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Adopting the original Ornstein-Zernike �OZ� definition of the direct correlation function c�r�, the present
study deals with the deviation ��r� of c�r� induced by Coulomb correlation in the homogeneous electron liquid
beyond the OZ function cFH�r� for purely Fermi hole �FH� statistical correlations. It is first stressed that ��r�
at large r is proportional to the Coulomb potential energy e2 /r, suitably scaled with the plasma frequency. Both
r space and k space formulations are presented. In k space, direct numerical use is made of inequalities due to
Kugler �Phys. Rev. A 1, 1688 �1970�� by employing analytic representations of the pair correlations due to
Gori-Giorgi et al. �Phys. Rev. B 61, 7353 �2000�� as a function of the uniform electron density. Then, in r
space, consideration is given to differential equations proposed by Dawson and March �Phys. Chem. Liq. 14,
131 �1984�� and also in the recent study of Nagy and Amovilli �J. Chem. Phys. 121, 6640 �2004��. In both
approaches, one-body potentials enter, into which Coulombic interelectronic repulsions are subsumed. Finally,
Gaskell’s �Proc. Phys. Soc. London 77, 1182 �1961�� variational ground-state wave function is shown to be
related to the OZ direct correlation function in k space.
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I. INTRODUCTION

In many-electron problems, the pair density, n2�r1 ,r2�,
say, is a crucially important quantity. In the homogeneous
electron liquid, which is our sole focus here, n2�r1 ,r2� be-
comes translationally invariant, i.e., a function only of r12
= �r1−r2�. If we scale appropriately, we get then, instead of
n2, the pair correlation function g�r�, normalized such that
g�r�→1 as r tends to infinity.

Instead of working directly with g�r�−1=h�r�, the latter
being termed the total correlation function, we shall here
follow the lead of Ornstein-Zernike �OZ�,1,2 who, in treating
a classical liquid such as argon near its critical point, intro-
duced the so-called direct correlation function c�r� defined
by the convolution relation

h�r� = c�r� + �0� c��r − r���h�r��dr�. �1�

Though we are aware that in the ground state of the homo-
geneous quantal electron liquid we focus on here, other defi-
nitions than the classical OZ relation �Eq. �1�� are possible
for c�r�, we shall here define c�r� by Eq. �1�, where �0 is now
the electron number density. However, h�r�=g�r�−1 and the
structure factor S�k� �Ref. 3� are related by Fourier trans-
form, namely,

S�k� − 1 = �0� h�r�exp�ik · r�dr . �2�

Using the convolution property of Eq. �1�, it then follows
that the Fourier transform of c�r�, say, c̃�k�, is related to the
liquid structure factor by

c̃�k� = 1 −
1

S�k�
. �3�

In classical liquid argon, already referred to above, in which
the atoms interact via the pair potential ��r�, c�r��
−��r� /kBT at large r in a model classical liquid, in equilib-
rium at temperature T. In the quantal electron liquid,

c�r� �
e2

rEchar
�r → �� �4�

where Echar is a �now quantal� characteristic energy, to be
discussed further below, to replace the thermal energy kBT in
argon near its triple point. Thus, the OZ function c�r� reflects
the Coulomb energy e2 /r very directly at large r.

However, it has to be recognized that in the spin-
compensated electron liquid with which we are concerned
throughout, Fermi statistical correlations exist between par-
allel spin electrons. There is then a nontrivial S�k� and hence,
through Eq. �3�, a direct correlation function c̃�k� even when
Coulomb interactions are “switched off.” Denoting the Fermi
hole by FH, it is well known that S�k� has the form2,3

SFH�k� = a1k + a3k3 �k � 2kf� = 1 �k � 2kf� , �5�

where a1=3/4kf and a3=−1/16kf
3, kf being the Fermi wave

number. This is related to the electron density �0 by

�0 =
kf

3

3�2 . �6�

From Eqs. �5� and �3�, it follows immediately that c̃FH�k�
=0 for k�2kf. Its form in r space has been given in the
recent study of Nagy et al.4 The definitive theory of c�r� in
the homogeneous electron liquid must recover this result
cFH�r� as the elementary charge e is mathematically allowed
to tend to zero. Therefore, in Fig. 1�a�, we have plotted
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cFH�r� obtained by taking the Fourier transform of Eq. �3�
when S�k� has the Fermi hole form �Eq. �5��. The important
dimensionless independent variable in Fig. 1�a� is seen to be
kfr. The exact c�r� including correlations �i.e., rs�0� does
not tend smoothly to cFH�r� as rs=0 is a singular point. This
is clear since the Fourier transform of c�r ,rs�, namely, c̃�k� is
proportional to 1/k2 as k→0 for rs�0, but c̃FH�k� goes to
1/k as k→0. This latter point is clear by combining Eq. �5�
with the relation between c̃ and S in Eq. �3�. What is remark-
able to us is that cFH�r� is of a very simple form to graphical
accuracy, tending at large r to an r−2 behavior. This follows
analytically from the form c̃FH�1/k as k tends to zero. This
long range behavior, as will be demonstrated quite explicitly
below, will be crucially altered by the addition of Coulombic
correlations, with the direct correlation function c�r� of the
homogeneous electron liquid falling off as r−1, i.e., having
the form of the Coulomb repulsion e2 /r at sufficiently large

r. In turn, this means that c̃�k��1/k2 in the long wavelength
limit due to the long range of the electron-electron repulsions
in the model �jellium� under discussion throughout this ar-
ticle. We felt it of interest to show also in Fig. 1�b� a plot of
r2cFH�r�, which reveals some small underlying oscillatory
behavior before tending to a known constant value as
r→�.

With this as background, the outline of this article is then
as follows. In Sec. II, k space theory is considered. A for-
mally exact treatment is first summarized, posed now in
terms of the Coulomb correlation correction �CCC� ��r� de-
fined by

��r� = c�r� − cFH�r� �7�

or its analogue in k space,
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FIG. 1. �a� OZ direct correlation function cFH�r� obtained by a numerical Fourier transform of Eq. �3� when S�k� has the Fermi hole form
�Eq. �5��. All quantities are in a.u. Note that cFH�r� is a universal function of kfr in this Fermi hole limit of the homogeneous electron liquid
and that cFH�0�=−0.865 58. �b� Oscillatory behavior after multiplying cFH�r� by �kfr�2. It is important to stress how rapidly this plot
approaches the limiting behavior cFH�1/ �kfr�2 as kfr become large.
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�̃�k� = c̃�k� − c̃FH�k� . �8�

Both cFH�r� and c̃FH�k� are known in exact analytic form, the
latter from Eqs. �5� and �3� with the corresponding r space
form given in Ref. 4 being collected for convenience in Ap-
pendix A. Then, as already mentioned, this formally exact
theory can be turned into numerical results, but now in the

form of an inequality for the CCC function �̃�k�. Section III
then considers analogous results in r space, with differential
equations of the r space CCC function now being involved.
Section IV constitutes a summary plus some proposals for
further work. In an Appendix, Gaskell’s ground-state varia-
tional wave function,5 sometimes used as a valuable starting
point for quantal computer simulation of the homogeneous
electron liquid, is shown to be related to the CCC function

�̃�k�.

II. FORMAL k SPACE THEORY

A number of early workers directly considered k space
theory aimed at relating the formally exact �but as yet un-
known analytically� structure factor S�k ,rs� to the Fermi hole
result in Eq. �5�, where the mean interelectronic spacing rs is
defined by

�0 =
3

4�rs
3 . �9�

A convenient summary is given by Stoddart,6 with earlier
references collected there. In particular, Stoddart defines, in
his Eq. �12�,6 a function B�k� through

� k2

2S�k�	2

= � k2

2SFH�k�	2

+ 4��0�1 +
k2

2�
B�k�	 . �10�

In terms of the CCC function �̃�k� introduced in Eqs. �7� and
�8� above, we obtain the following for the relation between

B�k� and �̃�k� from Eqs. �10�, �3�, and �8�:

�̃�k�2 + 2�c̃FH�k� − 1��̃�k� =
16��0

k4 �1 +
k2

2�
B�k�	 .

�11�

In the following section, we shall briefly summarize an ap-
proximate form for the Fourier transform B�r� of the func-
tion B�k� entering Eq. �11�. Here, however, we shall turn
next to the pioneering work of Kugler,7 who gave an inequal-
ity for the structure factor S�k�. Below, we discuss the impli-
cations of Kugler’s work for the OZ function c̃�k� and,

hence, for the central CCC function �̃�k� of the present
study.

A. Inequality involving the OZ function

Defining, following Kugler,7 a frequency 	0�k� by 
k2 /m
and the plasma frequency 	p by the customary relation 	p

2

=4�e2�0 /m, and using Eq. �3�, we can rewrite Kugler’s
original inequality for S�k� �Ref. 7� in terms of the OZ
function c̃�k� as

k4

kf
4 �1 − c̃�k��2 � 	p

2 +
4	0�k�




KE� + 	0

2�k� + I�k� . �12�

To complete the definitions needed in this inequality, we note
that 
KE� is the kinetic energy per electron. This quantity is
plotted, for example, in Fig. 1 of the paper of Herman and
March8 over a wide range of rs, making use of the virial
theorem in the form


KE� + E = − rs
dE

drs
. �13�

For an accurate numerical work, E�rs� obtained in the quan-
tal computer simulations of Ceperley and Alder9 is well fitted
by Perdew and Zunger10 for rs�20. Finally, the definition of
the remaining quantity I�k�, introduced originally by Kugler,
in Eq. �12� is

I�k� =
e2

m�
�

0

�

dqq2�S�q� − 1�J�q,k� , �14�

with

J�k,q� =
5

6
−

q2

k2 +
k

8q
�q2

k2 − 12

ln�q + k

q − k
2

, �15�

which is a function only of q /k, positive for all values of its
argument and monotonically decreasing with increasing q /k.
We note for completeness that Eq. �12� involves c̃�k� on the
left-hand side and S�k� via I�k� on the right-hand side.

To obtain I�k� and c̃�k�, we have used the model analytic
results of Gori-Giorgi et al.11 These workers have modeled
analytically the electron static structure factor S�k� and the
corresponding pair correlation function g�r�. In addition to
imposing known analytic constraints, the model presented in
Ref. 11 accurately interpolates the extensive diffusion Monte
Carlo data of Ortiz et al.12 Therefore, we have utilized their
model of S�k� as a function of mean interelectronic spacing
rs to gain a quantitative understanding of the direct correla-
tion c�r�, which is the main focus of the present study. In Fig.
2, we show I�k ,rs� /kf

3 for rs=2 and 5.
Although in Appendix B we give a numerical example of

the use of Eq. �12� for a high density value rs=0.1, for which

KE� can be obtained analytically from Eq. �13�, we want to
emphasize here that while, in form �12�, the right-hand side
gives a useful estimate of k4�1− c̃�k��2 over the whole range
of k, the example in Appendix B demonstrates conclusively
that if we subtract k4 /kf

4 from both sides of Eq. �12�, the
resulting inequality is only useful at small k and is therefore
quite limited in practical applications. In particular, inequal-
ity �12� is not useful in the interesting limit of large k.

In contrast, we can return to the result for B�k� introduced
in Eq. �10� in the following section in which we consider r
space theory.

III. r SPACE THEORY OF OZ FUNCTION

To link r space theory with the k space presentation of
Sec. II, let us begin with the Vashista and Singwi relation13
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of the Fourier transform B�r� of B�k� introduced in Eqs. �10�
and �11�. This is written by Stoddart6 in the form

�B�r� = ����r���1 + a�0
�

��0
	�g�r,�0� − 1� , �16�

where a is an adjustable parameter in the Vashista-Singwi
treatment. In Eq. �16�, ��r� is the Coulombic repulsion in the
form 4� /r, while g�r� is the pair function in which the den-
sity dependence �0 is displayed.

To extract B�k�, the Fourier transform of B�r�, from Eq.
�16�, let us form �2B as

�2B = �h + a�0
�h

��0
	�2�4�

r
 + �1 + a�0

�

��0
	 � h · ��4�

r
 ,

�17�

where h=g−1 is the total correlation function introduced
above. Then, in Fourier transform, we find

k2B�k� =
16�2�0

kf
3 �1 + a�0

�

��0
	h�0,�0� +

16�2�0

kf
3

��1 + a�0
�

��0
	�

0

�

dr
sin kr

kr

�h

�r
, �18�

which is convenient to rewrite in the form

k2B�k� =
16�2�0

kf
3 �1 + a�0

�

��0
	�

0

�

dr� sin kr

kr
− 1	 �h

�r
.

�19�

In Fig. 3, we compare the formally exact k2B�k� function
obtained from Eq. �9� and calculated by means of the fitted
S�k� of Gori-Giorgi et al.11 with the function coming from
Eq. �19�.

By way of example, we show plots for rs=2 and 5 and
with a in the range ±1. Though the agreement is, at best,
semiquantitative, we wish to stress here that the merit of the
Vashista and Singwi approach is clear by analogy with a

classical statistical mechanical theory of liquid argon. There,
the density dependence of g�r� �or, equivalently, h�r�� is con-
nected with integrals over the three-body correlation func-
tion. Clearly, obtaining B�k� in Eq. �9� from the known quan-
tum mechanical density matrix hierarchy �see, for example,
Dawson and March14� must involve higher order density ma-
trices and, in particular, the third order form.

A. Dawson-March differential equation

Dawson and March15 used the explicit form of the Fermi
hole to write

gFH�r� = 1 −
9

2
� j1�kfr�

kfr
	2

, �20�

where j1�x� denotes the first order spherical Bessel function
defined by j1�x�= �sin x−x cos x� /x2. These authors then
demonstrate that Eq. �20� can be rewritten as
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FIG. 2. Function I�k ,rs� defined in Eq. �14�, which enters in-
equality �12� for the OZ function c̃�k�, for �a� rs=2 and �b� rs=5.
All quantities are in a.u.
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FIG. 3. Shape of function k2B�k� in the formally exact k space
theory set out in Eq. �10� �full line�, �a� for rs=2 and �b� rs=5. In
the same plots, the exact function is compared with the Fourier
transform of �2B�r�, obtained from the Vashista and Singwi �Ref.
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density dependence of g�r ,�0� involved in that equation is calcu-
lated from the fit given by Gori-Giorgi et al. �Ref. 11�. All quanti-
ties are in a.u.
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gFH�r� = 1 −
3
2

m�0r210�r,EF� , �21�

where 10= ��n10/�E�EF
is the free electron local density of

states of the p-component �l=1� at the Fermi energy EF.
The earlier work of March and Murray16 allows a differ-

ential equation to be written, which determines 1�r ,E�, the
generalization of the free electron quantity 10 entering Eq.
�21�, in the presence of a central potential energy V�r�. Their
equation reads

1

8

�3

�r3 �r21� + �E − V −
1

r
 �

�r
�r21� −

1

2
� �V

�r
r21 = 0.

�22�

Schinner17 has subsequently reported a numerical solution of
the above Dawson-March model, using, as the authors pro-
posed, a self-consistent field determination of V�r�. The pair
function g�r� remains positive even for the low density cor-
responding to rs=10. However, g�0,rs� is not good, being
too large when compared, for example, with the useful Over-
hauser form,18

g�0,rs� =
32

�8 + 3rs�2 . �23�

Employing again the result of Gori-Giorgi et al.,11 one can
use Eq. �22� as a route to determine V�r� via a first order
differential equation. However, we turn instead to a formally
exact r space theory given recently by Nagy and Amovilli,19

as this, though nonlinear compared with the Dawson and
March15 linear theory of g�r�, is again in the form of an r
space theory, but now for the “pair function amplitude”
�g�r�, given a one-body potential subsuming electronic Cou-
lombic correlations. Their differential equation is

�2

�r2 �r�g� + �� − vef f�r��r�g = 0. �24�

Work actually in progress20 on the potential vef f in this
equation will be published elsewhere. Here, we limit our-
selves to show in Fig. 4 the plot of the function

��r� =
1

r�g

�2

�r2 �r�g� , �25�

which gives the numerical form of vef f�r�, for rs=2 and 5, to
within an additive constant. A referee has requested a brief
discussion of the physical meaning of vef f�r� in Eq. �24�. A
hierarchy of density matrix equations, which is the quantal
generalization of the Bogoliubov-Born-Green-Kirkword-
Yvon hierarchy of classical statistical mechanics of fluids,
shows that to exactly evaluate the pair function g�r�, which is
the diagonal of the two-particle density matrix in the uniform
electron fluid under discussion, one must know the three-
particle density matrix. Thus, any exact theory of vef f�r�
seems presently beyond the scope of available methods �we
can liken the situation to that of using, for example, the
approach of Vignale and Singwi21�. Of course, we can only
make quantitative progress on vef f�r� here by utilizing the

modeling of g�r� by Gori-Giorgi et al.11. In the light of the
above status of vef f�r�, it remains of interest to establish a
relation, albeit approximate, between vef f�r� and the OZ
function c�r�. The motivation here is that, again in classical
statistical mechanics, the approximation −kBTc�r� is a useful
effective potential, with kBT now being the thermal energy.

B. Form of OZ function c„r ,rs…

To conclude this section on r space theory, it is natural to
calculate this function c�r ,rs� from the fits of Gori-Giorgi et
al.11 for S�k�=1/ �1− c̃�k��. In this way, we have constructed
c�r ,rs� for rs=0.1, 2, and 5 and have added the Fermi hole
form �see Fig. 1�a�� for comparison in Fig. 5�a�. In Fig. 5�b�,
we have plotted �kfr�2c�r�, which diverges like the negative
of kfr for large r, since c�r��e2 /r in this limit.

We have also studied the rs dependence of c�0,rs�. A
simple fit of our numerical results in the range 0�rs
�20 a.u. gives the result

c�0,rs� �
cFH�0� − 1.45rs

1/2 − 2.71rs

1 + 1.83rs
1/2 , �26�

which complements the Overhauser form �Eq. �23�� of
g�0,rs�.

Returning to the c�r ,rs� plot in Fig. 5�a�, it is known that
at large kfr,

c�r,rs� �
e2

r
	p
�

rs
3/2

r
�

rs
1/2

kfr
, �27�

with kfr being the independent variable in that plot.

IV. SUMMARY AND FUTURE DIRECTIONS

We have focused here on the CCC to the OZ Fermi hole
function cFH�r� in r space or in momentum space c̃FH�k�. In
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FIG. 4. Plot of function � defined in Eq. �25� against kfr for
rs=2 �curve 2� and 5 �curve 5�. � is the effective potential, to within
an additive constant, which gives the pair function amplitude in the
Nagy and Amovilli approach �Ref. 19�. All quantities are in a.u.
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k space, we have employed the analytic fits of Gori-Giorgi et
al.11 for S�k� to make use of Kugler’s inequality, but now
written to reflect the OZ function. The CCC function ��r� is
proportional to e2 /r at large r and, thus, directly reflects the
Coulombic interelectronic repulsion.

While the k space theory, at present, appears to be the
more direct approach, it does not ensure that the pair corre-
lation function g�r��0: an obvious physical requirement.
The current applications of the Dawson and March differen-
tial equation �Eq. �22�� give g�0��0, but too large to agree
with the Overhauser fit.18 Any definitive r space theory
should embody Overhauser’s proposal at least approxi-
mately.

Finally, some attention has been paid to the formally exact
Nagy and Amovilli nonlinear equation for g�r�,19 and the
one-body potential vef f�r� subsuming correlations which it
contains has been extracted for sample values of rs in Fig. 4
to within an additive constant.
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APPENDIX A: FERMI HOLE FORM OF OZ DIRECT
CORRELATION FUNCTION

In a very recent work, Nagy et al.4 considered a homoge-
neous Fermi liquid with a model repulsive inverse square
law interparticle potential energy. In the course of their study,
the Fermi hole form of the direct correlation function cFH�r�
was obtained analytically. Since c�r� is the heart of this ar-
ticle, we first summarize the closed form of cFH�r� below.

In terms of the Fermi wave number kf, the result for the
OZ function representing exactly the Fermi hole is

cFH�r� =
3

2kfr
� sin�2kfr� − 2kfr cos�2kfr�

�kfr�2 −
4

3kfr
IFH�r,kf�	 .

�A1�

The function IFH�r ,kf� in the work of Nagy et al. is given in
terms of two contributions. However, here we have calcu-
lated the function IFH�r ,kf� directly from the numerical re-
sults for cFH�r�.

It is also worth noting here that Nagy et al.4 proposed an
approximate form of cFH�r� in which the term IFH�r ,kf� in
Eq. �A1� is replaced by

IFH�r,kf� � 1 − cos�2kfr� , �A2�

which is in good agreement with the large r behavior of
IFH�r ,kf�.

APPENDIX B: ILLUSTRATION OF INEQUALITY (12)
INVOLVING OZ FUNCTION c̃„k… FOR A HIGH DENSITY

HOMOGENEOUS ELECTRON LIQUID

As mentioned in the main text, let us remove the terms of
O�k4� in inequality �12� by subtracting k4 /kf

4 from both sides.
Then, we find the following in a.u.:

� k4

kf
4�c̃�k�2 − 2c̃�k�� �

1

kf
4� 3

rs
3 + 4k2
KE� + I�k,rs�	 ,

�B1�

where the first term on the right-hand side of Eq. �B1� de-
notes the square of the plasma frequency 	p in a.u.

We take a high density example rs=0.1 to illustrate form
�B1�. Then, the kinetic energy 
KE� reads as follows, using
the analytic Hartree-Fock energy plus the Gellmann-
Bruckner correlation energy to insert the E�rs� in the virial
theorem �Eq. �13��:


KE� =
1.105

rs
2 +

0.916

rs
− A ln rs − B + A , �B2�

where A= �1−ln 2� /�2 and B=−0.0469.
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FIG. 5. OZ direct correlation function c�r ,rs� �a� plotted as a
function of kfr for rs=0.1, 2, and 5. The Fermi hole form is added
for comparison �uppermost curve�. In �b�, the OZ direct correlation
function is multiplied by �kfr�2 for three different densities corre-
sponding to rs=0.1, 2, and 5. Note that 2�rs�5 is the range of the
simpler metal densities �e.g., Al and Cs�. All quantities are in a.u.
One sees the simplicity of the OZ function and especially how
quickly it approaches its large r form determined by Coulombic
interaction e2 /r.
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Figure 6 shows both sides of inequality �B1�, and it is
quite clear that this is only useful at long wavelengths,
though, of course, the Kugler inequality holds for all k val-
ues.

APPENDIX C: GASKELL’S VARIATIONAL WAVE
FUNCTION FOR THE HOMOGENEOUS ELECTRON
LIQUID AND ITS RELATION TO THE OZ FUNCTION

Gaskell wrote a ground-state wave function � for a ho-
mogeneous electron liquid in terms of density fluctuations �k
�Ref. 5� defined by

�k = �
i=1

N

exp�− ik · ri� , �C1�

where the vectors ri denote electronic positions. With D de-
noting a Slater determinant of plane waves, Gaskell’s wave
function has the form

� = D exp�− �
k

d�k��k�k
*	 . �C2�

Gaskell then determined the function d�k� entering Eq. �C2�
variationally.

In the high density limit corresponding to small interelec-
tronic separation rs, and for a long wavelength, Gaskell then
obtained d�k� in the form

d�k� � � 4

3�
� 4

9�
1/3	1/2kf

2rs
1/2

2k2 . �C3�

However, as indicated in the main text, the OZ function c̃�k�
in the same long wavelength limit behaves as

c̃�k� �
4�e2

k2 1
2
	p

, �C4�

where �1/2�
	p denotes the zero-point energy of the
plasmon. By comparison of Eqs. �C3� and �C4�, one
recognizes—using the result that the product kfrs is a pure
number—that in this long wavelength limit �at least� d�k� is
proportional to the OZ function c̃�k�.

Returning briefly to the Fermi hole pair function and writ-
ing �=k /kf and x=kfr, we have

gFH�x� − 1 = −
3

2
�

0

�

�2j0��x��1 − SFH����d� , �C5�

where j0�x�=sin x /x. Using Eq. �3� again in the Fermi hole
limit, corresponding to d�k�=0 in the Gaskell wave function
�Eq. �C2��, we immediately find an alternative expression for
Eq. �C5� in terms of the OZ function as

gFH�x� − 1 = −
3

2
�

0

�

�2j0��x��1 −
1

1 − c̃FH���	d� .

�C6�

Introducing the Coulombic correlations reflected through
d�k�, one has an approximate pair function of the form

g�x� − 1 = −
3

2
�

0

�

�2j0��x��1 −
1

1 − c̃FH��� + 4d���	d� ,

�C7�

where d��� depends, of course, on the density �0 or, equiva-
lently, rs.

In short, the main conclusion of this appendix is that d�k�
in the Gaskell wave function is intimately related to the OZ
function. It would be interesting if quantum Monte Carlo
calculations starting from the wave function �Eq. �C2�� could
derive �of course, approximately� the pair function g�r� and,
hence, relate d�k� directly to c̃�k� beyond the long wave-
length limit discussed above.
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