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We present calculations of the thermal and electric linear response in graphene, including disorder in the
self-consistent t-matrix approximation. For strong impurity scattering, near the unitary limit, the formation of
a band of impurity states near the Fermi level leads to that Mott’s relation holds at low temperature. For higher
temperatures, there are strong deviations due to the linear density of states. The low-temperature thermopower
is proportional to the inverse of the impurity potential and the inverse of the impurity density. Information
about impurity scattering in graphene can be extracted from the thermopower, either measured directly or
extracted via Mott’s relation from the electron-density dependence of the electric conductivity.
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The recent isolation of the two-dimensional one-atom
thick honeycomb crystal of carbon,1 called graphene, has
generated tremendous interest partly because of the potential
of carbon-based nanoscale electronics, but also for funda-
mental reasons.2–16 Recent experiments2–4 have shown that
the charge conductance of graphene reaches a universal
value 4e2 /h at low temperatures. It has also been found that
the conductivity is linearly dependent on the electron density.
Furthermore, an unconventional half-integer quantum Hall
effect has been discovered.

All these results are nicely in line with theoretical results
based on an effective low-energy theory of graphene within
which charge carriers are massless Dirac fermions.16–27 The
low-temperature conductivity of graphene is most probably
limited by scattering against impurities, such as vacancies or
other imperfections.4,21–25 For strong scattering, in the uni-
tary limit, a band of impurity states centered at the Dirac
point is formed.22,23,28–31 For small temperatures, compared
with the impurity bandwidth, the conductivity is
predicted19–23 to reach a minimal universal value 4e2 / ��h�.
Within the same model of strong impurity scattering, the
conductivity varies linearly with charge density for chemical
potential shifts that are large compared with the impurity
bandwidth.23 In contrast, linear dependence is absent for
weak impurity scattering.23 In a slightly different scenario,
randomly distributed Coulomb scatterers are predicted to
lead to similar properties.25

The origin of the scattering that limits the conductivity in
graphene is at present controversial. Measurements of other
quantities than the conductivity is most probably needed,
since the conductivity, being universal, loses information
about impurities at low temperatures. In this Brief Report,
we show that the thermopower can provide valuable infor-
mation about impurities in graphene. We also discuss the
applicability of Mott’s relation to graphene. After initial con-
firmation of this relation �and its approximate high-
temperature form derived below� through experiments on
thermoelectricity, it can be used to analyze the charge con-
ductivity.

The related Nernst signal that appears in a magnetic field
was studied theoretically in Ref. 21. Further properties of the
thermopower in a magnetic field was studied in Ref. 32 in
the strict unitary limit for which the thermopower vanishes at

charge neutrality. If vacancies are strong scattering centers,
the impurity potential is large, estimated, e.g., by graphene’s
vacuum level. Near unitary scattering can occur, although the
strict unitary limit cannot, in reality, be reached. This has a
big impact on the thermopower, as the impurity band is
shifted from the Dirac point which leads to a large electron-
hole asymmetry.28–31 Here, we explore the consequences of
such asymmetry in detail with the goal of extracting infor-
mation about impurities in graphene from transport.

The starting point for the calculations is the tight-binding
model for clean graphene,17,18

H0 = − t�
�ij�

�ai
†bj + bj

†ai� , �1�

where t is the nearest neighbor hopping amplitude. The op-
erators ai

† and bj
† create electrons on sites i and j in the

graphene honeycomb lattice. The fact that this lattice can be
considered as two displaced triangular lattices, with a unit
cell consisting of two atoms, here denoted A and B, is made
explicit by the introduction of the two creation operators. In
reciprocal space, the Fermi surface is reduced to two in-
equivalent so-called K points at the corners of the first Bril-

louin zone, which we find at K�=4��k̂x / �3�3a�, where a is

the nearest neighbor distance, �= ±1, and k̂x is unit vector
along the kx axis. At low energies �� t, the dispersion is
linear around these points, ����� ±v f���, where � is the k
vector measured relative to the K point and v f =3at /2 is the
Fermi velocity. The clean limit retarded Green’s function in
the K-point �low-energy� approximation is the inverse of the
2�2 �in the space of the atoms A and B� Dirac Hamiltonian
matrix and has the form22

Ĝ�
R�0���,�� =

1

2 �
�=±1

1

� − �v f��� + i0+	 1 ��e−i��

��ei�� 1

 ,

where �=arg�	x+ i	y� is an angle defining the direction of
the vector � with respect to the kx axis.

We include impurities by adding
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Himp = �
i=1

Nimp
A

Vimpai
†ai + �

j=1

Nimp
B

Vimpbj
†bj �2�

to the Hamiltonian, where Vimp is the impurity strength. The
numbers of impurities Nimp in the two sublattices A and B are
assumed approximately equal and small compared with the
number N of unit cells in the crystal. In the dilute limit, when
we only keep terms of first order in the density nimp
=Nimp/N, crossing diagrams are neglected when the configu-
ration average is performed over the random distribution of
impurities.33 The resulting self-energy is written in terms of a

t matrix 
̂R���=nimpT̂
R���, where

T̂R��� = Vimp�1̂ − 	Vimp

N

�

k
ĜR�k,���−1

. �3�

The sum over k can be performed analytically in the K-point
approximation. The off-diagonal components vanish, the re-
sulting self-energy is diagonal, and the average Green’s func-

tion is �1/N��kĜR�k ,��=1̂�z /�c
2�log
−z2 / ��c

2−z2��, where
z=�−
R���. The energy cutoff �c is related to the cutoff kc in
reciprocal space below which the dispersion is linear.

We plot the self-consistent self-energy and the resulting
density of states in Fig. 1. In the unitary limit, defined
as Vimp→�, a band of impurity states is formed centered at
the Dirac point.22,23,28–31 The bandwidth, estimated by
�=−I
R�0�, is computed by solving the equation
�2�2 /�c

2�ln��c /��=nimp. To logarithmic accuracy, � scales as
�nimp. For Vimp deviating from the unitary limit, the impurity
band is shifted away from the Fermi level to an energy �r.
The self-energy is approximated as 
R���=−i�+
��−�r�
+¯ for small energies, �−�r��. To lowest order, we have
�r=−�c

2 / �2Vimp
ln��c /��−1�� and 
=
0 / �1+
0�, where

0= �1/nimp��2�2 /�c

2�
ln��c /��−1� is only weakly �logarith-
mically� dependent on the density of impurities. The shift of
the impurity band away from the Fermi level by the amount
�r leads to a large electron-hole asymmetry and the anoma-
lous thermoelectric response that we study below. For large
energies, ���, the density of states is essentially the same as
in the clean limit.

Next nearest neighbor hopping �t�� gives an electron-hole
asymmetric contribution to the dispersion, but it enters in

second order in the low-energy expansion: ����= ±v f���
+v f

2���2
t� / t2�� cos�3�� / �6t��+¯. These contributions are
only important far from the Fermi level and we neglect them.

The linear response is defined as33

	 j

jE

 = 	L11 L12

L21 L22

�

E

T

�
1

T
� , �4�

where E is the electric field and T is the temperature.
The Onsager relation L12=L21 holds. The charge conductiv-
ity is defined as �=e2L11/T, while the electronic contribu-
tion to the open-circuit heat conductivity is 	el

= �1/T��L22−L12
2 /L11�. Finally, the thermopower is defined

as S=−L12/ �eTL11�. The response functions Lij are defined
in terms of Kubo formulas, i.e., current-current correlation
functions. The charge current operator for graphene modeled
as above has the simple form j=�k
vkak

†bk+H.c.�, where
H.c. denotes Hermitian conjugate, and vk=�k�k. Note that
the function �k=−t� j=1

3 eik·�j and, therefore, also vk are
complex functions since the three nearest neighbor vectors
� j point in three directions rotated 120° relative to each
other in the graphene plane. The heat current operator
has an extra term from impurity scattering, jE= jE

0 + jE
imp,

where jE
0 = �1/2��k�vk�k

* +vk
*�k��ak

†ak+bk
†bk� and jE

imp

= �1/2��kq
�Uq
Bvk+Uq

Avk+q�ak
†bk+q+H.c.�, where Uq

A

= �Vimp/N��ie
−iq·Ai is the Fourier transform of the impurity

potential, including phase shifts in the sum over impurity
sites Ai �and equivalently for the B sublattice�. This, in prin-
ciple, complicates the calculation of the thermal response.
However, for graphene, as was shown for normal metals by
Jonson and Mahan34,35 �see also Ref. 36�, the response func-
tion kernels are simply related to each other: Once we know
the charge current response kernel K11=K���, we get the
other two kernels through K12=�K��� and K22=�2K���. The
response functions are then computed by integration

Lij =
1

�2�
−�

�

d�	−
�f���

��

Kij��� , �5�

where f��� is the Fermi distribution function. For point scat-
terers, the kernel K��� can be approximated by the bare
bubble.22,23 The needed sum over k can be computed
analytically in the K-point approximation. We write
z=�−
R���=a���+ ib��� and find22,33

K��� = 1 +
a2 + b2

ab
arctan

a

b
− �

s=±1
s�a��c + sa� + sb2

��c + sa�2 + b2

−
a2 + b2

2ab
arctan	 �c + sa

b

� . �6�

In Fig. 2, we present results for conductivities and the
thermopower. The conductivities are only weakly dependent
on the exact value of Vimp as long as Vimp��c, as is clear
when we compare the solid and dotted lines in Figs. 2�a� and
2�b�. These response functions are given by the electron-hole
symmetric part of K���, which is robust as long as the impu-
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FIG. 1. �Color online� �a� The impurity self-energy and �b� the
density of states for large impurity potential Vimp. An impurity band
of width ���c

�nimp is formed near the Fermi level at an energy
�r��c

2 /Vimp. For ���, the spectrum is linear.
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rity band is not shifted far from the Dirac point. We conclude
that, for these response functions, the unitary limit is effec-
tively approached quickly for Vimp��c. On the other hand,
the thermopower is given by the electron-hole asymmetric
part of K��� and is very sensitive to impurity scattering. We
have S�−Vimp�=−S�Vimp�. The order of magnitude S�kB /e
�100 �V/K is in agreement with experiments on single-
walled carbon nanotubes.37

At low temperatures, both the charge conductivity and the
slope of the thermal conductivity reach constant universal
values �0=4e2 / ��h� and 	0=4�kB

2T / �3h�, respectively, that
are independent of the details of the impurities, in agreement
with results in the literature.19–23 On the other hand, the low-
temperature slope of the thermopower reaches a nonuniver-
sal constant value that depends sensitively on the nature of
impurity scattering. These results are understood in terms of
a Sommerfeld expansions of the transport coefficients in the
small parameter T /��1 for slowly varying kernels Kij���
=Kij�0�+��Kij� �����=0+¯. The needed parts of the kernel

Eq. �6�� can be computed analytically, K�0�=2 and K��0�
=4
�1−
��r / �3�2�, where we assumed that �r����c. The
universal conductivities immediately follow, and the low-

temperature thermopower is �reinstating � and kB�

S � −
�2

3

2
�1 − 
��r

3�2

kB
2T

e
. �7�

This means that at low temperatures, kBT��, the
Wiedemann-Franz law is obeyed, L=	el /�T=L0
= ��2 /3��kB

2 /e2�, and also the Mott formula holds,
S=−��2 /3��kB

2T /e��d
ln K���� /d���→0. At higher tempera-
tures, T��, however, neither of these relations hold, see
Figs. 2�d� and 2�e�. This happens for any system where the
conductivity kernel is varying around the Fermi level on
some particular energy scale, here given by the impurity
bandwidth �. For normal metals, this scale is typically given
by the much larger Fermi energy.

There are other contributions to the heat conductance be-
sides the electronic. In particular, phonons are important in
graphite and carbon nanotubes,38 for which the Lorenz ratio
is typically found to be L�10L0–100L0.

In contrast, the thermopower is given entirely by elec-
tronic contributions. In the low-temperature limit, T��, we
see that S is proportional to �r and �−2, where for large
Vimp��c, �r��c

2 /Vimp and ���c
�nimp. The thermopower is

therefore proportional to the inverses 1 /Vimp and 1/nimp. In
the strict unitary limit, Vimp→�, when electron-hole symme-
try is restored, the thermopower vanishes.21,32 However, for a
large �but not infinitely large� impurity potential, the ther-
mopower is enhanced: the smallness of 1 /Vimp is compen-
sated by the large 1/nimp. This also means that if nimp can be
controlled, Vimp can be extracted by measuring the slope of
the thermopower at low temperatures.

We note that there are clear analogies with the situation in
a d-wave superconductor,39 where the Lorenz ratio deviates
from L0 but recovers at low temperatures, T��. An anoma-
lously large thermoelectric coefficient L12 has been
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FIG. 2. �Color online� Temperature dependence of �a� the charge
conductance, �b� the heat conductance, and �c� the thermopower for
three values of the impurity density nimp. The solid and broken lines
are for a large impurity potential Vimp=20�c, while the dotted lines
are for the strict unitary limit Vimp→�. In �a� and �b�, we have
normalized the conductivities by the low-temperature asymptotics
�0=4e2 / ��h� and 	0�T�=4�kB

2T / �3h�. In �d�, we show the details
at low temperatures. The dotted lines are the thermopower com-
puted through the Mott relation. In �e�, we show the Lorenz ratio
L=	 / ��T� in units of the value L0= ��2 /3��kB

2 /e2� appearing in
Wiedemann-Franz law. We used �c=1 eV→11 605 K to convert
the temperature scale to Kelvin.
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predicted.40,41 A significant difference for graphene com-
pared with the superconducting case is the possibility to
measure the thermoelectric response directly through the
thermopower, which is not possible in a superconductor
since supercurrents short circuit the thermoelectric voltage.

The chemical potential of graphene can be tuned by ap-
plying a voltage to the substrate.1 We show the dependence
on the chemical potential in Figs. 3�a� and 3�b�. The charge
conductance as function of � is essentially linear at large �.
The value of the thermopower at �=0 and the associated
asymmetry of S around �=0, and also around the point �*,
where S��*�=0, are related to the amount of electron-hole
asymmetry caused by impurity scattering.

Mott’s formula, derived mathematically through the Som-
merfeld expansion, is only valid at low temperatures, T��,
since the conductivity kernel K��� varies slowly only on the
energy scale �. However, as we show in Fig. 3�c�, it turns out
that thermal smearing leads to an effective, approximate
Mott relation S�−��2 /3��kB

2T /e�d
ln ��� ;T�� /d� in terms

of the full temperature dependent conductivity. The nonlinear
temperature dependence S�T� is obtained at �=0.

In summary, we have presented results for the linear re-
sponse to electric and thermal forces in graphene for the case
of strong impurity scattering near the unitary limit. The im-
purity band of width � is centered near the Fermi level, at an
energy �r��c

2 /Vimp. The induced electron-hole asymmetry
gives small changes of the charge and thermal conductivities
but leads to an enhanced thermopower, which at low tem-
peratures, T��, is linear in temperature with a slope propor-
tional to 1/ �Vimpnimp�. The thermopower, measured directly
or estimated by Mott’s relation can therefore be used to ex-
tract information about impurity scattering in graphene.
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