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A tight-binding model is used to study the role of impurities in a graphene ribbon. The graphene ribbon is
made of lines of carbon atoms in an armchair or zigzag shape where the impurities are included in the ribbon
substitutionally. The addition of a line of impurities opens up a gap in the energy spectrum. The size of it
depends in a nonmonotonic way on the position of the impurity line, and also on the strength of the carbon-
impurity interaction.
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Graphenes have attracted attention lately due to their po-
tential application in nanotechnological devices and their un-
usual Dirac energy spectrum. Although the theoretical as-
pects were studied more than 50 years ago,1,2 it was only
three years ago, after the first experimental results, that this
system became a hot topic in material science and condensed
matter physics.3–7

Graphene is a zero-gap material which, together with its
linear energy spectrum, leads to the absence of confinement
by electric potentials.8 In order for gating to be used as an
effective way to manipulate the electron mobility, one needs
a way to open an energy gap around the K and K� points.

Recently, it was shown that in bilayer graphene it is pos-
sible to create a gap at the K point by using chemical doping
or by the application of an electric field perpendicular to the
bilayer, i.e., by applying a gate potential.9–12 A similar ap-
proach does not work for a single graphene layer and it is not
clear how one can create an energy gap at the K point. The
electronic properties of these graphene layers or ribbons are
strongly dependent on their geometry or size.13–20 Some at-
tempts to tune the electronic properties of these ribbons are
focusing on the study of chemical edge modifications,19 ap-
plication of uniaxial strain,20 and boron-doped graphene
ribbons,21 where a substitutional boron atom is introduced at
some specific sites of the graphene lattice.

In the present paper, we show that the introduction of a
line of impurities can also do the job of tuning the electronic
properties of a graphene ribbon. This approach to graphene
ribbons opens the possibility for a variety of energy spectra
according to the position and strength of the impurity line.
The system is defined as a honeycomb lattice of carbon at-
oms with two sublattices A and B. The graphene sheet is
infinite in the x direction and has a limited number of carbon
lines in the y direction with N atom lines. The impurities are
introduced substitutionally where we choose a carbon line
and exchange it for a different one, silicon or boron for ex-
ample �see Fig. 1�. At present, it is not clear how to produce
such a line of impurities, but one hopes that future advances
in graphene growth will allow for such atomic scale position-
ing of impurities. Our model is based on a microscopic ap-
proach using a tight-binding Hamiltonian as follows:

H = − �
i,j

tijai
†bj + H.c., �1�

where we consider, for simplicity, that the hopping term does
not change near the ribbon surface, and is defined as tij = t for
electrons in sublattice A hopping to its neighbors in sublat-
tice B, and vice versa. When the electron hops to the impu-
rity sites we define tij = tI, and we consider that the impurity-
impurity hopping tII= tI. The operators ai

† �ai� create
�annihilate� an electron on site i in sublattice A and the op-
erators bi

† �bi� act on sublattice B. The operators a† �a� and
b† �b� depend on the one-dimensional �1D� wave vector
q=qx parallel to the ribbon surface and the indices n and n�
�=1,2 , . . . ,N� that label the carbon and impurity lines paral-
lel to the surface. We can rewrite the Hamiltonian as

H = − �
qxnn�

��nn��qx�aqxn
† bqxn� + H.c.� . �2�

For a Hamiltonian which contains only quadratic opera-
tors of fermions or bosons, the operator statistics are irrel-
evant. Therefore, the same eigenvalues are obtained for fer-
mions or bosons, and the operators can be considered
creation and annihilation operators of a harmonic oscillator.
Then, in order to find the band structure of the system along
the Brillouin zone we have to diagonalize the Hamiltonian to
find the eigenvalues of the system �see, for example, Ref.
22�. We apply the standard equation of motion i�dA /dt
= �A ,H� �for any operator A� to the operators aqxn and bqxn in
line n. Taking �=1 and assuming that the modes behave like
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X

FIG. 1. A graphene ribbon where black �gray� dots are the sub-
lattice A �B� with a line of impurities �white dots� in the middle of
the sheet.
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exp�−i��qx�t� we will have the sets of coupled equations

��qx�aqxn = �
qxn�

�nn��qx�bqxn�, �3�

��qx�bqxn = �
qxn�

�nn�
* �qx�aqxn�. �4�

There are 2N equations where the amplitude factors �nn��qx�
are given by

�nn��qx� = t�exp�iqxa��n�,n + exp�i
1

2
qxa��n�,n±1	 �5�

for the armchair configuration, and

�nn��qx� = t�2 cos�
3

2
qxa��n�,n±1 + �n�,n�1	 �6�

for the zigzag case, where the � sign depends on the sublat-
tice since the atom line alternates from A and B. The above
equations can be written in matrix form as

��qx��aqxn

bqxn
	 = � 0 T�qx�

T*�qx� 0
	�aqxn

bqxn
	 , �7�

where the solution of this matrix equation is given by the
condition

det�− ��qx�IN T�qx�
T*�qx� − ��qx�IN

	 = 0, �8�

where T�qx� is the hopping matrix, which depends on the
orientation of the ribbon, and ��qx� are the energies of the
modes. The matrix T�qx� is given by

T = �
� 	 0 0 0 . . .

	 � 
 0 0 . . .

0 
 � 	 0 . . .

0 0 	 � 
 . . .

] ] ] ] ] �

� . �9�

The parameters �, 	, and 
 depend on the ribbon geometry
and are given in Table I.

Results for a zigzag ribbon are shown in Fig. 2. It shows
the dispersion relation for ribbons with 20 and 21 lines of
atoms with and without impurities. Depending on the num-
ber of lines, the ribbon can present two kinds of energy
bands where the main difference is related to the localized
modes, since the edges of the zigzag configuration depend on
the number of lines. For the zigzag configuration all modes

are degenerate because of the two sublattices, i.e., we have
two modes with the same energy for each sublattice. From
Fig. 2�a� one can see degenerate localized modes in the vi-
cinity of qx= ±0.5� /a, whereas Fig. 2�b� shows these degen-
erate localized modes for all qx in the Brillouin zone
�E=0�.

When we add an impurity line in line number 11 for the
sample with 20 lines, the band is now modified. The spec-
trum is still gapless, and is quite different from the one with-
out impurities. The energy band now shows a mixing of two
ribbons, one with an odd number of lines and another with
an even number of lines. For tI=0 we can imagine our sys-
tem as two ribbons: one with ten lines and another with nine
lines. Figure 2�c� can be seen as a superposition of Figs. 2�a�
and 2�b� plus the modes related to the impurities. The same
can be said about Fig. 2�d�, for a ribbon with 21 lines and
impurities in line 11. The modes appear as superposition of
two ribbons with ten lines. However, they are shifted since
the first line of one ribbon belongs to sublattice A while the
other ribbon has an atom of sublattice B in the first line of
atoms.

Next we analyze the effect of an impurity line on an arm-
chair conformation ribbon. For this geometry we have three
different band energy structures depending on the number of
lines in the sheet: 3i, 3i+1, and 3i+2, where i=1,2 ,3 , . . . .
Each of these configurations results in a different energy
band. Figure 3 shows the dispersion relation for ribbons with
20, 21, and 22 lines of atoms with and without impurities.
Figures 3�a�–3�c� show the usual behavior of dispersion re-
lation for a large armchair ribbon, i.e., the top of the valence
band and the bottom of the conduction band are located at
qx=0. One can see that the energy spectrum of the armchair
configuration shows more modes than the one for the zigzag
configuration for the same number of lines. The reason is
that the two sublattices in the armchair configuration lie on
the same line of the ribbon. Therefore the spectrum is not
degenerate as in the zigzag case.

TABLE I. Value of the matrix elements in the hopping
matrix.

Parameter Zigzag Armchair

� 0 te−iqxa

	 2t cos�
3qxa /2� teiqxa/2


 t teiqxa/2 -3

-2

-1

0

1

2

3

E
/t

-1 -0.5 0 0.5 1
qxa/π

-3

-2

-1

0

1

2

3

E
/t

-1 -0.5 0 0.5 1
qxa/π

a

b

c

d

FIG. 2. Dispersion relation for two arrangements of a zigzag
ribbon. �a� Energy band for a 20-line ribbon without impurities. �b�
Same as in �a� but now the ribbon has 21 lines. �c� A 20-atom-line
ribbon with an impurity line at line number 11. �d� Same as in �c�
for 21 lines. In �c� and �d� we have used tI=0.
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When an impurity line is introduced, the energy bands
exhibit a degenerate localized mode extending over the
whole Brillouin zone �again we are using tI=0�. As in the
zigzag case, the energy band is a superposition of two rib-
bons �see Figs. 3�d�–3�f��. It is interesting to note that for
N=21 the energy band is completely degenerate since it is
formed by two ribbons with ten lines.

The presence of the impurity line breaks the translational
symmetry normal to the edges. Therefore, it creates interface
modes decaying away from this line of atoms. This is the
main reason for the changes in the spectrum for both the
zigzag and armchair configuration. The whole ribbon now
behaves like two smaller ribbons coupled through the impu-
rity line. In Fig. 4, we plot the behavior of the energy modes
against the ratio between the impurity hopping integral and
the hopping term between carbon-carbon atoms �tI / t� at
qx=0, for the armchair configuration.

There is one mode starting at the bottom of the conduc-
tion band from zero energy, for tI=0. The energy of this
localized interface mode tends to increase with tI. Eventually
it interacts and hybridizes with other band modes. This is the
same principle for the three armchair configurations studied
here. As tI / t approaches 1 the interface mode continues
“crossing” the band and the other modes try to accommodate
to form the energy band of a single ribbon. Figure 4�a�
clearly shows the behavior of the impurity modes. For large
values of tI / t the impurity modes leave the “bulk” energy
band and increase almost linearly with the impurity hopping
integral. Although the figure presents the result for N=20,
the same behavior is observed for N=21 and 22. The differ-
ence between these three ribbons is very distinct when we
look for small values of tI / t. Figure 4�b� shows, for a ribbon
with 20 lines, the impurity mode rising, and also shows the
energy modes going to zero as the sample becomes homoge-
neous. That is expected since for N=20 there is no gap in the
band for qx=0. It is also interesting to note a crossing be-
tween electron and hole levels for tI= t. For N=21 we see

that when tI=0.5t there is also a crossing between the elec-
tron and hole levels �see Fig. 4�c��. The impurity modes in-
crease faster than in the previous case of N=20. When we
consider N=22, we mentioned above that for tI=0 the sys-
tem behaves like a superposition of two independent ribbons,
one with N=10 and another with N=11 lines. As we know,
for N=3�3+2=11 the spectrum should have no gap at
qx=0. Figure 4�d� shows the rising of two modes �which is
the impurity one and a normal mode opening the gap�.

Figure 5 shows how the gap energy is affected by the
impurities. For ribbons with N=20 and 21 they behave in a
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FIG. 3. Energy band for the armchair configuration. �a� A ribbon
with 20 lines without impurities. �b� As in �a� but now with 21 atom
lines. �c� Same as before for 22 atom lines. �d�, �e�, and �f� are the
energy bands for 20-, 21-, and 22-atom lines, respectively, but now
with an impurity in line 11. Here we took tI=0.
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FIG. 4. qx=0 dispersion of the modes for a 20-line ribbon with
an impurity in the 11th line as a function of the strength of the
hopping integral. In the upper left panel all modes of the band are
shown, while in the upper right panel we amplified the region
around E=0. For �c� and �d� we show the lower energy region for
N=21 and 22, respectively.
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FIG. 5. Variation of the energy gap against the strength of the
impurity hopping integral for an armchair ribbon. Solid line for a
20-atom-line ribbon, dashed line for 21 lines, and dotted line for a
ribbon with 22 lines of atoms. The impurities are always in line
number 11.
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similar way. They start from zero �the impurity mode at tI
=0� and reach a maximum value �the point of the first cross-
ing with the lowest band mode�. Then the gap decreases to
zero and increases again. That does not happen for N=22.
The gap increases until tI / t=0.5 and decreases slowly and

seems to converge to the same value. The curve is quite
different from the two others; this is because, as we could see
in Fig. 4, for N=22 there is no crossing between electron and
hole levels.

In order to make a more general study, we present in Fig.
6 a contour plot of the behavior of the gap energy. We now
change the position of the impurity line as well as its
“strength.” The main feature of this figure is to show that the
position of the impurity line in the ribbon is also important
and presents the same periodic behavior, i.e., for each three
additional lines the spectrum repeats. Here, the introduction
of the impurity enriches this behavior, adding the possibility
of combinations.

In summary, we have shown here that a simple tight-
binding model is able to extract very interesting features of a
carbon ribbon when a line of impurities is added to it. The
main feature is that controlling the hopping integral of the
impurities, which we assumed to be localized on a line
through the ribbon, can modify the gap in the energy spec-
trum. When tI=0 the system introduced here can also be
understood as a coupling of two graphene ribbons of differ-
ent sizes separated by some distance d. Our results also in-
dicate that the addition of a perturbation in the tight-binding
Hamiltonian can open up a gap for the nanoribbon system
discussed here.
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