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The two-band Hubbard model is used to analyze a possibility of a nonuniform charge distribution in a
strongly correlated electron system with two types of charge carriers. It is demonstrated that in the limit of
strong on-site Coulomb repulsion, such a system has a tendency to phase separate into the regions with
different charge densities even in the absence of magnetic or any other ordering. This tendency is especially
pronounced if the ratio of the bandwidths is large enough. The characteristic size of inhomogeneities is
estimated, accounting for the surface energy and the electrostatic energy related to the charge imbalance.
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I. INTRODUCTION

The phase separation is commonly considered as an in-
herent property of strongly correlated electron systems.1

Usually, this phenomenon is treated as a result of a coexist-
ence and competition of different kinds of ordering �mag-
netic, charge, orbital�.2,3 The most widely discussed type of
the phase separation is a formation of nanoscale inhomoge-
neities such as ferromagnetic metallic droplets in an insulat-
ing antiferromagnetic material arising due to the self-
trapping of charge carriers.4 Such type of phase separation is
characteristic of the doped manganites. Another type of the
nanoscale inhomogeneity is the modulation of the electron
density due to antiferromagnetic correlations, which is con-
sidered as possible mechanism of the phase separation ob-
served in superconducting cuprates.5,6

Nevertheless, the phase separation can manifest itself
even without some specific type of ordering, e.g., if the sys-
tem contains different types of charge carriers. The simplest
illustration of such a behavior gives the Falicov-Kimball
model,7 which is often used as a toy model for heavy-
fermion compounds. This model describes the system of itin-
erant and localized electrons with a strong on-site Coulomb
repulsion. The numerical simulations of this model demon-
strated an inhomogeneous charge density distribution at
some relation between the width of itinerant electron band
and the distance between the localized level and the center of
the band.8 The competition between metallicity and localiza-
tion in a similar system with magnetic interactions was stud-
ied in Refs. 9 and 10 with an emphasis on the phase diagram
of magnetic oxides such as manganites. The system with a
band and localized level is a limiting case of a much more
common situation of two bands with different widths.

In this paper, we use a two-band Hubbard model for the
description of a strongly correlated electron system with two
types of charge carriers. We demonstrate that the phase sepa-
ration in this system arises even without any ordering if the
ratio of the bandwidths is large enough. In Sec. II, we write
out the Hamiltonian of the model. In Sec. III, we study the
electron structure of a homogeneous state. In Sec. IV, we
analyze the possibility of the phase separation and estimate
the size of inhomogeneities, accounting for the long-range
electrostatic interaction and surface energy. In Sec. V, we
discuss the obtained results.

II. MODEL

Let us consider a strongly correlated electron system with
two bands a and b of different widths. Let the first band, a,
be wider than the second one, b. Such a system could be
described by the following Hubbard Hamiltonian:

H = − �
�ij��,�

t�ai��
† aj�� − ��

i�
nib� − ��

i�,�
ni��

+
1

2 �
i�,�

U�ni��ni��̄ +
U�

2 �
i�,���

ni��ni�̄��. �1�

Here, ai��
† and ai�� are the creation and annihilation opera-

tors for electrons corresponding to bands �= �a ,b� at site i
with spin projection �, and ni��=ai��

† ai��. The symbol �¯�
denotes the summation over nearest-neighbor sites. The first
term in the right-hand side of Eq. �1� corresponds to the
kinetic energy of the conduction electrons in bands a and b
with the hopping integrals ta� tb. In our model, we ignore
the interband hopping. The second term describes the shift �
of the center of band b with respect to the center of band a.
The last two terms describe the on-site Coulomb repulsion of
two electrons either in the same state �with the Coulomb
energy U�� or in the different states �U��. The bar above � or
� denotes not � or not �, respectively. The assumption of the
strong electron correlations means that the Coulomb interac-
tion is large, that is, U� ,U�� t� ,�. The total number n of
electrons per site is a sum of electrons in the a and b states,
n=na+nb, and � is the chemical potential. Below, for defi-
niteness sake, we consider the case n	1.

III. HOMOGENEOUS STATE

The homogeneous state of the model formulated above
can be analyzed by standard methods at arbitrary band filling
n. Let us introduce a one-particle Green function

G���j − j0,t − t0� = − i�T̂aj���t�aj0��
† �t0�� , �2�

where T̂ is the time-ordering operator. The equation of mo-
tion for the one-particle Green function with Hamiltonian �1�
can be written as

PHYSICAL REVIEW B 76, 195113 �2007�

1098-0121/2007/76�19�/195113�6� ©2007 The American Physical Society195113-1

http://dx.doi.org/10.1103/PhysRevB.76.195113


�i
�

�t
+ � + ��	G���j − j0,t − t0�

= 
jj0

�t − t0� − t��

�

G���j − j0 + �,t − t0�

+ U�G��,��̄�j − j0,t − t0� + U��
��

G��,�̄���j − j0,t − t0� ,

�3�

where ��=0 for �=a and ��=� for �=b, the summation in
the second term in the right-hand side of Eq. �3� is performed
over sites nearest to j, and � are the vectors connecting the
site j with its nearest neighbors. Equation �2� includes the
two-particle Green functions of the form

G��,����j − j0,t − t0� = − i�T̂aj���t�nj����t�aj0��
† �t0�� . �4�

Then, we should write the equations of motion for these
functions, which will include the next order Green functions,
etc. To cut such an infinite chain of equations, we shall use
here the following procedure.

In the limit of strong Coulomb repulsion, the presence of
two electrons at the same site is unfavorable, and the two-
particle Green function 
Eq. �4�� is of the order of 1 /U,
where U�U� ,U�. The equation of motion for G��,��� in-
cludes the three-particle terms coming from the commutator
of aj���t� with the U terms of Hamiltonian �1� in the form

�T̂aj���t�nj����t�nj����t�aj0��
† �t0��. It is easy to see that these

terms are of the order of 1 /U2, and in our approximation, we
neglect them. In the equations of motion for the two-particle
Green functions, we make the decoupling corresponding to
the Hubbard I approximation.11 That is, in the term coming
from the commutator of aj���t� with the kinetic-energy
terms of Hamiltonian �1�, we make the following re-

placement: �T̂aj+����t�nj����t�aj0��
† �t0��→ �nj�����T̂aj+����t�

aj0��
† �t0��. The analogous decoupling in the terms coming

from the commutator of nj���t� with the same kinetic-energy
operator yields zero.9–11 As a result, the equations for the
two-particle Green functions can be written as

�i
�

�t
+ � + �� − U�	G��,��̄�j − j0,t − t0�

= n��̄
jj0

�t − t0� − t��

�

G���j − j0 + �,t − t0�� , �5�

�i
�

�t
+ � + �� − U�	G��,�̄��j − j0,t − t0�

= n�̄�
jj0

�t − t0� − t��

�

G���j − j0 + �,t − t0�� , �6�

where n��= �nj��� is the average number of electrons per site
in the state �� ,��. Note that the Hubbard I approximation is
an appropriate method to find out the main features of the
electron band structure, which is confirmed by comparison
with experiments and numerical results.12

Equations �3�, �5�, and �6� are the closed system for the
one- and two-particle Green functions. This system can be

solved in a conventional manner11 by passing from the time-
space to the frequency-momentum representation. Eliminat-
ing the two-particle Green functions, we can find the explicit
expression for the single-particle Green functions, which
have poles corresponding to the Hubbard subbands for each
band, a or b. The splitting between these subbands is deter-
mined by on-site Coulomb repulsion U� of electrons in the
same states. The on-site Coulomb repulsion U� of electrons
in different states gives rise to the correlation between the
fillings of a and b bands �analogous to the case of localized
and itinerant electrons discussed in Refs. 9 and 10�.

If the total number of the electrons per site does not ex-
ceed unity, n	1, the upper Hubbard subbands are empty,
and we can proceed to the limit U� ,U�→�. In this case, the
one-particle Green function G�� in the frequency-momentum
representation can be written as

G���k,�� =
g��

� + � + �� − g��w���k�
, �7�

where w�=zt�, z is the number of nearest neighbors,

g�� = 1 − �
��

n�̄�� − n��̄, �8�

and

��k� = −
1

z
�
�

eik�

is the spectral function depending on the lattice symmetry. In
the case of a simple cubic lattice, we have

��k� = −
1

3

cos�k1d� + cos�k2d� + cos�k3d�� , �9�

where d is the lattice constant.
In the main approximation in 1/U considered here, the

magnetic ordering does not appear. To study the possible
types of magnetic ordering in our model, it is necessary to
take into account the terms of higher order in 1/U. So, below
we assume that

n�↑ = n�↓ � n�/2. �10�

From the expression for the Green function 
Eq. �7��, it fol-
lows that the filling of each lower subband is equal to g�↑
+g�↓�2g�. From Eqs. �8� and �10�, we have

g� = 1 − n�̄ −
n�

2
. �11�

Using the expression for the density of states ���E�=
−�−1 Im �G��k ,E+ i0�d3k / �2��3, we get the following ex-
pression for the number of electrons:

n� = 2g�n0�� + ��

g�w�
	 , �12�

where
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n0���� = �
−1

��
dE��0�E�� �13�

and

�0�E�� =� d3k

�2��3
„E� − ��k�… �14�

is the density of states for free electrons �with the energy
normalized by unity, �E�	1�. The chemical potential � in
Eq. �12� can be found from the equality n=na+nb.

Let us consider the case when the energy difference �
between centers of a and b bands is not too large, that is, of
the order of the characteristic width of the b band, wb. In this
case, there exist only a electrons at low doping until the
chemical potential reaches the bottom of the b band −�−wb
at some concentration nc. At n�nc, the b electrons appear in
the system, and the effective width of the a band, Wa
=2waga�na ,nb�, starts to decrease. The plots of na, nb, and
the effective bandwidth as functions of n are shown in Figs.
1 and 2, respectively. In all calculations, we use the spectrum
��k� in form �9�.

The energy of the system in the homogeneous state, Ehom,
is the sum of electron energies in all filled bands. Using
similar transformations as in deriving Eq. �12�, we can write
Ehom in the following form:

Ehom = 2�
�

g�
2w��0�� + ��

g�w�
	 − �nb, �15�

where

�0���� = �
−1

��
dE�E��0�E�� . �16�

The dependence of Ehom�n� is shown in Fig. 3 by the solid
line.

IV. PHASE SEPARATION

A. General consideration

In this section, we analyze the possibility of the phase
separation in the system. As one can see in Fig. 3, the energy
for the homogeneous state, Ehom�n�, has two minima at dif-
ferent values of the charge carrier density. In this situation, it
can be favorable for a system to form two phases with dif-
ferent electron concentrations. Moreover, the existence of
two minima is not a necessary condition for the formation of
an inhomogeneous state and this phenomenon could be ob-
served under more general conditions.9,10 However, the
phase separation may be hindered by the increase of the en-
ergy due to surface effects and a charge redistribution.

FIG. 1. �Color online� Electron densities na �solid line� and nb

�dashed line� vs the total number of charge carriers n; wb /wa=0.2
and � /wa=0.12. Vertical arrows show the values of na and nb cor-
responding to the inhomogeneous state �see the text below�.
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FIG. 2. �Color online� Effective bandwidths W�=2wag� vs the
total number of charge carriers n. The dashed curve is the chemical
potential �. The values of the parameters are wb /wa=0.2 and
� /wa=0.12. Vertical arrows show the values of na and nb in the
inhomogeneous state.

FIG. 3. �Color online� The energy of the system vs doping level
n. The solid curve corresponds to the homogeneous state, whereas
the dashed curve is the energy of the phase-separated state without
taking into account electrostatic and surface contributions to the
total energy. Dotted curves are the energies of the inhomogeneous
state, Eqs. �22� and �23�, at V0 /wa=0.1, 0.05, and 0.01 from top to
bottom �see text below�. Here, wb /wa=0.2 and � /wa=0.12. Vertical
arrows show the concentrations of na and nb in the inhomogeneous
state.
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At first, we do not take into account the charge redistri-
bution and surface terms in the total energy. In this way, we
determine the optimum content of each phase and the corre-
sponding charge densities but we cannot find the character-
istic size of the inhomogeneities.

We consider two phases, I �low carrier density� and II
�high carrier density�, with the number of electrons per site
n1 and n2, respectively. A fraction p of the system volume is
occupied by phase I and 1− p is a fraction of phase II. We
seek a minimum of the system energy

Eps
0 �n1,n2� = pEhom�n1� + �1 − p�Ehom�n2� �17�

under the condition of the charge carrier conservation

n = pn1 + �1 − p�n2. �18�

The results of calculations of the system energy in the phase-
separated state for wb /wa=0.2 and � /wa=0.12 are shown in
Fig. 3 by the dashed curve. In this figure, we see that the
phase separation exists in the range of n where both types of
charge carriers coexist in the homogeneous state. The nu-
merical analysis shows that the concentrations of the charge
carriers in each phase, n1 and n2, vary slowly with n, remain-
ing close to certain optimal values for each phase: n1�na
�0.5 for the state with low carrier density, whereas n2�nb
�1 for the state with high carrier density. Phase II can be
considered as a Mott-Hubbard insulator since the corre-
sponding lower Hubbard subband is almost completely
filled. If n increases from 0 to 1, the phase separation may be
favorable when n achieves the value corresponding to the
energy minimum for the homogeneous state. At this value of
n, the content of phase I, p�n�, starts to decrease from p�n�
=1. With the further increase of n, p�n� tends to zero at n
�n2. Therefore, we can conclude that the system may be-
come separated into metallic and insulating phases in a cer-
tain parameter range. An indication to the phase separation is
a negative curvature of the Ehom�n� curve at the right side
from the energy minimum �see Fig. 3�.

The above discussion demonstrates that the width and fill-
ing of one band depend on the width and filling of other
bands. The phase separation gives the possibility to attain the
minimum free energy by an optimum filling of the electron
bands. The phase separation can be favorable only if the
bands are appreciably different. In Fig. 4, we plot the energy
of the homogeneous state versus n at different values of the
ratio wb /wa. We see that �2E /�n2�0 in a wide range of n for
wb /wa�1, which indicates the possibility of the phase sepa-
ration �see also Fig. 3�. The phase separation becomes unfa-
vorable only if wb /wa�0.4.

B. Characteristic size of inhomogeneities

The phase separation leads to redistribution of charge car-
riers �n1�n2�. Therefore, we should take into account the
electrostatic contribution, EC, to the total energy of the
phase-separated state. This contribution depends on the
shape of inhomogeneities. The simplest type of the phase
separation favorable with respect to the interplay between the
surface and Coulomb energies is small droplets of one phase
within another phase. Other types of the phase separation,

stripes, in particular, are not excluded. However, analytical
and numerical studies of the Falicov-Kimball model did not
give any definite indications to the formation of stripes.8 So,
we choose the droplet type of the phase separation for further
analysis. To calculate the droplet size, we use the Wigner-
Seitz approximation following the approach of Refs. 9, 10,
and 13. Namely, we consider a set of spherical unit cells with
zero total charge, where the spherical core of one phase is
surrounded by a shell of another phase. As a result, we find
at p�0.5

EC =
2�e2

5�d
�n1 − n2�2�Rs

d
	2

p�2 − 3p1/3 + p� , �19�

where � is the average permittivity and Rs is the radius of the
droplet of phase I. In the case p�0.5, we should replace
n1↔n2 and p↔1− p.

Another contribution to the total energy depending on the
size of inhomogeneities is related to the surface between two
phases. It comes from the size quantization and depends on
the electron densities in both phases. The case when one of
the densities is zero was considered in Ref. 10. The gener-
alization of this approach for nonzero densities is presented
in the Appendix, where surface energy ��n1 ,n2� is calculated
using the perturbative approach proposed in Ref. 14. The
corresponding contribution, ES, to the total energy is propor-
tional to the area of the interface between phases I and II. At
p�0.5, it can be written in the form

ES = p
3d

Rs
��n1,n2� . �20�

In the case p�0.5, we should replace p→1− p.

FIG. 4. �Color online� The energy of homogeneous state vs
doping level n at wb /wa=0.1 �solid line�, wb /wa=0.25 �dashed
line�, and wb /wa=0.4 �dot-dashed line�. The parameter �b /wa=0.1
for all cases. The phase separation is favorable for solid and dashed
curves in the range of doping 0.45�n�1, where �2E /�n2�0,
whereas for the dot-dashed curve, only the homogeneous state ex-
ists. In the inset, the maximum energy gain due to the formation of
the inhomogeneous state �V0=0, � /wa=0.1� as a function of the
ratio wb /wa is shown. For wb /wa�0.38, the phase separation be-
comes unfavorable in energy.
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Minimization of the sum ECS=EC+ES with respect to Rs
allows us to calculate this value. In doing so, we get at p
�0.5

Rs = d� 15��n1,n2�
4�V0�n2 − n1�2�2 − 3p1/3 + p�	

1/3

. �21�

The total energy of the inhomogeneous state then reads

Eps�n1,n2� = pEhom�n1� + �1 − p�Ehom�n2� + ECS�n1,n2� ,

�22�

where

ECS = 3V0
9�

10
�n2 − n1�2�2�n1,n2��1/3

p�2 − 3p1/3 + p�1/3,

�23�

V0=e2 /�d. The energy Eps calculated by minimization of Eq.
�22� with respect to n1 and n2 at different values of V0 is
shown in Fig. 3 by the dotted curves. We see that the elec-
trostatic contribution to the energy related to an inhomoge-
neous charge distribution reduces the range of n, in which
the phase separation is favorable. In Fig. 5, we plot the char-
acteristic radius of inhomogeneities, Rs, as a function of n.

V. DISCUSSION

Thus, the phase separation can be favorable for the system
of the strongly correlated electrons even in the absence of
any specific ordering. We demonstrated that the state with
inhomogeneous charge distribution can arise if there exist
two types of the charge carriers with different bandwidths.
The electron correlations due to on-site Coulomb repulsion
lead to the dependence of the bandwidth for one type of
electrons on the band filling for another type of electrons. As
a result, the dependence of energy on the total number of the
charge carriers becomes nonmonotonic. The competition be-
tween kinetic and correlation energies triggers the formation
of an inhomogeneous ground state. It is particularly evident

if the energy of the system as a function of electron density
has two minima. In this case, it could be favorable for the
system to separate into two states with electron densities
close to these minima rather than to form a homogeneous
state with an intermediate density. Such a situation is illus-
trated in Fig. 3.

It is clear that the phase separation can occur only if the
bandwidths corresponding to two types of the charge carriers
are sufficiently different, that is, the ratio wb /wa of the
widths of narrow and wide bands should be rather small. The
second condition is that the narrow and wide bands should
not be widely separated from each other, that is, the ratio
� /wa of the distance between the band centers and the width
of the wider band should be less than unity. Naturally, the
long-range electrostatic forces prevent nonuniform charge
distribution and the condition V0 /wa�1 should be met. As it
can be seen in Fig. 4, the phase separation can be favorable
even if wb /wa�0.3–0.4.

Note that there are other factors either favoring or not the
phase separation,15 e.g., the interband hopping, tab, stabilizes
the homogeneous state. Nevertheless, our calculations show
that at tab� ta , tb, the phase separation is still favorable in
energy at a wide doping range.16
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APPENDIX: SURFACE ENERGY

The electrons in the phase-separated state are confined
within a restricted volume Vs. This gives rise to the change in
the density of states in both phases. At small ratio �
=Ssd /Vs, where Ss is the surface area of the droplet, the
density of states for free electrons can be written as10,14

��E�� = �1 +
�

2
	�0�E��

−
�

4

�0

�2D��E� + 1/3� + �0
�2D��E� − 1/3�� , �A1�

where �0 is given by Eq. �14�. Here, �0
�2D� is the density of

states in two dimensions. Using this expression instead of
Eq. �14�, and expanding Eqs. �12�, �13�, �15�, and �16� in a
series in powers of � up to the first order, we derive formula
�20� with the correction for the size quantization ��n� in the
form

� = 2�
�

g�
�0�w�
�0����

�0��n�
�1� + g�

�0�
�0����
�0���

+ �
�

g�
�0�w����

�0��0����
�0���2��1�

w�

− ���
�0�n�

�1�	 − �
�

�nb
�1�,

�A2�

where

FIG. 5. �Color online� The radius of droplets Rs vs doping level
n at wb /wa=0.2, � /wa=0.12, and V0 /wa=0.02.
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���
�0� =

��0� + ��

g�
�0�w�

, �A3�

n�
�1� =

1

2

4

w�

�0����
�0����1� + g�

�0�2n0����
�0�� − n0

�2D�����
�0� +

1

3
	 − n0

�2D�����
�0� −

1

3
	�

1 + ���
�0��0����

�0�� − n0����
�0��

, �A4�


�0���� =
1

2
�0���� −

1

4
�0

�2D���� +
1

3
	 + �0

�2D���� −
1

3
	� +

1

12
n0

�2D���� +
1

3
	 − n0

�2D���� −
1

3
	� , �A5�

correction to the chemical potential ��1� is found from the condition ��n�
�1�=0, and the superscript �0� denotes the unperturbed

value of corresponding quantity. The functions n0
�2D����� and �0

�2D����� in these expressions are determined by Eqs. �13� and
�16�, respectively, where one should change �0 to �0

�2D�. The surface energy ��n1 ,n2� per unit area between phases I and II is
the sum ��n1�+��n2�.
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