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An extension of the renormalization group method that includes the effect of retardation for the interactions
of a fermion gas is used to reexamine the quantum and classical properties of Peierls-type states in one
dimension. For models of spinless and spin-1

2 fermions interacting with either intra- or intermolecular phonons,
the quantum corrections to the Peierls gap at half-filling are determined at arbitrary phonon frequency. The
nature of quantum-classical transitions is clarified in weak coupling.
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I. INTRODUCTION

The influence exerted by zero point ionic motion on the
stability of the Peierls and spin-Peierls lattice distorted states
enters as a key ingredient in the elaboration of a general
theoretical description of these phases. Quantum fluctuations
are known to cause a downward renormalization of the order
parameter and the corresponding electronic gap, if not their
complete suppression as it is the case for spin-Peierls order.
One is confronted to such situations in low dimensional con-
ductors and insulators for which the characteristic phonon
energy is not only finite in practice, but may exceed by far
the temperature scale at which the lattice instability takes
place. These cases are exemplified in spin-Peierls systems
such as the inorganic compound CuGeO3,1,2 the organic sys-
tem MEM�TCNQ�2,2 and also members of the �TMTTF�2X
series of organic compounds for which nonadiabaticity
emerges as one moves along the pressure scale, giving rise to
quantum criticality for the spin-Peierls transition.3

The first systematic studies of quantum effects on the
Peierls-type distorted states go back in the 1980s with the
world-line Monte Carlo simulations of Hirsch and Fradkin.4,5

These simulations were made on the one dimensional tight-
binding and Holstein electron-phonon models, also known as
the Su-Schrieffer-Heeger6 �SSH� and molecular crystal7

�MC� models. The stability of lattice distorted phases was
determined as a function of the ionic mass and the strength
of electron-phonon coupling. The phase diagrams of the
models were outlined for both spinless and spin-1

2 fermions
at half-filling. These initial works were followed by a variety
of numerical techniques applied to the same models and ex-
tended to include direct interactions between fermions. That
is how density matrix renormalization group �DMRG�,8–10

exact diagonalizations,11 and quantum Monte Carlo12 tech-
niques, to mention a few, have contributed to provide a fairly
coherent picture of the influence wielded by zero point lattice
fluctuations in one dimensional electron-phonon systems.

On the analytical side, these progress were preceded13,14

and accompanied4,5,15–20 by a whole host of approaches ap-
plied to study retardation effects on lattice distortion at inter-
mediate phonon frequencies. The renormalization group
�RG� method15,17,18,21,22 has been one of the routes proposed
to deal with this problem. A variant of the RG method will be

further developed in this work. Our analysis starts with the
effective fermionic formulation of the electron-phonon prob-
lem, which is expressed in terms of a fermion gas in the
continuum with weak retarded interactions. Such a formula-
tion for the SSH and MC models has been investigated long
ago by the two-cutoff scaling method.15 In this approach, the
characteristic bandwidth energy E0 for fermions and the vi-
brational energy �c ��=1� for phonons determine the form
of flow equations for the electronic scattering amplitudes,14

whose singularities signal the creation of gaps and long-
range order at half-filling. Thus, when the electronic mean-
field energy gap �0—emerging below E0 in the adiabatic
weak coupling theory—is larger than �c, quantum correc-
tions are neglected and the flow is equivalent to a ladder
diagrammatic summation compatible with the unrenormal-
ized static scale �0 for the gap. On the other hand, when
�0��c, the scattering amplitudes, though still governed by
the ladder flow down to �c, are considered as effective un-
retarded interactions at lower energies. Below �c, the flow
becomes impregnated by vertex corrections and interference
between different scattering channels. In accord with the
well known results of the one dimensional electron gas
model,23–26 the classical gap �0 is then an irrelevant scale
and the system enters in the nonadiabatic quantum domain
where either a gapless or an ordered massive phase can oc-
cur.

While the two-cutoff RG analysis can provide simple and
reliable criteria to map out the essentials of the quantum-
classical boundaries of the phase diagram for both models in
the weak coupling sector,8,9 it says nothing, on the other
hand, on how the gap varies over the whole phonon fre-
quency range. This is not only of practical importance when
e.g., the theory is confronted to experiment in concrete cases,
but also clearly needed on general grounds when one raises
the question of the nature of quantum-classical transition as a
function of phonon frequency. This drawback is not a weak-
ness of the RG method in general, but rather ensues from the
frequency dependence of couplings, which, in the two-cutoff
scaling approach, barely reduces to the minimum found in
either the adiabatic or nonadiabatic limit. A continuous de-
scription of retardation effects would require that the full
functional dependence of scattering amplitudes on the fre-
quencies be restored, a possibility that can be liken to what
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has been done in two dimensional and quasi-one-
dimensional RG for the functional dependence of scattering
amplitudes on the momentum.27–32 Very recent progress
along these lines shows that it is, indeed, a promising
avenue.33

In this paper, we shall revert to the RG approach as de-
veloped in Refs. 26 and 34, and extend its formulation to
include the frequency dependence of scattering amplitudes
introduced by the electron-phonon interaction. We revisit the
classical and quantum aspects of fermion driven lattice insta-
bilities. Our analysis is done at the one-loop level and covers
the gap determination and the structure of the phase diagram
of the MC and SSH models for both spinless and spin-1

2
fermions. Although the generalization to incommensurate
band filling and situations where the direct Coulomb interac-
tion is included would cause no difficulty, we have restricted
our analysis to retarded interactions at half-filling. In Sec. II,
we introduce the electron-phonon models and recall the deri-
vation of their respective bare retarded interactions in the
framework of an effective fermion gas model. We pay spe-
cial attention to the SSH model in the spinless case in order
to include the momentum dependent umklapp term to the
interaction parameter space, which is so important for long-
range order of this model. In Sec. III, the one-loop level flow
equations for the retarded scattering amplitudes and response
functions are derived for spinless and spin-1

2 fermions. In
Sec. IV, we compute the variations of the gap over the whole
frequency range and discuss the structure of the phase dia-
gram and the nature of the quantum-classical transitions for
the MC and SSH models. We conclude in Sec. V.

II. MODELS AND THE PARTITION FUNCTION

A. Models

The one dimensional electron-phonon models that we
shall study using the RG method are the MC and SSH mod-
els. The MC model describes the coupling of fermions to
optical molecular phonon modes, whereas for the SSH
model, the electron-phonon interaction results from the
modulation of electronic energy by acoustic phonons. In
Fourier space, the two one dimensional model Hamiltonians
can be written in following form:

H = H0 + Hph + HI = �
k,�

��k�ck,�
† ck,� + �

q

�q�bq
†bq +

1

2
�

+ L−1/2 �
k,q,�

g�k,q�ck+q,�
† ck,��bq

† + b−q� . �1�

Here, H0 is the free fermion part and ��k�=−2t cos k is the
tight-binding energy spectrum, with t as the hopping integral
�the lattice constant a=1, and L is the number of sites�. ck,�

†

�ck,�� creates �annihilates� a fermion of wave vector k and
spin �. Hph and HI terms correspond to the free phonon and
electron-phonon interaction parts, respectively, and in which
bq

† �bq� creates �annihilates� a phonon of wave vector q. For
the MC model,7 the intramolecular phonon energy and the
interaction are given by

�q = �0, �2�

g�k,q� = �0/�2M0�0, �3�

which are both independent of the momentum. Here, �0�0
is the amplitude of the electron-phonon interaction on each
molecular site, whereas the frequency �0=�	0 /M0 is ex-
pressed in terms of the elastic constant 	0 and the molecular
mass M0.

For the SSH model,6 the corresponding quantities read

�q = �D�sin
q

2
� , �4�

g�k,q� = i4
�D

�2MD�D

sin
q

2
cos�k +

q

2
� , �5�

where �D=2�	D /MD is the acoustic phonon energy at q
=2kF, namely, at twice the Fermi wave vector kF=
 /2 at
half-filling. MD is the ionic mass and 	D is the constant force
of the one dimensional lattice.

B. Partition function

Following the trace over harmonic phonon degrees of
freedom in the interaction Matsubara time representation of
the grand canonical partition function Z, one can write

Z = Tre e−�H0−�N Trph e−�HphT
 exp�− �
0

�

HI�
�d
�
= Zph Tre e−�H0−�NT
 exp�−

1

2 �
	k,q,�


�
0

� �
0

�

g�k,q�g�k�,− q�D�q,
 − 
��ck+q,�
† �
�ck�−q,��

† �
��ck�,���
��ck,��
�d
�d
� , �6�

where Zph is the partition function of bare phonons. The pho-
non integration introduces an effective “retarded” fermion
interaction mediated by phonons and described by the bare
propagator

D�q,
 − 
�� = e−�q�
−
�� + 2�e��q − 1�−1 cosh��q�
 − 
��
 .

The remaining trace over fermion degrees of freedom can be
recast into a functional integral form
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Z = Zph� � D�*D�eS��*,�
,

=Zph� � D�*D�eS0��*,�
+SI��
*,�
, �7�

over the anticommuting Grassman fields �. In the Fourier
Matsubara space, the free fermionic action is

S0��*,�
 = �
p,k̃,�

�Gp
0�k̃�
−1�p,�

* �k̃��p,��k̃� , �8�

where

Gp
0�k̃� = �i� − �p�k�
−1 �9�

is the bare fermion propagator for k̃= �k ,�
= ±
T , ±3
T , . . . � �kB=1�. The fermion spectrum ��k�−�
��p�k�=vF�pk−kF� is linearized around the right �p= + � and
left �p=−� Fermi points ±kF. The bandwidth cutoff E0

=2EF is twice the Fermi energy EF=vFkF. The integration of
the fermion degrees of freedom becomes ��D�*D�

=���p,�,k̃d�p�
* �k̃�d�p��k̃�.

The interacting part SI of the action reads

SI��*,�
 = −
T

2L
�

	p,k̃,�


g�k̃1, k̃2; k̃3, k̃4��p1,�1

* �k̃1��p2,�2

* �k̃2�

��p4,�2
�k̃4��p3,�1

�k̃3��k1+2,k3+4+G��1+2,�3+4
,

�10�

where momentum conservation is assured modulo the recip-
rocal lattice vector G= ±4kF, allowing for umklapp scatter-
ing at half-filling. In the Fourier-Matsubara space, the inter-
action takes the form

g�k̃1, k̃2; k̃3, k̃4� = g�k1,k3 − k1�g�k2,k4 − k2�D�k̃3 − k̃1� ,

�11�

where

D�k̃3 − k̃1� = − 2
�k3−k1

�k3−k1

2 + �3−1
2

is the bare phonon propagator. We can now proceed to the
“g-ology” decomposition of this interaction. This will be
done separately for fermions with and without spins.

In the first place, for spin-1
2 fermions, we shall consider

the three standard couplings between fermions on opposite
Fermi points

g1��1,�2,�3� � g�±kF,�1, � kF,�2; � kF,�3, ± kF,�4� ,

g2��1,�2,�3� � g�±kF,�1, � kF,�2; ± kF,�3, � kF,�4� ,

g3��1,�2,�3� � g�±kF,�1, ± kF,�2; � kF,�3, � kF,�4� ,

�12�

for retarded backward, forward, and umklapp scattering am-
plitudes, respectively �here, the forward scattering of fermi-

ons on the same branch is neglected�. According to Eq. �3�,
the bare frequency dependent couplings for the MC model
become

gi=1,2,3��1,�2,�3� =
gi

1 + �3−1
2 /�0

2 , �13�

where gi=1,2,3=−�0
2 /	0 is the �M0 independent� attractive am-

plitude. Similarly for the SSH model, one has, from Eq. �5�,

g1,3��1,�2,�3� =
g1,3

1 + �3−1
2 /�D

2 , �14�

where the amplitudes g1,3= �4�D
2 /	D are also MD indepen-

dent. For the SSH model, the bare forward scattering ampli-
tude g2 vanishes for the exchange of zero momentum pho-
non, but it will be generated at lower energy by the
renormalization group transformation.

For spinless fermions, the backward scattering is indistin-
guishable by exchange from the forward scattering, and both
can be combined to define an effective forward scattering,
term of the form

gf��1,�2,�3� � g�±kF,�1, � kF,�2; ± kF,�3, � kF,�4�

− g�±kF,�2, � kF,�1; � kF,�3, ± kF,�4�

=
g2

1 + �3−1
2 /�0,D

2 −
g1

1 + �3−2
2 /�0,D

2 , �15�

where the mass independent amplitudes are g1,2=−�0
2 /	0 for

the MC model, and g1=−4�D
2 /	D and g2=0 in the SSH case.

As for the umklapp scattering in the spinless case, it must
be antisymmetrized with its own exchange term to give the
following two contributions:

1
2 �g�k̃1, k̃2; k̃3, k̃4� − g�k̃2, k̃1; k̃3, k̃4�
k1�k2

k3�k4 � g3��1,�2,�3�

+ gu��1,�2,�3��sin k1 − sin k2��sin k3 − sin k4� . �16�

The first contribution corresponds to a local umklapp term
defined for incoming and outgoing fermions at the Fermi
points. It takes the form

g3��1,�2,�3� =
1

2
�g�±kF,�1, ± kF,�2; � kF,�3, � kF,�4�

− g�±kF,�2, ± kF,�1; � kF,�3, � kF,�4�


=
g3

1 + �3−1
2 /�0,D

2 −
g3

1 + �3−2
2 /�0,D

2 . �17�

This term is present for both models, where g3=−�0
2 /	0 is

attractive for the MC model and g3=4�D
2 /	D is repulsive for

the SSH model. The second term of Eq. �16� is a nonlocal—
momentum dependent—umklapp contribution and is only
present for the SSH model. Actually, this additional contri-
bution follows from the antisymmetrization of Eq. �11� and
the use of Eq. �5� under the permutation of incoming and
outgoing frequencies and momentum �these last, not at the
Fermi points�. Its frequency dependent part reads
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gu��1,�2,�3� = gu� 1

1 + �3−1
2 /�D

2 +
1

1 + �3−2
2 /�D

2 � , �18�

where the amplitude is given by gu=�D
2 /2	D. From Eq. �16�,

it follows that for k1�3��k2�4�, the leading k dependence of
the nonlocal umklapp is ��k1−k2��k3−k4�, which has a scal-
ing dimension of −2. This term is, therefore, strongly irrel-
evant at the tree level, but becomes relevant beyond some
threshold in the electron-phonon interaction. Such umklapp
contributions are well known to play a key role in the exis-
tence of long-range order for interacting spinless
fermions,35,36 as it will show to be the case for the SSH
model.4,8,15

III. RENORMALIZATION GROUP TRANSFORMATION

The renormalization group transformation for the partition
function will follow the one given in Refs. 26 and 34. One
then proceeds, for Z, to the successive partial integration of

fermion degrees of freedom, denoted by �̄�*� having the mo-
mentum located in the outer energy shells �OSs� ±E0���d� /2
above and below the Fermi points for each fermion branch p.
The remaining ��� degrees of freedom are kept fixed. Here,
E0���=E0e−� is the scaled bandwidth at ��0. The integra-

tion proceeds by first splitting the action S→S��* ,�
�+ S̄0

+ S̄I into an inner-shell part at � and the �̄-dependent outer-

shell terms S̄0 and S̄I. Considering S̄I as a perturbation with

respect to the free outer-shell action S̄0, the partial integration
at the one-loop level is of the form

Z �� �
�

D�*D�eS��*,�
�

�� �
OS

D�̄*D�̄eS̄0��̄*,�̄
+S̄I��̄
*,�̄,�*,�


�� �
�

D�*D�

�exp�S��*,�
� + �S̄I�OS +
1

2
�S̄I

2�OS + ¯ � . �19�

Here, the interacting part is made up of three pertinent terms,

i.e., S̄I= S̄I,2
P + S̄I,2

C + S̄I,2
L , for all possibilities of putting simulta-

neously two outer-shell fields in the 2kF electron-hole Peierls

channel �S̄I,2
P � �̄+

*�−
*�̄−�++ �̄+

*�+
*�̄−�−+ ¯ �, the zero mo-

mentum fermion-fermion Cooper channel �S̄I,2
C � �̄+

*�̄−
*�−�+

+ ¯ �, and the Landau channel �S̄I,2
L ��+

*�̄−
*�̄−�++ ¯ �.

The lowest order outer-shell statistical average �S̄I�OS

comes from the Landau part and gives rise to the self-energy
corrections ����� of the one-particle Green function, which

becomes Gp
−1+ i�����. As for the contractions 1

2 �S̄I
2�OS, only

the singular Peierls and Cooper scattering channels are re-
tained; with four fields in the inner shell, these correspond to
corrections to the coupling constants. Both corrections define
the renormalized action S��* ,�
�+d� at the step �+d�.

The evaluation of outer-shell contractions �S̄I�OS for the
self-energy at the one-loop level leads to

�S̄I�OS = i����� �
p,k̃�,�

�p,�
* �k̃��p,��k̃� ,

����� = − 
vF
T

L�
��

�
	k
OS

g̃s���,�,��G−�k,��� . �20�

In the low temperature limit, the flow equation for the self-
energy becomes

������

= �
−�

+� d��

2

�g̃s���,�,��

�E0���/2
��� − �����

��� − �����
2 + �E0���/2
2� ,

�21�

where

g̃s���,�,�� = g̃1���,�,�� − 2g̃2��,��,�� , �22�

for spin-1
2 fermions, and

g̃s���,�,�� = − g̃f��,��,�� �23�

in the spinless case. Here, g̃i�	�
��gi�	�
� /
vF, ���� /��,
and ����=0 at �=0.

A. Renormalization group flow for couplings: Spin-1
2 fermions

The one-loop contractions 1
2 �S̄I

2�OS amount to evaluate the
outer-shell contributions of the Peierls � 1

2 ��SI,2
P �2�OS
 and

Cooper � 1
2 ��SI,2

C �2�OS
 channels. For the MC and SSH models
defined by the initial couplings �13� and �14�, these interfer-
ing contractions lead to the following flow equations:

��g̃1��1,�2,�3� = �
−�

+� d�

2

	− 2g̃1��,�2,� + �3 − �1�g̃1��1,� + �3 − �1,�3�IP��,�3 − �1�

+ g̃1��,�2,� + �3 − �1�g̃2�� + �3 − �1,�1,�3�IP��,�3 − �1�

+ g̃1��1,�,�3�g̃2��2,� + �1 − �3,��IP��,�1 − �3�

− 2g̃3��2,�,�1 + �2 − �3�g̃3��1,� + �3 − �1,�3�IP��,�3 − �1�

+ g̃3��1,�,�3�g̃3�� + �1 − �3,�2,�1 + �2 − �3�IP��,�1 − �3�
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+ g̃3��2,�,�1 + �2 − �3�g̃3�� + �3 − �1,�1,�3�IP��,�3 − �1�

− �g̃2��2,�1,� + �1 + �2�g̃1�− �,�2,�1 + �2 + ��

+ g̃1��1,�2,� + �1 + �2�g̃2�� + �1 + �2,− �,�3�
IC��,�1 + �2�
 , �24�

��g̃2��1,�2,�3�

= �
−�

+� d�

2

	�g̃2��1,� + �2 − �3,��g̃2��,�2,�3� + g̃3��1,� + �2 − �3,��g̃3��,�2,�3�
IP��,�2 − �3�

− �g̃2��1,�2,� + �1 + �2�g̃2�� + �1 + �2,− �,�3� + g̃1��2,�1,� + �1 + �2�g̃1�− �,� + �1 + �2,�3�
IC��,�1 + �2�
 ,

�25�

��g̃3��1,�2,�3� = 2�
−�

+� d�

2

�− 2g̃1��1,� + �3 − �1,�3�g̃3��,�2,� + �3 − �1�IP��,�3 − �1�

+ g̃1��1,�,�3�g̃3�� + �1 − �3,�2,�1 + �2 − �3�IP��,�1 − �3�

+ g̃3��1,�,�3�g̃2�� + �1 − �3,�2,�1 + �2 − �3�IP��,�1 − �3�

+ g̃3��,�2,�3�g̃2�� + �2 − �3,�1,�1 + �2 − �3�IP��,�2 − �3�
 . �26�

The momentum shell Peierls and Cooper loops IP�� ,�� and IC�� ,�� at internal � and their respective external frequency �
are, by using the Green function with self-energy corrections,

IP��,��d� = −

vF

L
�

	k
OS

G+�k + 2kF,� + ��G−�k,�� =
d�

2
E0���

�� − ����
�� + � − ��� + ��
 + 1
4E0

2���

	�� − ����
2 + 1
4E0

2���
	�� + � − ��� + ��
2 + 1
4E0

2���
 ,

�27�

IC��,��d� =

vF

L
�

	k
OS

G+�k,� + ��G−�− k,− �� =
d�

2
E0���

�� − ����
�� − � + ��� − ��
 + 1
4E0

2���

	�� − ����
2 + 1
4E0

2���
	�� − � + ��� − ��
2 + 1
4E0

2���
 . �28�

B. Renormalization group flow for couplings: Spinless fermions

Owing to the nature of umklapp scattering which in the spinless case is different for the MC and SSH models, we shall
proceed separately for each model. Thus, for the MC model with a local umklapp term, the outer-shell contractions 1

2 ��SI,2
P �2�OS

and 1
2 ��SI,2

C �2�OS for the Peierls and Cooper channels allow us to write

��g̃f��1,�2,�3� = �
−�

+� d�

2

	�g̃f��1,� + �2 − �3,��g̃f��,�2,�3� + g̃3��1,� + �2 − �3,��g̃3��,�2,�3�
IP��,�2 − �3�

− g̃f��1,�2,� + �1 + �2�g̃f�� + �1 + �2,− �,�3�IC��,�1 + �2�
 , �29�

��g̃3��1,�2,�3� = 2�
−�

+� d�

2

�g̃3��1,�,�3�g̃f�� + �1 − �3,�2,�1 + �2 − �3�IP��,�1 − �3�

+ g̃3��,�2,�3�g̃f�� + �2 − �3,�1,�1 + �2 − �3�IP��,�2 − �3�
 , �30�

which are subjected to the initial conditions �15� and �17� of the MC model.
The flow equations for the SSH model present an important difference because of the additional k-dependent umklapp term

�18�. At variance with gf and g3, this coupling acquires a nonzero scaling dimension at the tree level. Therefore, the momen-
tum, energies, and fields must be rescaled after each partial trace operation in Eq. �19�, which restores the original bandwidth
cutoff. Thus, following the outer-shell integration, one applies the transformations k�=sk, ��=s�, ��*��=s−1/2��*�, T�=sT,
L�=s−1L, and �D� =s�D �MD� =s−2MD; the spring constant 	D is kept fixed�, where s=ed�. This gives the scaling transformations
for the outer shell corrected couplings, namely, g̃f ,3� �	��
�=s0g̃f ,3�	�
� for the local part and g̃u��	��
�=s−2g̃u�	�
� for the
nonlocal part. The flow equations for the SSH model then become

QUANTUM VS CLASSICAL ASPECTS OF ONE… PHYSICAL REVIEW B 76, 195115 �2007�

195115-5



��g̃f��1,�2,�3� = �
−�

+� d�

2

	�g̃f��1,� + �2 − �3,��g̃f��,�2,�3� + g̃3��1,� + �2 − �3,��g̃3��,�2,�3�

+ g̃u��1,� + �2 − �3,��g̃3��,�2,�3� + g̃3��1,� + �2 − �3,��g̃u��,�2,�3�

+ g̃u��1,� + �2 − �3,��g̃u��,�2,�3�
IP��,�2 − �3�

− g̃f��1,�2,� + �1 + �2�g̃f�� + �1 + �2,− �,�3�IC��,�1 + �2�
 , �31�

��g̃3��1,�2,�3� = 2�
−�

+� d�

2

�g̃3��1,�,�3�g̃f�� + �1 − �3,�2,�1 + �2 − �3�IP��,�1 − �3�

+ g̃3��,�2,�3�g̃f�� + �2 − �3,�1,�1 + �2 − �3�IP��,�2 − �3�
 , �32�

��g̃u��1,�2,�3� = − 2g̃u��1,�2,�3� + 2�
−�

+� d�

2

�g̃u��1,�,�3�g̃f�� + �1 − �3,�2,�1 + �2 − �3�IP��,�1 − �3�

+ g̃u��,�2,�3�g̃f�� + �2 − �3,�1,�1 + �2 − �3�IP��,�2 − �3�
 , �33�

which are subjected to the initial conditions �15�, �17�, and
�18�.

C. Response functions

Staggered 2kF density-wave and zero pair momentum su-
perconducting susceptibilities can be computed by adding a
set of linear couplings to composite fields 	h�
 in the bare
action at �=0. This gives the source field term

Sh��*,�
 = �
�,�

� �
�p,M

h�p

M ���z�p

M ��,� + ��O�p

M*��,��

+ �
�c

h�c
���z�c

�− �,� + ��O�c

* ��,�� + c.c.� ,

�34�

where z�p

M and z�c
are the renormalization factors of the cor-

responding source fields, with z�c�p�

�M� =1 for the boundary con-

ditions at �=0. For spin-1
2 fermions, we shall focus on the

2kF susceptibilities for “site” M =+ and “bond” M =− charge
�CDW, BOW: �p=0� �where CDW denotes charge density
wave and BOW denotes bond order wave� and spin
�SDWx,y,z, BSDWx,y,z: �p=1,2,3� density-wave correlation
�where SDW denotes spin density wave and BSDW denotes
bond-spin density wave� of the Peierls channel. The corre-
sponding composite fields are

O�p

M ��,�� = 1
2 �O�p

��,�� + MO�p

* ��,− ��
 , �35�

O�p
��,�� =�T

L
�
k,��

�−,��k − 2kF,� − ����p

���+,�
* �k,�� .

�36�

In the Cooper channel, we consider the uniform supercon-
ducting singlet �SS: �c=0� and triplet �TSx,y,z: �c=1,2 ,3�
susceptibilities. The corresponding composite fields at zero
pair momentum are given by

O�c
��,�� =�T

L
�
k,��

�−,��− k,− � + ����c

���+,��k,�� .

�37�

For both channels, �0=1 and �1,2,3=�xyz are the Pauli matri-
ces.

In the case of spinless fermions, only the 2kF site CDW
and BOW susceptibilities survive with

O�p

M ��,�� =
1

2
�T

L
�

k

	�−�k − 2kF,� − ���+
*�k,��

+ M�+
*�k + 2kF,� − ���−

*�k,��
 . �38�

In the superconducting channel, only one susceptibility is
considered with the corresponding pair field

O�c
��,�� =�T

L
�

k

�−�− k,− � + ���+�k,�� . �39�

Adding Eq. �34� to the action S in Eq. �7�, the partial
integration �19� at the one-loop level yields additional outer-
shell contributions that correct Sh and which gives the recur-
sion relation

Sh��*,�
�+d� = Sh��*,�
� + �S̄hS̄I�OS + 1
2 �S̄h

2�OS + ¯ .

�40�

The second term �S̄hS̄I�OS is proportional to O�h�
* and its

complex conjugate, and leads to the flow equations for the
renormalization factors z� of the pair vertex parts. In the
density-wave channel, its evaluation leads to
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��z�p

M ��,� + ��

= �
−�

+� d��

2

	z�p

M ���,�� + ��

��g̃�p
��,��,� + �� + MG̃3��,�� + �,���
IP���,��
 ,

�41�

where

g̃�p=0��,��,� + �� = g̃2���,�,� + �� − 2g̃1��,��,� + �� ,

g̃�p�0��,��,� + �� = g̃2���,�,� + �� ,

G̃3��,�� + �,��� = g̃3��,�� + �,���

− 2g̃3��,�� + �,� + �� , �42�

for fermions with spins, and

g̃�p
��,��,� + �� = g̃f��,��,� + �� ,

G̃3��,�� + �,��� = − g̃3��,�� + �,��� �43�

in the spinless case. Similarly, for the superconducting chan-
nel, one gets

��z�c
��,− � + �� = �

−�

+� d��

2

�z�c

���,− �� + ��

�g̃�c
��,��,��IC���,��
 , �44�

where

g̃�c=0��,��,�� = − g̃1�� − �,�,��� − g̃2��,� − �,��� ,

g̃�c�0��,��,�� = g̃1�� − �,�,��� − g̃2��,� − �,���

�45�

for spin-1
2 fermions, and

g̃�c
��,��,�� = − g̃f��,� − �,��� �46�

in the spinless case.
As a result of the partial trace integration, the last term of

Eq. �40�, which is proportional to h�c�p�

�M�*h�c�p�

�M� , is generated

along the flow and corresponds to the susceptibility in each
channel considered, namely,

����c�p�
�M� ��� = �
vF�−1�

−�

+� d�

2


���z�c�p�
�M� ���,� + ���2�2s + 1�IC�P���,��
 ,

�47�

which has been defined positive ���c�p�

�M� ���=0 at �=0
 and

where s is the spin.
We close this section by a digression on the numerical

aspects associated with the solution of the above equations.

Their numerical evaluation makes use of patches in the fre-
quency manifold. The frequency axis is discretized into a
total of 15 subdivisions or patches between the maximum
values �max= ±1.5EF, which serve as bounds of integration
for the frequency. The interaction is taken as constant over
each patch, where the loop integrals are done exactly. In
order to reduce the number of frequency dependent coupling
constants, we take advantage of certain symmetries, namely,
the time inversion, left-right Fermi point symmetry, and the
exchange symmetry between the incoming ��1 ,�2� and out-
going ��3 ,�4=�1+�2−�3� frequencies. The last symmetry
antisymmetrizes the initial conditions for the spinless fer-
mion case, especially for the umklapp process g̃3. We, thus,
have to calculate 932 different functions for each g̃i. The
same procedure is used to calculate the response functions
and susceptibilities. The flow equations are numerically
solved until the most singular susceptibility diverges with the
slope 
vF����

M =106, which determines the critical value �c
at which the algorithm is stopped.

IV. RESULTS

A. Adiabatic limit

The results at nonzero-phonon frequency will be com-
pared to those of the adiabatic limit where �0�D�→0. In this
limit, the initial conditions given in Sec. II for both models
show that either �3−1→0 or �3−2→0, indicating that no
phonon exchange between fermions at finite frequency is
possible. In the spinless case, the gf coupling Eq. �15� re-
duces to its backward scattering part. Therefore, only close
loops contribute to the renormalization of both the coupling
constants, susceptibilities, and one-particle self-energy �; the
latter being vanishingly small in the adiabatic limit.

The flow equations for fermions with s=1/2 �s=0�
�24�–�26� �Eqs. �29� and �30�
 can be recast into equations
for g1 and g3, which become independent of frequencies

���g̃1 ± g̃3� = − �2s + 1��g̃1 ± g̃3�2/2. �48�

The solution is obtained at once

g̃1��� ± g̃3��� =
g̃1 ± g̃3

1 + 1
2 �2s + 1��g̃1 ± g̃3��

, �49�

which presents a singularity at �0=−2��2s+1��g̃1± g̃3�
−1 for
combinations of bare attractive couplings g̃1± g̃3 found in the
MC ��� and SSH ��� models �Eqs. �13�–�16�
. This signals
an instability of the fermion system and the formation of a
Peierls state with a—mean field �MF�—gap �0��2EFe−�0�,
which takes the BCS form15

�0 = 2EF exp�− 2/�2s + 1��g̃1 ± g̃3�
 . �50�

This singularity is present in the pair vertex factors z�p=0
M at

�=0 in either CDW or BOW channel depending on the
model. In the adiabatic limit, this can be seen by retaining
only closed loops in Eq. �41�, where for frequency indepen-
dent couplings, z�p=0

M becomes, in turn, independent of � and
obeys the following flow equation at �=0:
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�� ln z�p=0
M = − �2s + 1��g̃1 + Mg̃3�/2. �51�

With the help of Eq. �49�, this is readily solved to lead the
simple pole expression z�p=0

M =�1+ 1
2 �2s+1��g̃1+Mg̃3��
−1.

From Eq. �47�, the 2kF susceptibility takes the form


vF��p=0
M ��� =

�

1 + 1
2 �2s + 1��g̃1 + Mg̃3��

. �52�

The expected simple pole divergence at �0 then occurs in the
site CDW �M = + � response for the MC model, and in the
BOW �M =−� response for the SSH model. No enhancement
is found for the susceptibilities in the superconducting chan-
nel.

Strictly speaking, the above adiabatic MF results hold for
models where only momentum independent couplings are
retained. In the case of the SSH model for spinless fermions,
however, the adiabatic limit of Eqs. �31�–�33� does not coin-
cide with the MF result due to the presence of gu. In the
adiabatic limit, the flow equations read

��g̃1 = −
1

2
g̃1

2 −
1

2
�g̃u + g̃3�2,

��g̃3 = − g̃3g̃1,

g̃u��� = g̃u exp�− 2�
0

�

�1 + g̃1���
d�� . �53�

The solution of these equations shows that the value of the
adiabatic SSH gap �0 for spinless fermions is slightly re-
duced compared to the MF prediction �50�, where gu is ab-
sent.

B. Molecular crystal model

1. Spinless case

The solution of the flow equations �29� and �30� for the
MC model in the spinless case �s=0� is obtained by using the
antisymmetrized boundary conditions given in Eq. �15� and
�16� at �=0. The typical flow of susceptibilities in the Peierls
and Cooper channels at an intermediate phonon frequency is
shown in Fig. 1. Like for the MF result �52�, the singularity
is found to occur solely in the site �M = + � CDW suscepti-
bility at �c. There is no noticeable enhancement of other
responses including those of the superconducting channel.
The singularity signals the existence of a Peierls gap �
��2EFe−�c� with an amplitude that is reduced at nonzero �0

compared to its adiabatic value �0 �Eq. �50�
. Figure 2 shows
this renormalization as a function of the ratio �0 /�0 of the
phonon frequency to the MF gap �here, the molecular mass
M0 is varied, while the spring constant 	0 is kept fixed�. For
small �0 /�0, the gap is weakly renormalized and remains
close to its classical value. However, when the ratio �0 /�0
approaches unity, the gap undergoes a rapid decrease due to
quantum fluctuations. This results from the growth of vertex
corrections and interference between Peierls and Cooper
scattering channels. These fluctuations signal a change of

regime �defined at the point of a change of curvature for the
gap profile� that we refer to as a quantum-classical crossover
for the gap.

The remaining gap tail terminates with a transition to a
�=0 disordered state at a threshold frequency slightly above
�0. The ratio �0 /�0 at which the transition occurs is weakly
dependent on the initial g̃i for the range of coupling covered
by the present RG. This result corroborates the old two-
cutoff scaling arguments for the disappearance of an ordered
state at �0��0,15 and agrees with the DMRG9 and Monte
Carlo5 results for the MC model. The nature of the transition
to the quantum gapless state is also of interest. We follow the
notation of Ref. 8 and define the coupling �� 1

2
��g̃1��0EF.

We see from Fig. 3 that the variation of the gap �, close to
the critical �c at which the transition occurs, follows closely

FIG. 1. �Color online� Typical variation of the susceptibilities
with the scaling parameter � for the MC model for spinless fermi-
ons �s=0, right� and spin-1

2 fermions �s=1/2, left�. The locus of the
singularity at �c gives the value of the gap �=E0��c�.

FIG. 2. �Color online� The site CDW gap of the MC model for
spinless �s=0� and spin-1

2 �s=1/2� fermions as a function of the
phonon frequency and for different couplings. Both quantities are
normalized to the MF gap.
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the Baxter formula for a Kosterlitz-Thouless �KT�
transition37

� �
2EF

��2 − �c
2
e−b/��2−�c

2
, �54�

where b is a positive constant. This behavior found in the
weak coupling range is similar to the one obtained by the
DMRG method and perturbative expansion in strong
coupling.5,9

For phonon frequency above the threshold, the new state
is expected to be a Luttinger liquid.9,15 This is seen at the
one-loop RG level from the existence of a power law behav-
ior of the site CDW susceptibility, namely, ��p=0

+ ���
��E0���
−�. The latter takes place only above some charac-
teristic �* �Fig. 4� that depends on �0 and which decreases
with the strength of the coupling. Nonuniversality is also

found for the Luttinger liquid exponent � for E0���
�E0��*�. Following the one dimensional theory,38,39 the ex-
ponent can be written as �=2−2K�, where K� is the stiffness
parameter for the density degrees of freedom that enters in
the bosonization scheme. Within the limitation of a weak
coupling theory, it is therefore possible to determine the de-
pendence of K� on interaction and phonon frequency. As
shown in Fig. 5, the one-loop RG results confirm the non-
universal character of the stiffness parameter. Going down
on the frequency scale, K� is sizably reduced at the approach
of the KT transition, where retardation effects have a strong
influence on the properties of the Luttinger liquid parameter.
We find that K� stays above the minimum value of 1

2
known for isotropic spin chain in the gapless
domain39,42—following the Wigner-Jordan transformation of
spins into spinless fermions. On the other hand, K� is only
weakly dependent on the couplings at large �0, where it
tends to the nonadiabatic—coupling independent—value K�

=1 at �0→�. Recall that the initial couplings of the MC
model �Eqs. �15� and �17�
 vanish in this limit, and the sys-
tem is equivalent to a noninteracting Fermi gas.

From the variation of the critical coupling �c with the
phonon frequency �0, one can construct the phase diagram
of Fig. 6. The phase boundary between the insulating and
metallic Luttinger liquid states is found to follow closely a
power law dependence of the form �c��0

�, with the expo-
nent ��0.7. This feature captured by a one-loop calculation
is analogous to the quantum-classical boundary of the phase

x

x

x x x

x

FIG. 3. �Color online� The site CDW �left� and BOW �right�
gaps as a function of the critical parameter of the KT transition to a
Luttinger liquid for the MC and SSH models in the spinless case.
The dotted line is a least squares fit to the Baxter formula Eq. �54�.

FIG. 4. �Color online� Typical power law divergence of the site
CDW �left� and BOW �right� susceptibilities at ���* in the gapless
Luttinger liquid regime.

330

FIG. 5. �Color online� One-loop calculation of the density stiff-
ness parameter K� of the MC �upper panel� and SSH �lower panel�
models in the spinless case as a function of the initial coupling �g̃1�
and for different phonon frequencies. The continuous line in the
lower panel corresponds to the nonadiabatic one-loop result K�=1
− 1

2 � g̃1�.
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diagram of the one dimensional XY spin-Peierls model de-
termined by the DMRG method.8 The latter model is also
characterized by a zero temperature KT transition as we will
see for the spinless SSH model in Sec. IV C.

2. Spin- 1
2 fermions

The results for the MC model with spin-1
2 fermions �s

=1/2� ensue from the solution of Eqs. �24�–�26� and the
computation of the susceptibilities �47�, from Eqs. �41�, �42�,
�44�, and �45�. Like spinless fermions, the singularity is
found in the M =+ site CDW susceptibility at finite �c �Fig.
1�. The corresponding value for the gap � is reduced with
respect to the adiabatic mean-field result �0 in Eq. �50�. The
onset of quantum fluctuations due to growing interference
between different scattering channels is again responsible for
a quantum-classical crossover when �0 approaches �0,
where there is a change of curvature in the gap profile, but
the gap never goes to zero. It remains finite at large phonon
frequencies and is dependent on the bare attractive amplitude
g̃i. At large frequency, the singularity at �c occurs essentially
independently for spin �g̃1�	�
�
 and charge �2g̃2�	�
�
− g̃1�	�
� , g̃3�	�
�
 combinations of couplings at zero Peierls
and Copper frequencies. As a function of �0, the system then
undergoes a crossover from a renormalized classical Peierls
state toward a quantum but still site-CDW ordered state, in
which both spin and charge degrees of freedom are gapped
due to attractive couplings and the relevance of umklapp
processes at arbitrarily large but finite �0. An ordered state is
well known to be found at large �0 in Monte Carlo
simulations.5 This quantum-classical crossover marks the on-
set of a decoupling between spin and charge degrees of free-
dom, a separation found in the Luther-Emery model.23,38,40

It is worth noting that in the purely nonadiabatic case
where �0 is strictly infinite, the initial couplings �13� are
independent of frequency and satisfy the conditions g̃1�0
and g̃1−2g̃2= �g̃3�, which coincide with those of an attractive
Hubbard model. Its exact solution is well known to give a

disordered ground state. At the one-loop level, the RG equa-
tions �24�–�26� at zero external frequencies show, indeed,
that g̃1 alone is singular, with a gap in the spin sector only.
Umklapp processes are irrelevant and charge degrees of free-
dom remain gapless, consistent with the absence of long-
range order at �0=�.23–25,41 Working at arbitrarily large but
finite �0 introduces a finite retardation effect that is sufficient
to make initial conditions deviate from those of the attractive
Hubbard model. This restores the relevance of the umklapp
term in the charge sector and, in turn, long-range order.5

C. Su-Schrieffer-Heeger

1. Spinless case

We turn now to the study of the SSH model. In the spin-
less case, the presence of the nonlocal umklapp term gu in-
troduces some qualitative differences with the MC model,
for which this term is absent. Thus, the solution of Eqs.
�31�–�33�, �41�, �44�, and �47� in the spinless case shows that
for small �D /�0, the BOW susceptibility ��p=0 ,M =−� is the
only singular response that leads to a gap at zero temperature
�Fig. 7�.

As one moves along the �D /�0 axis �along which the
mass MD varies and 	D is constant�, one finds again from
Fig. 8 that for �D /�0�0.1, the gap is weakly renormalized
compared to its adiabatic classical value computed from Eq.
�53�. As the ratio increases further, there is a strong down-
ward renormalization for the gap, which undergoes a
quantum-classical crossover. However, at variance with the
MC model, the ratio �D /�0 at which there is a change of
curvature in the variation of the gap shows a stronger depen-
dence on the amplitude of the initial coupling—parametrized
by the backward scattering part �g̃1� of g̃f in Eq. �15� �tri-
angles, inset of Fig. 8�.

At higher phonon frequency, we come up against a critical
value where the gap completely vanishes and the system en-
ters in a metallic state at zero temperature. This critical ratio
is also coupling dependent �squares, inset of Fig. 8�. In the

FIG. 6. Phase diagram of MC �left� and SSH �right� models for
spinless fermions. The full squares are the RG results and the con-
tinuous lines are the power law �c

2��0,D
1.4 of the critical coupling of

the KT transition on the phonon frequency.

FIG. 7. �Color online� Typical variation of the susceptibilities
for the SSH model as a function of the scaling parameter � for
spinless fermions �s=0, right� and spin-1

2 fermions with spins �s
=1/2, left�.
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nonadiabatic limit when ��D /�0�−1→0, the critical coupling
heads on to the one-loop limiting value �g̃1

c�=1, which can be
extracted directly from Eq. �33� in this limit. A frequency
dependent threshold �g̃1

c� for the existence of an ordered state
is a direct consequence of the relevance of the nonlocal um-
klapp term g̃u in Eq. �33�, which differs markedly from the
MC model and simple two-cutoff scaling arguments, espe-
cially at large phonon frequency. The phase diagram shown
in the inset of Fig. 8 can then be obtained for the spinless
SSH model. A critical line for ��D /�0�−1 vs �g̃1

c� can be
drawn, separating the quantum disordered state from BOW
order. The singularity of the BOW susceptibility in the quan-
tum domain is shown in Fig. 7.

The numerical solution of the flow equations is not car-
ried out easily in the limit of very small couplings owing to
the large number of frequencies needed to reach the desired
accuracy. Our results, obtained down to �g̃1�=0.1, tend to
show, however, that the critical line �g̃1

c� extrapolates to zero
at the finite value of the ratio �0 /�D�1.1, which joins the
value obtained from the two-cutoff scaling arguments.15

Above this value, an ordered BOW state would then be
found at any finite coupling. When the ratio finally crosses
the quantum-classical line, the system enters in a Peierls
BOW state similar to the one of the classical adiabatic limit.
This quantum-classical boundary, clearly identified in Fig. 8
as a change of regime for the gap, is consistent with the one
found by DMRG for the XY spin-Peierls chain �following the
conversion of spins into spinless Wigner-Jordan fermions�.8

As one moves from the quantum massive domain toward
the critical line at higher frequency, the gap collapses to zero.
Following the example of what has been done for the MC
model, we follow the notation of Ref. 8 and define �c

� 1
2
��g̃1

c ��DEF as the critical coupling where the gap van-
ishes. We, thus, find that close to the transition, � decreases

to zero according to the Baxter expression Eq. �54� for a KT
transition �Fig. 3�. This result which carries over the whole
critical line at finite frequency is in accord with DMRG re-
sults obtained on the spin-Peierls XY �Ref. 8� and XXZ �Ref.
10� chains. For the latter model, a KT transition was also
found by Citro et al.,18 using the RG method in the bosoniza-
tion framework. In the same vein, Kuboki and Fukuyama
also showed by perturbation theory that retardation is
equivalent at large frequency to frustration in the spin
interactions,16 which beyond some threshold is well known
to promote a KT transition to a dimerized state.42

As shown by the phase diagram of Fig. 6, the critical
coupling is found to follow the power law variation �c
��D

� , with ��0.7, over a sizable range of the phonon fre-
quency �deviations are found in the limit of small fre-
quency�. Such a power law agrees with the one found in
DMRG for the XY spin-Peierls chain,8 and is similar to the
one obtained in the MC case for spinless fermions.

As regards to the nature of the gapless liquid state in the
disordered region, the situation is qualitatively similar to the
MC model. We find the presence of a nonuniversal power
law divergence for the BOW response function ��p=0

− �2kF�
� �E0���
−� below some characteristic energy scale E0��*�
�Fig. 4�, which indicates the presence of a Luttinger liquid.
The weak coupling determination of the charge stiffness
parameter38 K���=2−2K�� at the one-loop level is shown in
Fig. 5. By comparison with the MC model, K� is smaller and
shows a stronger variation with the strength of the coupling
even for large phonon frequencies. This is so, for in the
nonadiabatic limit, the initial conditions for both g̃f�	�
� and
g̃u�	�
� are nonzero and a massive phase remains possible. In
this limit, the RG results join the one-loop relation K�=1
− 1

2 � g̃1� �continuous line, lower panel of Fig. 5�, which is
known to be a good approximation to the exact result.37,43 It
is worth noticing that although the transition remains of in-
finite order for any path that crosses the critical line from the
massive sector to the Luttinger liquid one, the characteristics
of the latter phase, through its exponent � �or its stiffness
coefficient K��, is strongly dependent on the retardation ef-
fect. With the caveat of the limited accuracy of one-loop
calculations for sizable �, the present results would indicate
that except for the domain of large frequency, K� penetrates
deeply into the “Ising sector,” where K��1/2 at the ap-
proach of the critical line.

A similar downward renormalization of K� by retardation
effects has also been found by Citro et al.,18 using the self-
consistent harmonic approximation and the RG method in
the bosonization frame for the XXZ spin model of the spin-
Peierls instability. When the spins are converted into fermi-
ons through a Wigner-Jordan transformation, the properties
of this model are encompassed by the flow equations
�31�–�33� following a redefinition of the initial conditions
�15�–�18�.

2. Spin- 1
2 fermions

The results for the SSH model with spin-1
2 fermions are

obtained from the solution of Eqs. �24�–�26� using the initial
conditions �14�. The computation of the susceptibilities �47�

FIG. 8. �Color online� The BOW gap normalized to its adiabatic
value as a function of the ratio of the phonon frequency and the
adiabatic gap for the SSH model for spinless fermions �continuous
lines, left to right: red �curves 1–5�, �g̃1 � =0.1, 0.4, 0.6, 0.7, and 0.9
��g̃1

c�; blue �curves 6–8�, �g̃1 � =1.1, 1.15, and 1.2 ��g̃1
c�
 and spin-1

2
fermions �dotted lines, from bottom to the top: �g̃1 � =0.5, 0.7, and
0.8�. Inset: Phase diagram of the spinless SSH model. Quantum
BOW order to gapless Luttinger liquid �LL� transition �squares�,
and the quantum-classical crossover for the BOW order state
�triangles�.
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using Eqs. �41�, �42�, �44�, and �45� shows that the singular-
ity and the formation of the gap remain as expected in the
BOW channel �Fig. 7�. As a result of growing interference
between the Peierls and Cooper channels and vertex correc-
tions in the scattering amplitudes, the reduction of the BOW
classical gap as a function of the frequency �Fig. 8� is less
pronounced than for the MC model. This reduction then
evolves to a quantum-classical crossover at �0��0. Follow-
ing the example of the MC model, the system remains mas-
sive for both spin and charge, and is, thus, BOW ordered in
the quantum regime. The amplitude of the gap at large fre-
quency is, however, bigger. As a matter of fact, in the non-
adiabatic case where �D is infinite, the initial couplings �14�
are frequency independent, but at variance with the MC
model, they satisfy the inequalities g̃1�0, g̃1� g̃3. These are
compatible with the Luther-Emery conditions for a mass in
both spin and charge sectors.23,40,44

V. CONCLUSION

In this work, we used an extension of the RG approach to
a one dimensional fermion gas that includes the full influ-
ence of retardation in the interactions induced by phonons.
Within the inherent bounds of a weak coupling theory, the
method has been put to the test and proved to be rather
satisfying, providing a continuous description of the gap as a
function of the phonon frequency for electron-phonon mod-
els with either spinless or spin-1

2 fermions. Generally speak-
ing, the results brought out the importance of the static scale
�0 of the adiabatic theory for the occurrence of a quantum-
classical crossover for the gap as one cranks up the phonon
frequency, confirming in passing the old arguments of the
two-cutoff scaling approach. The RG calculations allowed us
to study the nature of the transition to the gapless liquid
phase for spinless fermions. For both the MC and SSH mod-
els, this transition was found to be of infinite order, which is
consistent with existing numerical results.

The RG method for the SSH model required to take into
account the momentum dependent umklapp term. The latter
is responsible for the continuation of the infinite order criti-
cal line to an arbitrarily large phonon frequency, where it
connects to the well known results of frustrated spin chains.
The existence in the gapless phase of a sharp power law
behavior of 2kF density response at low energy showed that
this phase can be identified with a Luttinger liquid. The non-

universal variation of the power law exponent with the
strength of interaction and retardation was obtained at the
one-loop level. Retardation effects induce a downward renor-
malization of the Luttinger parameter K� for both models in
the disordered phase. However, this renormalization is appar-
ently much stronger in the SSH case, where K� goes under its
limiting 1

2 value known for the anisotropic spin chain in the
gapless regime.

While this work did not dwell on the combined influence
of direct and retarded interactions on Peierls-type instabili-
ties, Coulomb interaction can be actually incorporated with-
out difficulty following a mere change of the boundary con-
ditions for the RG flow of scattering amplitudes. A further
extension of the method that includes both the frequency and
momentum functional dependence of the scattering ampli-
tudes would be also worthwhile. As was shown very recently
by Tam et al.,33 in the context of the one dimensional MC-
Hubbard model, and by Honerkamp et al.,33 in the two di-
mensional situation, the difficulties inherent to such an ex-
tension proved not insurmountable. A RG implementation of
this sort for interacting quasi-one-dimensional electron sys-
tems would be quite desirable. It would yield a more com-
plete description of electronic phases found in correlated ma-
terials like the organic conductors and superconductors. The
coupling of electrons to both intramolecular and intermo-
lecular �acoustic� phonon modes are, in practice, both
present in these systems, and their characteristic energies are
often close to the energy scales associated with the various
types of long-range order observed.45 These systems then fall
in the intermediate phonon frequency range considered in
this work, and for which retardation effects may play a role
in the structure of their phase diagram. The impact of re-
tarded interactions on electronic states found in quasi-one-
dimensional conductors is currently under investigation.
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