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Zinc oxide �ZnO� is a wide-band-gap semiconductor with a range of potential applications in optoelectron-
ics. The lack of reliable p-type doping, however, has prevented it from competing with other semiconductors
such as GaN. In this Brief Report, we report the successful incorporation of nitrogen-hydrogen �N-H� com-
plexes in ZnO during chemical vapor transport growth, using ammonia as an ambient. The N-H bond-
stretching mode gives rise to an infrared absorption peak at 3150.6 cm−1. Substitutions of deuterium for
hydrogen and 15N for 14N result in the expected frequency shifts, thereby providing an unambiguous identi-
fication of these complexes. The N-H complexes are stable up to �700 °C. The introduction of neutral N-H
complexes could prove useful in achieving reliable p-type conductivity in ZnO.
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Zinc oxide �ZnO� is a semiconductor that has attracted
resurgent interest as an electronic material for a range of
applications.1 A wide-band-gap semiconductor, ZnO emits
light in the blue-to-UV region of the spectrum with an effi-
ciency that is higher than more conventional materials such
as GaN,2 making ZnO a strong candidate for energy-efficient
white lighting. Another major advantage of ZnO is the fact
that, in contrast to GaN, large single crystals can be grown
relatively inexpensively.3 ZnO has already been used as a
transparent conductor4 in solar cells5 and is a preferred ma-
terial in transparent transistors, “invisible” devices which
could be incorporated into products such as liquid-crystal
displays.6

Despite its desirable properties and potential applications,
the lack of reliable p-type doping has prevented ZnO from
becoming a leader in optoelectronic applications. According
to first-principles calculations, substitutional nitrogen �NO� is
an acceptor with a hole binding energy of 400 meV.7

Variable-temperature photoluminescence experiments on
n-type ZnO:N showed a more promising hole binding energy
of �200 meV,8 a value that is comparable to that of Mg
acceptors in GaN.9 However, compensation by donors such
as hydrogen impurities has prevented the realization of
p-type ZnO. Magnetic resonance studies of ZnO have iden-
tified nitrogen acceptors,10,11 but in the absence of laser ex-
citation, the acceptors are negatively ionized �N− or N2

−�.11

First-principles calculations have shown that nitrogen accep-
tors may be compensated via the formation of defects such as
oxygen vacancies,12 zinc antisites, and complexes with zinc
interstitials or N2 molecules.13–15

Finding a doping scheme that results in a high acceptor
concentration, while avoiding the formation of compensating
defects, will be essential for the realization of practical ZnO-
based devices. One possible route to p-type conductivity is to
first introduce neutral N-H complexes into ZnO. In contrast
to N acceptors, neutral N-H complexes would not drive the
formation of compensating n-type defects. The hydrogen
could then be removed by postgrowth annealing, as is cur-
rently done with GaN:Mg.16,17 In this Brief Report, we
present evidence that we have successfully introduced N-H
complexes into ZnO during growth by using ammonia �NH3�
as an ambient.

Chemical vapor transport �CVT� was used to grow poly-
crystalline ZnO, with graphite as a transport agent.3,18 The
source materials were 1.5 g ZnO aggregate and 2.0 g high-
purity graphite �99.99+ �%�, Sigma-Aldrich�.19 The ZnO ag-
gregate was created by mixing ZnO micropowder �99.9%,
Sigma-Aldrich� with high-purity low-contaminant water. The
water was then boiled away until dry aggregated pieces of
ZnO were left behind, in which some water most likely re-
mained. This was done to decrease the surface area of the
ZnO source material, thereby decreasing the growth rate and
increasing crystal quality. The materials were placed at one
end of a fused-silica ampoule ��12 cm long�. The ampoule
was backfilled with 0.5 atm anhydrous NH3 and sealed with
a hydrogen-oxygen torch. The sealed ampoule was then
placed in a horizontal tube furnace, and the end containing
the source materials was heated to �950 °C. Polycrystalline
ZnO grew on the opposite end of the ampoule, which was
�50 °C cooler. The ampoule was maintained at a constant
temperature for approximately 72 h, and then cooled to room
temperature over 3 h. This procedure resulted in a polycrys-
talline sample with a reddish color, evidence of Zn-rich
growth conditions.18,20 The average thickness of the sample
was roughly 1 mm.

Fourier-transform infrared spectroscopy was performed
with a Bomem DA8 spectrometer and a Janis STVP continu-
ous flow liquid-helium cryostat with ZnSe windows. At
liquid-helium temperatures �T�10 K�, we observed an IR
absorption peak at a frequency of 3150.6 cm−1 �Fig. 1�. The
full width at half maximum �FWHM� of the peak was
2.3 cm−1 at an instrumental resolution of 1 cm−1. At room
temperature, the peak has a slightly lower frequency
�3147.7 cm−1� and larger width �8 cm−1�. The shift and
broadening are due to the interaction between the local vi-
brational mode �LVM� and lattice phonons.21 The frequency
of the LVM �3150.6 cm−1� is similar to the bond-stretching
frequency of N-H complexes in ZnSe:N �3194 cm−1� �Ref.
22� and GaN:Mg �3125 cm−1�.23 ZnO samples grown in a N2

or Ar ambient did not exhibit the peak at 3150.6 cm−1.
To verify that this peak was due to hydrogen, a ZnO

sample that showed the 3150.6 cm−1 peak was annealed in
deuterium �D2� gas at a temperature of 730 °C for 70 h,
resulting in the partial substitution of D for H. This sample
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showed a peak at 2339.7 cm−1 at liquid-helium temperatures,
with an instrument-limited FWHM of 1 cm−1 �Fig. 2�. The
isotopic frequency ratio of these two modes is r=�H /�D
=1.3466, in good agreement with that of ZnSe:N,H �r
=1.348� �Refs. 22 and 24� and GaN:Mg,H �r=1.3464�.23 A
smaller width of the N-D mode as compared to the N-H
mode was also observed in GaN:Mg. This linewidth narrow-
ing may result from the smaller vibrational amplitude of deu-
terium, which leads to smaller coupling to the lattice and,
therefore, an increase in lifetime.25

The observed ZnO:N,H vibrational frequency is in good
agreement with first-principles calculations. Vienna ab initio
simulation package �VASP� calculations that use the local
density approximation and ultrasoft pseudopotentials showed
that the total energy is minimized when hydrogen forms a
bond with nitrogen in an antibonding configuration, roughly
perpendicular to the c axis �Fig. 3�.26 The calculated N-H
bond-stretching mode frequency was 3070 cm−1, in good
agreement with our experimental value. Fritz-Haber Institute
codes �FHI98�, which use different pseudopotentials than the
VASP codes, resulted in a bond-stretching frequency of
3117 cm−1. This value agrees even better with experiment.

In order to confirm our assignment, we used ammonia that

was enriched with 10% 15NH3 �Sigma-Aldrich� as an ambi-
ent during CVT growth. However, since this ammonia was
not “anhydrous,” it presumably contained trace amounts of
oxygen that counteracted the Zn-rich growth conditions. The
sample that resulted from this growth was colorless and did
not have the reddish color of the previous samples. IR spec-
troscopy of this sample did not reveal the absorption peak at
3150.6 cm−1, even after annealing in H2 gas.

To create Zn-rich growth conditions with the isotopically
enriched ammonia, we added �0.01 g of Zn to the source
material. The resulting crystal was red in color. IR spectros-
copy showed the peak at 3150.6 cm−1 along with a smaller
absorption peak located at 3144.1 cm−1 �Fig. 4�. The peak at
3144.1 cm−1 is attributed to 15N-H complexes, where the
larger mass of 15N as compared to 14N results in a slightly
lower vibrational frequency. The observation that Zn-rich
�O-poor� growth conditions enhance the incorporation of
N-H complexes is consistent with the idea that N-H pairs
occupy oxygen vacancies.

The N-H frequencies were determined by peak fits to
Lorentzian line shapes. During the least-squares fitting rou-
tine, the peak widths were constrained to be equal and the
ratio of the peak areas was constrained to be 9:1, the isotopic
composition of the ammonia gas. The result of the fit is
shown by the dashed line in Fig. 4. According to a simple
diatomic model, the vibrational frequency of the N-H com-
plex is given by27
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FIG. 1. IR spectrum of N-H complexes in ZnO at liquid-helium
temperatures.
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FIG. 2. IR spectrum of N-D complexes in ZnO at liquid-helium
temperatures.

FIG. 3. �Color online� Schematic diagram of the N-H complex
in ZnO from first-principles calculations �Ref. 26�.
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FIG. 4. �Color online� IR spectrum of N-H complexes in ZnO
grown in an isotopically enriched ambient of 10% 15NH3+90%
14NH3. An absorption peak due to 15N-H complexes is indicated by
the arrow.
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� = �k�1/m + 1/�M� , �1�

where m and M are the masses of hydrogen and nitrogen,
respectively, and � is an empirical constant that accounts for
the vibration of the other atoms in the vicinity of the N-H
complex. From the observed 14N-H and 15N-H frequencies,
we derived a value of �=1.105±0.05. The fact that ��1
indicates that the N-H mode is highly localized and the
neighboring atoms have small vibrational amplitudes.

The 15N-H peak at 3144.1 cm−1 unambiguously estab-
lishes that our observed IR absorption peaks arise from N-H
complexes. This study appears to resolve the disagreement
about the assignment of ZnO:N,H modes, with different re-
searchers reporting LVM frequencies near 2400 cm−1,28

3000 cm−1,26 and 3100 cm−1.29 None of those studies in-
cluded an observation of N-D or 15N-H complexes, allowing
us to speculate that the reported peaks arose from carbon-
hydrogen or oxygen-hydrogen vibrations. While it is con-
ceivable that there are alternate nitrogen-hydrogen structures
in ZnO, isotopic substitution or other quantitative experi-
ments would be required to verify their existence.

To test the stability of the N-H complexes, we performed
a series of isochronal anneals in open air. A ZnO sample that
contained N-H complexes was annealed between 200 and
800 °C for 1 h at each temperature. The N-H peak height �at
room temperature� is plotted as a function of annealing tem-
perature in Fig. 5. Since the sample was polycrystalline, the
thickness was not well defined, resulting in large errors in the
peak height determination. Nonetheless, it is apparent that
the N-H complexes dissociate in the temperature range of
600–800 °C. To quantify this process, we modeled the data
using first-order kinetics. The rate of dissociation is given by

1/� = �0 exp�− EA/kT� , �2�

where �0 is an attempt frequency, EA is an activation energy,
k is Boltzmann’s constant, and T is the annealing temperature
�K�. The number of N-H complexes remaining after an an-
neal is

N = N0 exp�− t/�� , �3�

where N0 is the number of N-H complexes prior to the
anneal and t is the annealing time; in this case, t=1 h.

The parameters that fit the data best are EA=3.3 eV and
�0=3�1013 Hz. Since we did not apply a bias during an-
nealing, hydrogen retrapping may result in an overestimate
of the activation energy. Nonetheless, the N-H complexes are
much more stable than hydrogen donors, which we observed
to decay with an activation energy of 1 eV.30 We did not
observe statistically significant changes in the free-carrier ab-
sorption, suggesting that the ZnO samples remained n-type
after annealing.

In conclusion, we have spectroscopically identified
nitrogen-hydrogen complexes in ZnO grown by chemical va-
por transport in an ammonia ambient. The experimental re-
sults are in good agreement with first-principles calculations,
which predict that hydrogen should form a bond with nitro-
gen and reside in an antibonding location. The introduction
of N-H complexes could provide the first step toward doping
with N acceptors. By optimizing the growth and annealing
conditions, it may be possible to activate large concentra-
tions of N acceptors and achieve reliable p-type conductivity
in ZnO.
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