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While the intrinsic anomalous Hall conductivity is normally written in terms of an integral of the electronic
Berry curvature over the occupied portions of the Brillouin zone, Haldane has recently pointed out that this
quantity (or more precisely, its “nonquantized part”) may alternatively be expressed as a Fermi-surface prop-
erty. Here we present an ab initio approach for computing the anomalous Hall conductivity that takes advan-
tage of this observation by converting the integral over the Fermi sea into a more efficient integral on the Fermi
surface only. First, a conventional electronic-structure calculation is performed with spin-orbit interaction
included. Maximally localized Wannier functions are then constructed by a postprocessing step in order to
convert the ab initio electronic structure around the Fermi level into a tight-binding-like form. Working in the
Wannier representation, the Brillouin zone is sampled on a large number of equally spaced parallel slices
oriented normal to the total magnetization. On each slice, we find the intersections of the Fermi-surface sheets
with the slice by standard contour methods, organize these into a set of closed loops, and compute the Berry
phases of the Bloch states as they are transported around these loops. The anomalous Hall conductivity is
proportional to the sum of the Berry phases of all the loops on all the slices. Illustrative calculations are

performed for Fe, Co, and Ni.
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I. INTRODUCTION

It is by now well established that the intrinsic Karplus-
Luttinger mechanism' plays a significant role in the anoma-
lous Hall conductivity (AHC) of ferromagnets. This contri-
bution can be expressed as an integral of the k-space Berry
curvature over the occupied portions of the Brillouin zone
(BZ).2 First-principles calculations of the intrinsic AHC
have been carried out by several authors, using either a Kubo
linear-response formula®’ or a direct “geometric” evaluation
of the Berry curvature,® and achieving good agreement with
experimental values for several ferromagnets. These studies
revealed that the Berry curvature is very sharply peaked in
certain regions of the BZ where spin-orbit splitting occurs
near the Fermi level. As a result the calculations tend to be
rather demanding; in the case of bcc Fe, for example, mil-
lions of k points must be sampled to achieve convergence.’
More efficient approaches are therefore highly desirable.

In a preceding paper,® we developed a strategy for calcu-
lating the AHC in which Wannier interpolation of the Bloch
functions was used to circumvent the need to perform a full
first-principles calculation for every k point. Thus, while the
required number of k points was not reduced, the computa-
tional load per k point was greatly reduced. In this approach,
the actual first-principles calculations are performed on a
comparatively coarse k mesh. Then, in a postprocessing step,
the calculated electronic structure is mapped onto an “exact
tight-binding model” based on maximally localized Wannier
functions.” Working in the Wannier representation, the Berry
curvature can then be evaluated very inexpensively at each
of the k points of the fine mesh needed for accurate evalua-
tion of the AHC.

Recently, Haldane has shown that while the intrinsic AHC
is usually regarded as a Fermi-sea property of all the occu-
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pied states, it can alternatively, and in some ways more natu-
rally, be regarded as a Fermi-surface property.!® (More pre-
cisely, Haldane showed that these quantities are equal
modulo the quantum of transverse conductivity that is well
known from the quantum Hall effect, since one cannot rule
out the possibility that, e.g., some occupied bands carry non-
zero Chern numbers.!?) By a kind of integration by parts,
Haldane showed how the integral of the Berry curvature over
the occupied portions of the BZ could be manipulated first
into a Fermi-surface integral of a Berry connection, and then
ultimately into a Fermi-surface integral of a Fermi-vector-
weighted Berry curvature, augmented with some Berry-
phase corrections for the case of non-simply-connected
Fermi sheets. In discussing his Eq. (23), Haldane mentioned
in passing that this expression can also be reformulated in
terms of the Berry phases of electron orbits circulating on the
Fermi surface.

In this paper we present a tractable and efficient compu-
tational scheme that takes the latter point of view as its or-
ganizing principle. In our approach, the BZ is divided into a
fine mesh of equally spaced slices normal to the direction of
the magnetization, and the integral of the Berry curvature
over the occupied states of a given slice is transformed into a
sum of Berry phases of Fermi loops lying in that slice. As a
result, the three-dimensional BZ integration is avoided, and
the method relies instead only on information calculated on
the two-dimensional Fermi surface. As in Ref. 8, an impor-
tant ingredient of our approach is the use of a Wannier inter-
polation scheme to lower the cost further by eliminating the
need for a full first-principles evaluation at each point on the
Fermi surface. Combining these two complementary strate-
gies, we arrive at a robust and efficient method for comput-
ing of the AHC in ferromagnetic metals.

The paper is organized as follows. In Sec. II we present
the necessary formulas relating Berry phases on the Fermi
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surface to the AHC, as well as their evaluation in the Wan-
nier representation. The details of the first-principles calcu-
lations and the determination of the Fermi loops are given in
Sec. III. In Sec. IV the method is applied to the transition
metals Fe, Co, and Ni. A discussion of issues of computa-
tional efficiency is given in Sec. V, followed by a brief con-
clusion in Sec. VL.

II. METHOD

A. Fermi-loop formula

Our starting point is the AHC expressed as an antisym-
metric Cartesian tensor in terms of the Berry curvature,
dk

2
e
Oap=— %% . (27T)3fn(k)ﬂn,aﬂ(k) ’ (1)

where the integration is over the three-dimensional BZ and
the occupation function f, (k) restricts the sum to the occu-
pied states (we work at zero temperature). (), ,5(k) is the
Berry-curvature matrix of band n, defined as

&unk 6)unk
Q k)=-2Im\ —|—/, 2
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where u,, is the periodic part of the Bloch function .
Because (), .4 is antisymmetric, we can represent it instead
in axial-vector notation as

1
‘Q’n'yz EEB eaByQ’n,aB’ (3)

or equivalently, (), ,z=> €,5,(),,, Where €.z, is the anti-

symmetric tensor. The Berry curvature can also be written as
Q,(k) =V X A, (k), 4)
where the Berry connection is
A (K) = it | Vi) &)
Following Ref. 10, we rewrite Eq. (1) as

- 1
Oop= TW% €0pyKonys (6)
where
1
K,=—| dkf,(k)Q,(k). (7)
27T BZ

For the case of a completely filled band lying entirely below
the Fermi level, Haldane has shown'? that K, is quantized to
be a reciprocal lattice vector (the “Chern vector”), as will
become clear in Sec. II B below.

Let a; and b; be a conjugate set of primitive real-space
and reciprocal-space lattice vectors, respectively, a;-b;
=20;., and let

)

1
an=ZTa"Kn, (8)

so that
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In order to compute c 3, for example, we choose the BZ to be
a prism whose base is spanned by b; and b, and whose
height is 27/ a3, and convert the integral into one over slices
parallel to the base. In general, separate calculations in which
the slices are constructed parallel to the b,—bs and b;—b;
planes are needed to compute c,, and c,,, respectively.'!
However, this can be avoided in the common case that the
magnetization lies parallel to a symmetry axis; one can then
choose b; and b, perpendicular to this axis, and only c,3
needs to be computed.
Inserting Eq. (7) into Eq. (8) yields

27la;
c ,=_a.L Jdk M (10)
Yoo, Y
where
d’n(kL) = dzkéj : Qn(k)' (1 1)
S, (k)

Here k, labels the slice and S,(k ) is the region of the slice
in which band n is occupied. Recalling Eq. (4) and noting
that d; is the unit vector normal to the slice, the application
of Stokes’ theorem to Eq. (11) yields

¢n(kL) = An(k) : dla (12)
Cn(kL)

where C,(k ) is the oriented curve bounding S,(k,) on the
slice and ¢,,(k | ) has the interpretation of a Berry phase. For
later convenience we also define

Plk) =2 k) (13)

and similarly c;=%,c,;, etc. The calculation of the AHC has
thus been reduced to a calculation that is restricted to the
Fermi surface only, in the spirit of Eq. (23) of Ref. 10.

In general, the occupied or unoccupied region of band n
in slice k£, need not be simply connected, in which case the
boundary C,(k ) is really the union of several loops. More-
over, loops encircling hole pockets should be taken in the
negative direction of circulation. This is illustrated in Fig. 1,
where the first band exhibits four hole pockets and the sec-
ond band has one electron pocket, so that C, is the union of
four countercirculating loops and C, is a fifth loop of positive
circulation. If higher bands are unoccupied, then ¢(k,) for
this slice is just given by the sum of the Berry phases of
these five loops. We shall assume for simplicity in the fol-
lowing that C,(k,) is simply connected, but the generaliza-
tion to composite loops is straightforward.

B. Quantum of Hall conductivity

We claimed earlier that if band n is fully occupied, K, in
Eq. (7) is quantized to a reciprocal lattice vector. This can
now be seen by noting that under those circumstances the
integral in Eq. (11) runs over a two-dimensional BZ, which

195109-2



FERMI-SURFACE CALCULATION OF THE ANOMALOUS...

FIG. 1. Sketch of intersections of the Fermi surface with a
constant-k ; plane. Open, hatched, and crosshatched regions corre-
spond to filling of zero, one, and two bands, respectively. The four
small Fermi loops belong to the first band, while the large central
one belongs to the second. Arrows indicate sense of circulation for
performing the Berry-phase integration.

can be regarded as a closed two-dimensional manifold (two-
torus), and for topological reasons'? the integral of the Berry
curvature over such a closed manifold must be an integer
multiple of 27 (the Chern number). Then each c,; is an in-
teger, and K, in Eq. (9) must be a reciprocal lattice vector as
claimed. If the system is an insulator, then K=X K,
(summed over occupied bands) is also guaranteed to be a
reciprocal lattice vector, and if it is a nonzero one, the insu-
lator would have a quantized Hall conductivity and could be
regarded as a quantum Hall crystal (or “Chern
insulator).!'%!3 No physical realization of such a system is
known experimentally, but the search for one remains an
interesting challenge.

Let us consider again a slice for which band n is fully
occupied but has a nonzero Chern number. If this slice is
regarded as an open rectangle (or parallelogram) rather than
a closed two-torus, and a continuous choice of gauge is made
in its interior [i.e., A,(K) is free of singularities], then the
boundary C,(k,) is the perimeter of this rectangle and Eq.
(12) will yield the same integer multiple of 277 as Eq. (11). In
the spirit of Fig. 1, however, we prefer to regard the slice as
a closed two-torus and to exclude the perimeter from our
definition of the boundary C,(k ). Then C,(k,) is null and
Eq. (12) vanishes for the case at hand, in disagreement with
Eq. (11). The disagreement arises because of the impossibil-
ity of making a continuous choice of gauge on a closed
manifold having a nonzero Chern number;'? the best that can
be done is to make A, (k) finite everywhere except at singu-
larities (“vortices”) which, when included, restore the miss-
ing contributions of 2.

Returning to the general case of a partially occupied band
n with C,(k ) defined to exclude the perimeter of the slice,
we conclude that Eq. (12) is really only guaranteed to equal
the true result of Eq. (11) modulo 2. Moreover, the Berry
phase will be evaluated in practice using a discretized Berry-
phase formula'* of the form

(k) ==TmIn [T G Ji,, ), (14)
J

where k; discretizes the loop C,(k ). [We will actually use a

modified version, Eq. (25), of this formula.] The choice of
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branch cut is now arbitrary, and again the agreement with
Eq. (12) or Eq. (11) is only guaranteed modulo 2. By con-
vention one normally restricts phases to lie in the interval
(=7, 77], but then ¢,(k,) would in general have unwanted
discontinuities at some values of k,. In practice we dis-
cretize the k, integration, so that using Eq. (10), ¢;=Z,c,;
becomes

)

. 15
! Nglice i=1 2w ( )

We then enforce continuity of the total phase ¢(k,) of Eq.
(13) by choosing ¢(i) such that |¢(i)— p(i—1)| <27 for each
slice i=2,3,... in sequence. Since the true phase given by
the sum of contributions in Eq. (11) is also continuous, this
guarantees that our calculated (k) differs from the true
one by the same multiple of 27 for all k,. Our computed
AHC would then differ from the true one by a multiple of the
quantum and could be said to give the “nonquantized part”
of the intrinsic AHC in the sense of Haldane.'9 However, it is
straightforward to remove this overall ambiguity of branch
choice by evaluating ¢(k ) from Eq. (11) on the first slice
and then enforcing continuity for each subsequent slice, thus
arriving at the correct AHC without any question of a quan-
tum.

We note in passing that an isolated point of degeneracy
(“Dirac point”) between a pair of bands n and n+1 can ge-
nerically occur in three-dimensional k space in the absence
of time-reversal symmetry.!® If such a Dirac point occurs
below the Fermi energy, then ¢,(k,) and ¢, (k) will,
when evaluated from Eq. (11), exhibit equal and opposite
discontinuities of 27 at the k, of the Dirac point. However,
the total phase ¢(k;) will remain continuous, so that the
algorithm described in the previous paragraph will still work
correctly.

We close this subsection by emphasizing that the discus-
sion of possible nonzero Chern numbers or the presence of
Dirac points is rather academic. In our calculations on Fe,
Ni, and Co, we have not encountered any indications of such
anomalies; they presumably occur rarely or not at all in the
materials studied here.

C. Evaluation of the Fermi-loop Berry phase

The essential problem now becomes the computation of
the loop integral of Eq. (12). As is well known, the Berry
connection A, (k) of Eq. (5) is gauge dependent, i.e., sensi-
tive to the k-dependent choice of phase of the Bloch func-
tions. If Eq. (12) is to be calculated by the direct evaluation
of A, (k) and its subsequent integration around the loop, this
lack of gauge invariance may present difficulties. For ex-
ample, it means that there is no unique Kubo-formula ex-
pression for A, (k). An alternative and more promising ap-
proach is to compute ¢,(k,) by the discretized Berry-phase
formula'* of Eq. (14), where the inner products are computed
from the full first-principles calculations at neighboring pairs
of k points around the loop. However, this may still be quite
time consuming if it has to be done at very many k points.
We avoid this by using the technique of Wannier

195109-3



WANG et al.

interpolation®®!> to perform the needed loop integral inex-
pensively. In this formulation, the loop integral of Eq. (12)
can be expressed as a sum of two terms, one in which a
contribution to A, (k) is evaluated and integrated explicitly,
and a second that takes a form like that of Eq. (14).

The key idea of Wannier interpolation is to map the low-
energy first-principles electronic structure onto an “exact
tight-binding model” using a basis of appropriately con-
structed crystalline Wannier functions. For metallic systems
such as those considered here, the bands generated by these
Wannier functions are only partially occupied. They are
guaranteed by construction to reproduce the true first-
principles bands in an energy window extending somewhat
above the Fermi level, so that all valence and Fermi-surface
states are properly described.’ In the Wannier representation,
the desired quantities such as band energies, eigenstates, and
the derivatives of eigenstates with respect to wave vector k
can then be evaluated at arbitrary k points at very low com-
putational cost. All that is needed is to evaluate, once and for
all, the Wannier-basis matrix elements of the Hamiltonian
and position operators.® It is worth pointing out that it may
sometimes be expedient to drop some lower occupied bands
and construct the Wannier functions so that they correctly
represent the Bloch functions only in some narrower energy
window containing the Fermi energy; since the present for-
mulation involves only Fermi-surface properties, the non-
quantized part of the AHC will then still be given correctly.

The Wannier construction procedure of Ref. 9 provides us
with a set of M Wannier functions |Rn) (n=1,...,M) in each
cell labeled by lattice vector R. From these the Bloch basis
functions |u£lv]l/)> are constructed according to the Fourier
transform relation

ulyy = E e kR Rp). (16)

Here the superscript (W) indicates that these are obtained
from the Wannier representation, that is, they are not yet
Hamiltonian eigenstates. To obtain those, we construct the
M X M Hamiltonian matrix

HO(K) = () [ H(K) i) (17)
via
HW = e®R(On|H|Rm). (18)
R

At any given k this matrix can be diagonalized to yield an
M X M unitary matrix U,,,(k), i.e.,

U'(k)HM (k) U(k) = H™(k), (19)

where H (k)= 5(H) S, are the energy eigenvalues and

(H)> 2 |umk >Umn(k) (20)

are the corresponding band states. By the construction pro-
cedure of Ref. 9, EEIH) is identical to the true &, [and similarly
for the eigenvectors ufg?] for all occupied states and low-
lying empty states. This is strictly true only for k points on
the original ab initio mesh. The power of this interpolation
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scheme lies in the fact that, by virtue of the spatial localiza-
tion of the Wannier functions, the error remains extremely
small even for points away from that grid.'3

The next step is to evaluate 5,(11;(1) on a two-dimensional
mesh of k points covering a single slice and then use a
contour-finding algorithm to map out and discretize the
Fermi loops therein. This part of our scheme will be de-
scribed in more detail in Sec. III B. For now we can just
assume that the output is a sequence of points k; (j
=0,...,J—1) providing a fairly dense mapping of the con-
tour. (As before, we assume for simplicity that the Fermi
contour consists of a single loop; the extension to multiple
loops is straightforward.)

Next we need to obtain the Berry connection A, (k)

—z<u(H)|Vk|u(H)> as in Eq. (5). Using Eq. (20), this becomes

A K) = 2 UL AN (K)U,,,(K) +i 2 UL (K) ViU, (K),

Im

21
where
AD(K) = i | Vi) (22)
is computed in practice from the expression
Al () = 2 ™ (0n]#|Rm) (23)
R

in a manner similar to Eq. (18). Details concerning the
method of calculating Egs. (18) and (23) can be found in
Ref. 8.

The decomposition of A, (k) into two terms in Eq. (21) is
an artifact of the choice of Wannier functions; only the sum
of the two terms is physically meaningful (upon a circuit
integration). However, for a given choice of Wannier func-
tions, the first term arises because the Bloch functions |u(H>>
acquire some of the Berry curvature attached to the full sub-
space of M Wannier functions used to represent them,
whereas the second term represents the Berry curvature aris-
ing from changes of character of this Bloch state within the
Wannier subspace. To clarify this viewpoint, we introduce a
notation® in which ||v,,)) is defined to be the nth column
vector of matrix U, so that the second term of Eq. (21) be-
comes i{{v | Vil[v,i))- Plugging into Eq. (12), this yields

bli) = 35 (] AM (K)|[o,0) - dl + ,-jQ (Wl Vil - dl
(24)

for the Berry phase of slice i appearing in Eq. (15). Note that
the integrand in the first term is gauge invariant there
“gauge” refers to the application of a phase twist |[v,))
—e
integral is gauge invariant. Indeed, the second term is just a
Berry phase defined within the M-dimensional “tight-binding
space” provided by the Wannier functions. Recalling that k;
for j=0,...,J—1 is our discretized description of the Fermi
loop, and using standard methods for discretizing Berry
phases!# as in Eq. (14), our final result becomes
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TABLE 1. Calculated spin magnetic moment per atom (in up)
for the three transition metals Fe, Ni, and Co, with magnetization
along [001], [111], and [001], respectively.

bee Fe fcc Ni hep Co
Theor. 222 0.62 1.60
Expt.? 2.13 0.56 1.59
“Reference 21.
J-1 J-1

¢n(i) = 2 <<Unk||A(W)(k)||vnk>> -Ak —Im In H <<vnkj||vnkj+l>>,
j=0 Jj=0

(25)

where Ak=(k;,;-k;_;)/2.

As we shall see below, in practice we only encounter
closed orbits, in which case it is clearly appropriate to set
k,=Kk and close the phases with [[v, ))=[v,,x,))- For lower-
symmetry situations, however, open orbits with k;=k,+G
may be encountered. Even in this case, however, we would
still set [v, ))=lv,x,)); in contrast to the full Bloch states
which obey'* un,kae"’G'ru,,?ko, no extra phase factors are
needed here because the Fourier-transform convention of Eq.
(16) treats the Wannier functions as though they are all nomi-
nally located at the cell origin.

In summary, our strategy is to evaluate Eq. (15) by de-
composing each generalized path C,(i) into connected simple
loops, and sum the loop integrals as computed using Eq.
(25). The operations needed to evaluate Eq. (25) are inexpen-
sive as they all involve vectors and matrices defined in the
low-dimensional space of the Wannier representation.

III. COMPUTATIONAL DETAILS
A. First-principles calculations

Fully relativistic band-structure calculations are carried
out for the ferromagnetic transition metals Fe, Co, and Ni at
their experimental lattice constants (5.42, 4.73, and
6.65 bohr, respectively) using the PWSCF code.!® Norm-
conserving pseudopotentials with spin-orbit coupling!” are
generated using similar parameters as in Ref. 8. An energy
cutoff of 60 hartree is used for the plane wave expansion of
the valence wave functions (400 hartree for the charge den-
sities), and the PBE generalized-gradient approximation'® is
used for the exchange-correlation functional. The self-
consistent ground state is obtained using a 16X 16X 16
Monkhorst-Pack!'® mesh of k points and a fictitious Fermi
smearing? of 0.02 Ry for the Brillouin-zone integration.

The calculated spin magnetic moments are shown in
Table I. The effect of spin-orbit coupling on these moments
is included in the calculation, since it is needed in any case to
obtain a nonzero AHC. The agreement with experiment is
rather good, confirming that our norm-conserving pseudopo-
tentials are suitable for describing the ferromagnetic state of
the transition metals.

The maximally localized Wannier functions are generated
using the WANNIER90 code;?? details are given in Secs.
IV A-1IV C below.
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FIG. 2. (Color online) Calculated Fermi-surface intersections
(Fermi loops) on the k,=0.02 plane for bce Fe; different bands are
color coded for clarity. (a) Fermi contours within the first Brillouin
zone. (b) Fermi contours after reassembly to form closed contours
by translating some portions by a reciprocal lattice vector. Inset:
enlargement showing part of an avoided crossing where a refined
mesh (black lines) is used to obtain a more accurate representation
of the Fermi loop. The actual calculation is performed within the
dashed box.

B. Mapping and sampling of Fermi loops

As discussed above, our basic strategy involves dividing
the BZ into a series of parallel slices and finding the inter-
sections of the Fermi surface with each of these slices. Each
slice is sampled on a uniform N XN k-point mesh, with N
ranging from 300 to 500, and the band energies are com-
puted on the mesh using Wannier interpolation. A standard
contour-finding algorithm of the kind used to make contour
plots is then used to generate a list of Fermi loops and, for
each loop, a list kg, ...,k;_; of k points providing a dis-
cretized representation of the loop.

As shown in Fig. 2(a), the Fermi contours in the first BZ
are sometimes composed of multiple segments terminating at
the BZ boundary. To ensure that we get closed loops suitable
for the evaluation of Eq. (25), we actually do the initial
contour-finding procedure in an extended zone with 3 X3
times the size of the first BZ. We then select closed loops
located near the central cell while identifying and discarding
loops or portions of loops that correspond to periodic images
of these chosen loops. The result is a set of closed loops that
partially extend outside the first BZ as shown in Fig. 2(b). Of
course, if there were open orbits on the Fermi surface, it
would not always be possible to select closed loops in the
above sense; one would have to accept a “loop” with k;
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=ky+G as discussed following Eq. (25). However, we never
encounter such open orbits in practice for the types of mate-
rials studied here, in which the magnetization is aligned with
a threefold, fourfold, or sixfold rotational symmetry axis.
The slices are perpendicular to the symmetry axis, and the
symmetry ensures that open orbits cannot occur on the slices.

A potential difficulty in applying the Fermi-loop method
to real materials arises from the possible presence of degen-
eracies or near degeneracies between bands. If two bands are
degenerate at the Fermi energy, this means that two Fermi
loops touch, and it is no longer straightforward to define and
compute the Berry phases of these loops. Fortunately, the
presence of ferromagnetic spin splitting and spin-orbit cou-
pling removes almost all degeneracies. In our calculations
we found no true degeneracies in hcp Co or fcc Ni, and the
only degeneracies in bcc Fe were found to lie in the k,=0
plane. (In the latter case, we avoid the k.=0 plane by picking
a k, mesh that is offset so that this plane is skipped over.) On
the other hand, we do find numerous weakly avoided cross-
ings induced by the spin-orbit interaction, and while these
introduce no difficulty in principle, they do require special
care in practice. Indeed, we find that it is important to sample
the Fermi surface very accurately in the vicinity of these
crossings. To do so, we calculate the Berry curvature at each
k; using Wannier interpolation, and if a large value is en-
countered, we introduce a refined mesh with 4 X4 greater
density in this region, repeat the contour-finding procedure
there, and replace the discretized representation of this por-
tion of the loop with a denser one. We also take care to
recompute &, at each k; and iteratively adjust the k-point
location in the direction transverse to the loop in order to
ensure that &, lies precisely at the Fermi energy. An ex-
ample of a portion of a Fermi loop that has been refined in
this way is illustrated in the inset to Fig. 2(b). Overall, the
resulting number J of k points per loop ranges from several
hundreds to thousands, depending on the size and complexity
of the Fermi loop.

In our current implementation, the entire procedure above
is repeated independently on each of the slices. As already
mentioned in Sec. II B, it is important to make a consistent
choice of branch of the Berry phase ¢(i) on consecutive
slices. We do this by adding or subtracting a multiple of 27
to the Berry phase calculated from Eq. (15) such that
|$,(i)— p,(i—1)| <27 is satisfied, always checking for con-
sistency between the first and last slices.

C. Use of symmetry to reduce computational load

The presence of a net magnetization results in a consider-
able reduction in symmetry, but several symmetries that can
be exploited to reduce the computational cost still remain. In
the previous Fermi-sea-based methods’® the use of symme-
tries is straightforwardly implemented by restricting the
k-point sampling to the irreducible wedge of the BZ. For the
Fermi-loop method, the use of symmetries needs more care-
ful treatment.

Here we discuss the difficulties, and point out their solu-
tion, using ferromagnetic bcc Fe as an example. We focus
our attention on the mirror symmetries M, and M,. Since
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FIG. 3. Tllustration of use of M, and M, mirror symmetries on a
slice of the Brillouin zone in bee Fe. Only the segment of the Fermi
loop from point 2 to point 1 is actually computed; the three other
segments are included using symmetry operations.

each slice lies in an x-y plane, we can use these to restrict the
band-structure calculation and the search for Fermi contours
to a reduced BZ having one-fourth of the area of the full BZ,
as shown by the dashed line in Fig. 2(b). However, a typical
Fermi loop will no longer close within this reduced BZ. Be-
cause a Berry phase is a global property of a closed loop, one
cannot just compute the Berry phase of open segment lying
inside the reduced BZ and multiply by 4; the Berry phase of
this segment is ill defined unless the phases of the wave
functions at its terminal points are specified.

Our solution to this difficulty is illustrated in Fig. 3. We
make some arbitrary but definite choice of the phases of the
Bloch functions in the upper-right segment, compute the
open-path Berry phase following Eq. (25), and multiply by 4.
We then add corrections that take account of the phase jumps
at the segment boundaries. For example, we let M, acting on
the Bloch states from 1 to 2 define the Bloch states from 1’
to 2'. The correction arising from the 1’—1 boundary is then
given by the phase of {u;:|u,)=(Mu,|u,). (Here M, is de-
fined in the spinor context and includes a complex conjuga-
tion component. Since the Bloch functions are expressed in
the Wannier basis in our approach, information about the
symmetries of the Wannier functions has to be extracted and
made available for the application of the symmetry transfor-
mations.) Similar corrections, using also M, are obtained for
the 22", 1”7—1", and 2"-2 segment boundaries. By in-
cluding these mismatch corrections, we are able to calculate
the global Fermi-loop Berry phase in a correct and globally
gauge-invariant manner.

We have tested this procedure and confirmed that the re-
sults obtained are essentially identical to those computed
without the use of symmetry. The BZ could in principle be
reduced further in bec Fe using the diagonal mirror opera-
tions, but we have not tried to implement this.

IV. RESULTS

In this section we present the results of our calculations of
the anomalous Hall conductivity using the Fermi-loop ap-
proach of Eq. (25) as applied to the three ferromagnetic tran-
sition metals Fe, Co, and Ni.
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FIG. 4. Calculated Fermi surfaces for bands 7-10 of bce Fe (in
order of upper left, upper right, lower left, lower right). The outside
frame is the boundary of the Brillouin zone.

A. Body-centered-cubic Fe

We have previously presented calculations of the AHC of
bee Fe computed using the Fermi-sea formulation.® Here we
adopt the same choice of Wannier functions as in that work,
namely, 18 Wannier functions covering the s, p, and d char-
acters and both spins. The orbitals of s, p, and e, characters
are actually rehybridized into Wannier functions of sp’d?
type, and the Wannier functions are only approximate spin
eigenstates because of the presence of spin-orbit interaction
(see Ref. 8 for details).

In our calculation for bcec Fe, bands 5-10 cross the Fermi
energy. Figure 4 shows the Fermi-surface sheets for bands
7-10, plotted using the XCRYSDEN package.?® (Bands 5 and 6
give rise to small hole pockets, not shown.) Some of these
sheets (especially 7 and 8) are quite complicated but, as ex-
pected, they all conform to the lattice symmetries. What is
not clearly visible in these plots are the tiny spin-orbit-
induced splittings, which change the connectivity of the
Fermi surface. As mentioned earlier, such features play an
important role in the AHC, and need to be treated with care.

We take the magnetization to lie along the [001] axis.
Choosing b;=(27/a)(110) and b,=(27/a)(110) in the no-
tation of Sec. II A, it follows that az=2wh;Xby/ Vi,
=(0,0,a) where V.., is the primitive reciprocal cell volume,
and we only need to compute the c¢,; in Eq. (10). The slices
are square in shape, and k | =k, is discretized into 500 slices.

In Fig. 5 we have plotted the total Berry phase [Eq. (13)]
on each slice as computed from Eq. (25). The results are
symmetric under mirror symmetry, so only half of the range
of k, is shown. The sharp peaks and valleys in Fig. 5 are
related to degenerate or near-degenerate bands that have
been split by the spin-orbit interaction, as was illustrated,
e.g., in the inset of Fig. 2. To validate the calculation, we
compare it against a direct numerical integration of the Berry
curvature over the occupied bands using Eq. (11), as indi-
cated by the symbols in Fig. 5. In spite of rather complex and
irregular Fermi surfaces, the agreement between the two
methods in Fig. 5 is excellent.

PHYSICAL REVIEW B 76, 195109 (2007)

Berry phase

0 0.1 0.2 0.3 0.4 0.5

k,

FIG. 5. Calculated Berry phase ¢(k,) of bec Fe (in radians) as
a function of k, (in units of 27r/a). The solid line shows results
obtained from the Fermi-loop method of Eq. (25); the circles indi-
cate reference results obtained by the integration of the Berry cur-
vature on each slice using Eq. (11).

The values of the integrated anomalous Hall conductivity
using this approach and the reference approach are shown in
the first and third lines of Table II. The second line shows the
contribution obtained from integrating only the first term of
Eq. (25); clearly, this contribution is very small. The agree-
ment with the previous theory of Yao et al” is excellent,
while the agreement with experiment is only fair. Table II
will be discussed further in Sec. IV D.

Our approach also opens the possibility of discussing
which Fermi sheets are responsible for features visible in
Fig. 5. For example, the dip near k|, =0.03 and the peak near
k,=0.33 (in units of 27/a) come from sheets 8 and 9, the
peak near k|, =0.09 comes from sheets 6—8, and the complex
structure in the range of k£, from 0.36 to 0.50 comes mainly
from sheets 7-9. Overall, the contribution from bands 5 and
10 are almost negligible, and bands 7-9 give the much larger
contributions.

B. Face-centered-cubic Ni

For fcc Ni we chose 14 Wannier functions, 7 each of
approximately spin-up and spin-down characters. These were

TABLE II. Anomalous Hall conductivity, in S/cm. The first
three rows show values computed using Egs. (6)-(10) together with
Eq. (25), the first term only of Eq. (25), or Eq. (11), respectively.
Results of previous theory and experiment are included for
comparison.

bee Fe fce Ni hep Co
Fermi loop 750 =2275 478
Fermi loop (first term) 7 0 -4
Berry curvature 753 -2203 477
Previous theory 7512 -2073% 492°
Expt. 1032¢ 6464 480°

4Reference 7.

bReference 30.
‘Reference 24.
dReference 25.
“Reference 26.
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FIG. 6. Calculated Fermi surfaces for bands 9—12 of fcc Ni. The
outside frame is the boundary of the Brillouin zone.

comprised of five Wannier functions of d-like symmetry cen-
tered on the Ni atoms and two Wannier functions of tetrahe-
dral symmetry located on the tetrahedral interstitial sites,
similar to the choice that was made for Cu in Ref. 9. The
inner energy window was chosen to extend 21 eV above the
bottom of the bands, thus extending 7.1 eV above the Fermi
energy and including several unoccupied bands as well.

Our calculation is consistent with previous density-
functional theory (DFT) calculations in predicting that five
bands (bands 8—12) cross the Fermi energy in fcc Ni. The
Fermi sheets for bands 9-12 are shown in Fig. 6. Band 8§
only barely crosses the Fermi energy and gives rise to very
small hole pockets near the X points (even smaller than those
illustrated for band 9). The existence of these pockets is a
delicate feature that is not clearly confirmed experimentally
and is inconsistent with some recent LDA+ U calculations.?’
However, including them or not has very little influence on
our calculated AHC, as explained below. The shapes of the
Fermi sheets in fcc Ni are somewhat more spherical than
those of bcec Fe. As expected, they again conform to the
lattice symmetries.

In the case of fcc Ni, the magnetization lies along the
[111] axis. Choosing b;=(27/a)(022) and b,=(27/a)
><(20§) in the notation of Sec. IT'A, it follows that a;
=27h, X bz/Vmip=(a,a,a)=a\e“'3é(111), and we only need to
compute the c¢,3 in Eq. (10). The slices are hexagonal in
shape, and k| =k-€y) is discretized into about 100 slices.

The results are plotted in Fig. 7, along with symbols de-
noting the reference calculation by an integration of the
Berry curvature over the slice. Once again, the agreement is
very satisfactory. The values of the integrated AHC are again
summarized in Table II. A band-by-band analysis indicates
that band 8 gives only a very small contribution, less than
5% in magnitude and opposite in sign, to the total AHC. The
hole pockets in band 9 give a slightly larger positive contri-
bution, but we find that the dominant negative contribution
to the AHC comes from bands 10-12.
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FIG. 7. Calculated Berry phase ¢(k, ) of fcc Ni (in radians) as a
function of &k (in units of 27/ v3a). The solid line shows results
obtained from the Fermi-loop method of Eq. (25); the circles indi-
cate reference results obtained by the integration of the Berry cur-
vature on each slice using Eq. (11).

C. Hexagonal-close-packed Co

Co in the hcp structure has two atoms per unit cell. We
choose 18 Wannier functions per Co atom, 9 for each spin, in
a very similar manner as was done for Fe in Sec. IV A. We
therefore have 36 Wannier functions per cell.

In our calculation, seven bands (bands 16-22) cross the
Fermi energy in hcp Co. We show the four largest Fermi-
surface sheets associated with bands 18-21 in Fig. 8. The
Fermi surfaces can be seen to respect the six-fold crystal
symmetry, and none of them touch each other.

The magnetization of hcp Co lies along the [001] axis. We
thus  choose b,=Q2w/a)(1/y3,-1,0) and b,=(27/a)
X (1/y3,1,0) in the notation of Sec. II A, and it follows that
a;=27b; Xb,/V,;,=(0,0,c). The slices are hexagonal in
shape, and k, =k, is discretized into about 200 slices.

The results are plotted in Fig. 9, along with the symbols
denoting the reference calculation by integration of the Berry
curvature. Once again, the peaks and valleys correspond to
the places where two loops approach one another closely.

FIG. 8. Calculated Fermi surfaces for bands 18-21 of hcp Co.
The outside frame is the boundary of the Brillouin zone.
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20

Berry phase
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FIG. 9. Calculated Berry phase ¢(k ) of hep Co (in radians) as
a function of k; (in units of 27/c). The solid line shows results
obtained from the Fermi-loop method of Eq. (25); the circles indi-
cate reference results obtained by the integration of the Berry cur-
vature on each slice using Eq. (11).

Some pieces of the Fermi surfaces of hcp Co are nearly
parallel to the slices (see the bottom right panel of Fig. 8), so
that the number and shapes of the Fermi loops sometimes
change rapidly from one slice to another. In particular, we
found it difficult to enforce continuity of the branch choice
of Eq. (25) as a function of k, near the sharp features at
k a/27=0.18 and 0.42 in Fig. 9. We therefore redetermined
the correct branch choice by comparing with the result of the
Berry-curvature integration at slices just outside these diffi-
cult regions. Despite these difficulties, it can still be seen that
the Fermi-loop method works well for this case. Some of the
sharp structure appearing in Fig. 9 in the range of k, from
0.4 to 0.5 (in units of 27/a) arises from the small hole
pocket in band 16, but this gives a rather small contribution
to the total AHC. The peak around k, =0.14 and the sharp
dip around 0.18 comes mainly from the sheets associated
with bands 20 and 21.

D. Discussion
1. Internal consistency of the theory

The second row of Table II shows the results computed
using only the first term of Eq. (25). In each case, its contri-
bution is less than 1% of the total, and would therefore be
negligible for most purposes. Actually, it can be shown that
the inclusion of the first term only in Eq. (25) of the present
method is equivalent to carrying out the Berry-curvature in-
tegration approach of Ref. 8§ with the D-D term omitted in

Eq. (32) of that work (that is, only the D-A and Q terms
included). We have carried out this comparison and find val-
ues of 7, —0.5, and -2 S/cm for bec Fe, fce Ni, and hep Co,
respectively, in very good agreement with the values re-
ported in Table II. The physical interpretation for the small
terms in the second row of Table II is basically that the full
set of Bloch-like states constructed from the Wannier func-
tions (e.g., the manifold of 18 Bloch-like states in bec Fe)
has some small Berry curvature of its own, and the projec-
tion of this curvature onto the occupied subspace gives the
small first term of Eq. (25). On the other hand, spin-orbit-
induced splittings across the Fermi level between Bloch-like
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states built from these Wannier functions give large, sharply
peaked contributions to the Berry curvature of the occupied
subspace, and make a very much larger contribution to the
total AHC. Of course, the precise decomposition between the
first and second terms of Eq. (25) depends on the exact
choice of Wannier functions, but the present results seem to
indicate that the dominance of the second term is probably a
general feature, at least for systems in which the Wannier
functions are well localized and the spin-orbit splitting is not
very strong.

As mentioned in the previous section, the overall agree-
ment seen in Table II between the results computed using the
Fermi-loop approach and those computed using the Berry-
curvature integration indicates the internal consistency of our
theory and implementation. The agreement with the results
of Yao et al., which were obtained by a Berry-curvature in-
tegration using an all-electron approach,” also demonstrates
the robustness of our pseudopotential implementation, in-
cluding its ability to represent spin-orbit interactions cor-
rectly.

2. Comparison with experiment

In the last row of Table II we show comparison with some
representative experimental values for the AHC of Fe, Ni,
and Co. However, it should be kept in mind that there are
some uncertainty and variation in the values reported by dif-
ferent groups. For example, Ref. 28 gave a value for Ni of
—753 S/ecm and Ref. 29 reported a value for Co of
500 S/cm. It could well be that different kinds of experimen-
tal samples have different impurities and defect populations,
leading to different extrinsic contributions to the AHC. Since
the theoretical values presented in Table II are all computed
by including only the intrinsic Karplus-Luttinger contribu-
tion to the AHC, so that extrinsic skew and side-jump scat-
tering contributions are neglected, it is most appropriate to
compare with experimental measurements in which the ef-
fects of the intrinsic contribution are isolated.

A serious effort in this direction has recently been made
by studying and correlating the variation of both the longi-
tudinal and the anomalous Hall conductivity as a function of
temperature.”® It was found that for Fe, Co, and Ni, 0l
remains roughly constant between 150 and 300 K while o,
changes by about a factor of 4. The value of o, in this
plateau was attributed to the intrinsic mechanism, which
should be independent of the scattering rate. The values thus
obtained are about 970 and —480 S/cm for Fe and Ni films,
respectively (the value quoted in Table II for Co from the
same work is also a film value), and about 2000 S/cm for
single-crystal Fe. The factor-of-two difference reported in
Ref. 26 between the intrinsic oy, of Fe in the single-crystal
and film forms is puzzling and deserves further investigation.

Turning now to the comparison between theory and ex-
periment, we find a very rough agreement at the level of
signs and general trends. However, the agreement is not
quantitatively accurate, except for Co where the agreement is
good. For Fe our results are in very rough agreement (~25%
low) compared to the results of Ref. 24 or the film results of
Ref. 26, but a factor of 2 smaller than the single-crystal re-
sults of Ref. 26. Clearly the most serious discrepancy is for
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Ni, for which we get a consistent sign but a much larger
magnitude than indicated by the experiments. (The issue?’ of
whether a hole pocket really appears in band 8 of fcc Ni is
not relevant since, as indicated in Sec. IV B, it makes a quite
small numerical contribution to our theoretical result.) While
the available experimental values for Ni appear to be roughly
consistent with each other, we are not aware of any study
using the methods of Ref. 26 applied to both films and single
crystals of Ni. Until the experimental situation is clarified
further, a final judgment on the degree of disagreement with
the values based on DFT calculations should perhaps be
withheld.

In the meantime, it would be desirable to face some of the
challenges and open questions that remain on the theoretical
side. For example, not much is yet known about the accuracy
of common exchange-correlation functionals, such as the
PBE functional used here,'® for computing the AHC. Fe, Ni,
and Co have open d shells and can be considered from one
point of view to be strongly correlated systems. The fact that
the magnetic moments are given accurately by DFT (see
Table I) does not necessarily mean that more delicate prop-
erties, especially those like the AHC and the magnetocrystal-
line anisotropy?’ that depend on spin-orbit interactions, will
be given accurately. It is possible that the use of more so-
phisticated density-functional approaches (e.g., current-
density functional theories) or higher-level many-body ap-
proaches may ultimately prove necessary. Finally, it would
be desirable to develop DFT-based methods for computing
the defect-related extrinsic contributions, but this will also
prove to be a daunting challenge, not least because the rel-
evant defect populations are not known.

In summary, experiments and DFT-based theories agree
on the orders of magnitude and signs of the intrinsic
Karplus-Luttinger contributions to the AHC in these three
ferromagnetic metals, and the results for Fe and especially
Co suggest that quantitative agreement may be obtainable.
The substantial discrepancy for Ni deserves further attention.

V. COMPUTATIONAL EFFICIENCY

The motivation for developing a method for computing
the AHC that relies only on information computed on the
Fermi surface is, to some degree, esthetic and philosophical:
Haldane argued that the AHC is physically most naturally
regarded as a Fermi-surface property,'® and as such should
be computed using a method that does not make use of ex-
traneous information in arriving at the desired quantity.
However, a much more important motivation from the prac-
tical point of view is the idea that the computational effort
might be drastically reduced by having to compute quantities
only on the two-dimensional Fermi surface rather than on a
three-dimensional mesh of k points.

In the present implementation as it stands, unfortunately,
the computational savings gained through the use of the
Fermi-loop Berry-phase approach are quite modest. After
taking advantage of the symmetry as discussed in Sec. III C,
the total computational time of our AHC calculation for bec
Fe is about 1.7 h using a 200X 200 k& mesh on each of 500
slices, to be compared with about 2 h using our previous
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method of Ref. 8. (These timings are on a 2.2 GHz AMD-
Opteron PC, and neither includes the Wannier construction
step, which takes about 2.5 h.) Roughly, the work on each
slice can be divided into three phases: step 1, computing the
energy eigenvalues on the 200 X 200 k mesh; step 2, execut-
ing the contour-finding algorithm; and step 3, evaluating Eq.
(25) on the discretized Fermi loops. We find that less than
1% of the computer time goes to step 2, while the remainder
is roughly equally split between steps 1 and 3. The opera-
tions in these steps have been greatly accelerated by making
use of Wannier interpolation methods, but this is also the
case for the comparison method of Ref. 8. (We emphasize
that, for this reason, both the method of Ref. 8 and the
present one are orders of magnitude faster than methods
based on direct first-principles calculations at every k point.)

Many opportunities for further reduction of the computer
time are worthy of further exploration. Regarding step 1, for
example, at the moment the contour finding is done indepen-
dently on each slice; it might be much more efficient to step
from slice to slice and use a local algorithm to determine the
deformation of the Fermi contours on each step. It may also
be possible to do a first cut at the contour finding using a
coarser k mesh (say, 50X 50) and then refine it in regions
where the loops approach one another or have sharp bends. It
may also be possible to take larger steps between slices in
most regions of k, and fall back to fine slices only in deli-
cate regions. In implementing all such strategies, however,
one should be careful to avoid missing any small loops that
might appear suddenly from one slice to the next, or which
might be missed on an initial coarse sampling of the slice. It
may also be interesting to explore truly three-dimensional
algorithms for finding contour surfaces, and then derive two-
dimensional loops from these.

As for step 3, it should be possible to use a lower density
of k points in the portions of the loop discretization where
the character of the wave functions is changing slowly. The
time for this step will also obviously benefit from taking
larger steps between slices in regions where this is possible.
Finally, a reduction by a factor of 2 or more may be possible
by making use of symmetries not considered in Sec. III C,
such as the diagonal mirror symmetries (x<y, etc.) in bec
Fe.

The exploration of these issues is somewhat independent
from the quantum-mechanical formulation of the underlying
theory, which is the main focus of the present work, and we
have therefore left the exploration of these possibilities for
future investigations.

Finally, it should be emphasized that the computational
load scales strongly with the dimension of the Wannier space
used to represent the wave functions. In our calculations, this
was 18, 14, and 36 for Fe, Ni, and Co, respectively. In some
materials, there may be only a few bands crossing the Fermi
energy, and it might be possible to represent them using a
much smaller number of Wannier functions. This is the case
in many transition-metal oxides such as Sr,RuQ,, cuprate
superconductors, etc. In ferromagnetic materials of this kind,
it should be possible to choose an inner window in the Wan-
nier disentanglement procedure’ that brackets the Fermi en-
ergy but does not extend to the bottom of the occupied va-
lence band, and to generate just a handful of Wannier
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functions (e.g., three #,, orbitals times two for spin) to be
used in the Wannier interpolation procedure. Then all matri-
ces used in that procedure would be very much smaller (e.g.,
6 X 6) and the computation would go considerably faster.

VI. SUMMARY

In summary, we have developed a first-principles method
for computing the intrinsic AHC of ferromagnets as a Fermi-
surface property. Unlike conventional methods that are based
on a k-space volume integration of the Berry curvature over
the occupied Fermi sea, our method implements the Fermi-
surface philosophy by dividing the Brillouin zone into slices
normal to the magnetization direction and computing the
Berry phases of the Fermi loops on these slices. While
Haldane has pointed out that only the nonquantized part of
the AHC can be determined in principle from a knowledge of
Fermi-surface properties only, we find in practice that it is
straightforward to make the correct branch choice and re-
solve the quantum of uncertainty by doing a two-
dimensional Berry-curvature integration on just one or a few
of the slices. Our method also makes use of methods of
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Wannier interpolation to minimize the number of calcula-
tions that have to be done using a full first-principles imple-
mentation; almost all the operations needed to compute the
AHC are actually done by working with small matrices (e.g.,
18X 18 for bce Fe) in the Wannier representation. This
method also allows us to discuss the contributions to the
AHC arising from individual Fermi sheets or groups of
sheets.

We have tested and validated our method by comparing it
with our earlier implementation of a Fermi-sea Berry-
curvature integration for bce Fe, fcc Ni, and hep Co. The
different crystal structures and magnetization orientations in
these three materials also allow us to demonstrate the flex-
ibility of the method in dealing with these different cases. We
find excellent agreement between the two approaches in all
cases.
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