbits are analogous of the periodic trajectories of
optical rays in a parabolic graded-index lens, and in the re-
gime of small-angle oscillations of the pendulum, the spatial
period of the ray oscillations is given by �2� /�. Con-
versely, the open orbits in the semiclassical dynamics are
analogous of Bloch oscillations in a linear potential, with the
spatial period of the oscillations which decreases as n0 in-
creases owing to the increase of the local slope of the cen-
trifugal potential. An inspection of Eq. �21� clearly shows
that for normal beam incidence ��0=0�, one has E�Ec and
therefore one always observes Bloch-like oscillations at any
beam spatial displacement n0, whereas for �0��B and n0
small enough, one observes harmonic oscillations. This be-
havior can be physically understood by observing that, as it
is well known, the sign of discrete diffraction for a broad
light beam propagating along a waveguide array strongly
depends on the beam incidence angle �see Refs. 20 and 51�.
For normal beam incidence, the sign of discrete diffraction is
the same as in a homogeneous dielectric medium, and there-
fore the inverted �antiguiding� parabolic potential due to the
centrifugal force cannot confine light around the central
waveguide: light confinement at the sides of the central
waveguide is provided in this case by Bragg reflection. Con-
versely, for a beam incidence angle close to the Bragg angle,
the sign of discrete diffraction is reversed and the waveguide
system, near to the central waveguide, behaves like a �con-
fining� parabolic graded-index lens.

We checked the above dynamical scenario of discrete dif-
fraction in a helical one-dimensional waveguide array by di-
rect numerical simulations of the paraxial wave equation
�Eq. �3�� in the rotating reference frame �x ,y ,z� using a stan-
dard pseudospectral beam propagation technique. In the nu-
merical simulations, we assumed for the refractive index of
the single waveguide a circular Gaussian profile of radius r0
and peak index change �n, i.e., ng�x ,y�=ns+�n exp�−�x2

+y2� /r0
2�. The waveguide array is excited at the input plane

by an elliptical Gaussian beam, broaden in the x direction to
excite a few waveguides �typically three to five� of the array.

Position �>

>

M
o

m
e
n
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m

p
�>

>

E=Ec

-30 -20 -10 0 10 20 30
0

2�

FIG. 2. �Color online� Phase space trajectories of the Hamil-
tonian system �Eqs. �17� and �18�� �classical pendulum� for � /�
=0.0191 and for increasing values of energy �E /Ec=−0.96, −0.72,
0.42, 1, 2.86, and 5 from the inner to the outer orbits�. The separa-
trix between closed �E�Ec� and open �E�Ec� orbits corresponds
to E=Ec.
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The different regimes of beam propagation, corresponding to
either harmonic or Bloch oscillations, have been investigated
by scanning the exciting beam in the transverse x direction
�to excite a group of waveguides at around the central wave-
guide n0� at a fixed tilting angle �0. In order to mainly excite
the first band of the array, the tilting angle has been chosen
below the Bragg angle �B �see, for instance, Refs. 18, 52, and
53�. As an example, Figs. 3 and 4 show the numerically
computed beam propagation along a L=10-cm-long array in
the regimes of harmonic oscillations �Fig. 3, corresponding
to n0=5� and of Bloch oscillations �Fig. 4, corresponding to
n0=22�. The parameter values used in the simulations are
�=0.98 �m, ns=1.522, a=8.6 �m, �n=0.01, r0=3 �m,
�B /�0=1.1, and �=4 cm. Note that, contrary to the predic-
tions of the semiclassical analysis, the beam oscillations are
in both cases smeared out �see Figs. 3�b� and 4�b��. This is
due to quantum dephasing,54 i.e., to the nonequidistant spec-
trum of the quantum pendulum �see, for instance, Ref. 44�,
which produces beam shape distortion and decay of the
oscillations.

IV. LIGHT PROPAGATION IN A TWO-DIMENSIONAL
HELICAL ARRAY: THE CLASSICAL ANALOG OF BLOCH

MOTION IN A MAGNETIC FIELD

As a second example of quantum-optical correspondence,
let us consider light propagation in a periodic two-
dimensional helical waveguide array �see Fig. 1�b��. Owing

to Eq. �5�, the beam propagation problem in the twisted ref-
erence frame �x ,y ,z� is formally analogous to the quantum
mechanical motion of an electron in a two-dimensional crys-
talline potential under the action of an electromagnetic field.
This problem is well known in the solid state physics context
�see, for instance, Ref. 28 and 29�. Assuming that the elec-
tromagnetic potentials vary slowly in space over one lattice
constant and are not too strong such that to neglect interband
transitions, the motion of a Bloch particle in an electromag-
netic field was solved in a rather general and rigorous man-
ner by Luttinger.34 The approach and results of Luttinger’s
theory can be briefly reviewed and translated into the optical
language as follows. Let us assume that the launching beam
at the input plane z=0 excites mainly one band of the array,
and that interband transitions are negligible.55 We can then
expand the field envelope ��r ,z� in series of the Wannier
functions W�r−R
� of the band, displaced at the various lat-
tice sites R
, according to

��r,z� = 

R


f�R
,z�W�r − R
�exp�i
q

�



R


r

A�r�� · dr�� ,

�22�

where the integral of the vector potential in the exponent on
the right hand side of Eq. �22� has to be taken along the
straight line correcting the points R
 and r in the �x ,y� plane.
The evolution equations for the expansion coefficients
f�R
 ,z�, as obtained by substitution of ansatz �22� into Eq.
�5�, read explicitly34

i�
�f�R
�,z�

�z
= 


R


E�R
 − R
��f�R
,z�exp�i�
�
�

+ q��R
��f�R
�,z� , �23�

where
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FIG. 3. �Color online� �a� Numerically computed beam propa-
gation in a helical one-dimensional waveguide array corresponding
to quasiharmonic oscillations around the central waveguide n=0.
The figure shows in a colored scale the evolution along the propa-
gation distance z of the integrated beam intensity distribution
�dy���x ,y ,z��2. An elliptic Gaussian beam, broaden in the trans-
verse x direction, centered at the waveguide n0=5 of the array and
tilted by an angle �0=�B /1.1, has been assumed at the input plane.
The values of other parameters are given in the text. �b� Evolution
of beam center of mass �
�= �x /a� versus propagation distance as
predicted by the full numerical analysis �solid curve� and by the
semiclassical analysis �dashed curve� for �=0.419 mm−1 and �
=0.008 mm−1.
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FIG. 4. �Color online� Same as Fig. 3, but for an exciting Gauss-
ian beam centered at the n0=22 waveguide of the array. In this case,
E�Ec and the beam undergoes Bloch oscillations.
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�

� =
q

�



R


R
�
A�r�� · dr� �24�

are Peierls’ phases and E�R
� the Fourier coefficients of the
energy band dispersion curve E�k�,

E�k� = 

R


E�R
�exp�− ik · R
� . �25�

Note that Eq. �23� represents a generalization of the coupled-
mode equations �Eq. �9�� derived in Sec. II B. The solution to
Eq. �23� is given by f�R
� ,z�= f�r=R
� ,z�, where the con-
tinuous envelope f�r ,z� satisfies the effective Schrödinger
equation,

i�
�f

�z
= E�− i�r −

qA�r�
�

	 f + q��r�f , �26�

with the effective two-dimensional Hamiltonian,34

Hef f�K,r� = E�K� + q��r� , �27�

where K=p /�−qA�r� /� and p�−i��r is the momentum
operator. The semiclassical equations of motion for the mean
values of beam position �r� and beam momentum �p� /� are
given by the Ehrenfest theorem and can be cast in the
form34,56

�
d�r�
dz

= �KE��K�� , �28�

�
d�K�

dz
= qE��r�� + q

d�r�
dz

� B��r�� , �29�

where E=−�r� and B=�r�A are the electric and magnetic
fields.

As an example, consider a square lattice of optical
waveguides, as shown in Fig. 1�b�, with lattice size a. The
lattice sites are R
=naux+mauy, where 
= �n ,m� and n ,m
are arbitrary integers. Considering the lowest band of the
lattice, in the tight-binding approximation the energy disper-
sion curve of the band is given by

E�k� = − 2���cos�kxa� + cos�kya�� , �30�

where ��0 determines the bandwidth. Taking into account
the expression of the scalar and vector potentials given by
Eq. �6�, the coupled-mode equations �Eq. �23�� then take the
explicit form

i
�fn,m

�z
= − ��fn,m+1 exp�− i�n� + fn,m−1 exp�i�n�

+ fn+1,m exp�i�m� + fn−1,m exp�− i�m��

− ��n2 + m2�fn,m, �31�

where � is given by Eq. �14� and where we have set

� =
ns	a2

�
, �32�

and fn,m�z�= f�R�n,m� ,z�. Note that, in absence of Peierls’
phase factors exp�±i�m� and exp�±i�n� that account for the

presence of the magnetic field B, the solution to Eq. �31�
would be separable fn,m=cngm, where cn and gm satisfy the
one-dimensional quantum harmonic oscillator equation on a
lattice �Eq. �12�� considered in the previous section. In the
two-dimensional array, however, the magnetic field ac-
counted for by Peierls’ phase factors cannot be neglected,
and correspondingly, the propagation of a light beam is more
involved as compared to the one-dimensional case since, in
addition to the electric �centrifugal� force, one has to account
for the magnetic �Coriolis� force. At first approximation, the
propagation of the center of mass of a broad light beam as a
result of the interplay between the electric and magnetic
forces can be captured by a semiclassical analysis. From Eqs.
�28�–�30�, one readily obtains

d�n�
dz

= 2� sin��Pn�� , �33�

d�m�
dz

= 2� sin��Pm�� , �34�

d�Pn�
dz

= 2��n� + 4�� sin��Pm�� , �35�

d�Pm�
dz

= 2��m� − 4�� sin��Pn�� , �36�

where we have set �n�= �x /a�, �m�= �y /a�, �Pn�= �aKx�, and
�Pm�= �aKy�. Note that if the magnetic force were neglected,
i.e., if we set �=0 in Eqs. �33�–�36�, the motion of the beam
center of mass in the x and y directions is separable and
follows, in each of the two directions, the dynamical behav-
ior of the classic pendulum described in the previous section.
In particular, for initial conditions corresponding to beam
incidence near the Bragg angle ��Pn���, �Pm���� and for
an initial beam spatial displacement not too far from the
central waveguide n=m=0 of the lattice, one would observe
two-dimensional quasiharmonic oscillations corresponding
to elliptical trajectories of the beam center of mass in the
transverse plane. In presence of a non-negligible magnetic
force, the trajectories deviate from simple elliptical shape
and are more involved �see, for instance, the trajectory
shown in Fig. 6�a�, to be commented below�.

In order to highlight the role played by the magnetic force
in the beam propagation dynamics, we numerically inte-
grated the paraxial wave equation �Eq. �3�� in the rotating
reference frame �x ,y ,z�, assuming the square lattice wave-
guide structure of Fig. 1�b�. Each waveguide in the lattice
has the same Gaussian refractive index profile as in the one-
dimensional array considered in Sec. III. The values of pa-
rameters for the array, such as lattice constant a, array length
L, light wavelength �, etc., are the same as in Sec. III. The
waveguide array is excited at the input plane by a broad
circular Gaussian beam, centered at the waveguide �n0 ,m0�
of the lattice and with a plane wave front tilted with respect
to the �x ,y� plane according to the relation
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��x,y,0� = exp�−
�x − n0a�2 + �y − m0a�2

w0
2 �

�exp�− i�0xx/� − i�0yy/�� , �37�

where w0 is the beam spot size and �0x and �0y are the tilting
angles. To mainly excite the lowest-order band of the square
lattice, the titling angles �0x and �0y are assumed smaller than
the Bragg angle �B. As an example, Fig. 5 shows the detailed
evolution of transverse beam intensity distribution, at succes-
sive propagation distances, as obtained by numerical simula-
tions of Eq. �3� for parameter values w0=2a=17.2 �m, n0
=m0=5, and �0x /�B=�0y /�B=1 /1.1. In the absence of the
magnetic field, for these values of parameters, one would
observe two-dimensional harmonic oscillations of the beam
as in Fig. 3. The results of beam propagation as obtained by
a numerical analysis of the coupled-mode equations �Eq.
�31�� in the single-band and tight-binding approximations
turn out to reproduce very well the complex dynamical evo-
lution shown in Fig. 5. The numerically computed trajectory
of the beam center of mass is shown in Fig. 6 �solid lines�
and compared with the one predicted by the semiclassical
equations �Eqs. �33�–�36�� �dashed lines in the figure�. Note
that at short propagation distances, the numerically com-
puted beam trajectory follows rather well the complex flow-
erlike path predicted by the semiclassical analysis; however,
a damping of the oscillations is clearly visible at longer
propagation distances �see Figs. 6�b� and 6�c�� which is not
captured by the semiclassical analysis. As discussed in Sec.
III for the quantum harmonic oscillator on a lattice, the
damping may be ascribed to quantum dephasing. Note also
that quantum dephasing leads to a strong deformation of the
beam envelope from Gaussian, with a tendency of spiraling.
In any case, the clear flowerlike trajectory followed by the
beam center of mass, shown in Fig. 6�a�, is a clear signature
of the action of the magnetic �Coriolis� force in addition to
the electric �centrifugal� force and resembles the cyclotronic
motion of a classical particle in a uniform magnetic field. In

fact, in the absence of the magnetic field, the path predicted
by the semiclassical analysis would be a segment on the
bisectrix of the �x ,y� plane, represented by the dotted seg-
ment in Fig. 6�a�, whereas in the absence of the electric field,
the beam trajectory would be circular �cyclotronic motion�.
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FIG. 5. �Color online� Beam propagation in a helical square lattice waveguide array. The 21 frames show the transverse intensity beam
distributions, in the �x ,y� plane, at successive propagation distances z indicated in the label of each picture. The size of the square transverse
domain in each plot is 130�130 �m2; the waveguide n=m=0, around which the array is twisted, is placed at the center of the square
domains. Parameter values are given in the text.
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FIG. 6. �Color online� �a� Trajectory of the beam center of mass
in the ��x /a�, �y /a�� plane corresponding to beam propagation in
the 10-cm-long helical waveguide array of Fig. 5. The detailed be-
havior of �x /a� and �y /a� versus propagation distance z is shown in
�b� and �c�. Solid lines refer to full numerical simulations of Eq. �3�,
whereas dashed curves are obtained by solving the semiclassical
equations �Eqs. �33�–�36�� with �=0.419 mm−1, �=0.008 mm−1,
and �=0.1134. In �a�, the dotted segment on the bisectrix is the
trajectory of the two-dimensional harmonic oscillations that one
would observe in the absence of the magnetic force.
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V. CONCLUSIONS

In this work, the classical-quantum analogy between dis-
crete diffraction of light waves in optical waveguide arrays
and quantum dynamics of a Bloch electron in an external
electric field, investigated in recent theoretical and experi-
mental works,3,5–12,15–19,22 has been extended to include the
effects of a magnetic field. In the optical system, the tempo-
ral evolution of the electronic wave packet is mimicked by
the spatial propagation of the optical beam in the waveguide
structure, whereas the effects of electric and magnetic fields
are simulated by noninertial forces acting on optical rays of
geometric origin. As a geometric bent of the waveguide array
along the paraxial propagation direction is capable of simu-
lating the effect of a uniform dc or ac electric field, a possi-
bility theoretically proposed and experimentally demon-
strated in recent publications �see, e.g., Refs. 6, 9, 10, 12,
17–19, and 22�, in this work it has been shown that a wave-
guide array with a helical structure can be used to mimic the
effect of a uniform magnetic field, superimposed to a �repul-
sive� harmonic electrostatic force. The magnetic and electric
forces are provided by the Coriolis and centrifugal forces

experienced by optical rays in the noninertial reference frame
rotating with the twisted array �see Sec. II�. In case of a
one-dimensional helical waveguide array, the magnetic force
does not play any role, and discrete diffraction in the array
exactly mimics the dynamics of a quantum harmonic oscil-
lator on a lattice �see Sec. III�. In two-dimensional helical
arrays, light beam propagation is strongly influenced by the
additional magnetic force, the effect of which is clearly vis-
ible by the appearance of a flowerlike trajectory of the opti-
cal beam in the transverse plane according to the semiclas-
sical motion of a Bloch electron in the combined electric and
magnetic fields �see Sec. IV�. For an experimental observa-
tion of such effects, one needs to manufacture high-quality
arrays of waveguides or fibers with an helical axis. High-
quality two-dimensional arrays of waveguides or fibers with
a straight axis have been already demonstrated in recent
experiments.24–27 The helical structure might be obtained by
twisting a two-dimensional fiber array24 or by directly real-
izing on a glass substrate three-dimensional helically shaped
waveguides using the recently developed femtosecond laser
writing technique, which enables to manufacture periodic
structures of arbitrary two-dimensional geometry.25–27
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