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We study s-wave superconductivity in the two-dimensional square-lattice attractive Hubbard Hamiltonian
for various inhomogeneous patterns of interacting sites. Using the Bogoliubov—de Gennes mean-field approxi-
mation, we obtain the phase diagram for inhomogeneous patterns in which the on-site attractive interaction U;
between the electrons takes on two values U;=0 and —U/(1—-f) (with f the concentration of noninteracting
sites) as a function of average electron occupation per site, 7, and study the evolution of the phase diagram as
f varies. In certain regions of the phase diagram, inhomogeneity results in a larger zero-temperature average
pairing amplitude (order parameter) and also a higher superconducting critical temperature 7, relative to a
uniform system with the same mean interaction strength (U;=-U on all sites). These effects are observed for
stripes, checkerboard, and even random patterns of the attractive centers, suggesting that the pattern of inho-
mogeneity is unimportant. The phase diagrams also include regions where superconductivity is obliterated due
to the formation of various charge-ordered phases. The enhancement of 7. due to inhomogeneity is robust as
long as the electron doping per site, n, is less than twice the fraction of interacting sites [2(1—f)] regardless of
the pattern. We also show that for certain inhomogeneous patterns, when n=2(1-f), increasing temperature

can work against the stability of existing charge-ordered phases for large f and, as a result, enhance 7.
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I. MOTIVATION

Fascination with inhomogeneous superconducting (SC)
phases extends back several decades, with many conferences
and monographs having been devoted to the subject.!® For
conventional superconductors, the inhomogeneities were ex-
trinsic, arising from a granular nature of samples or due to
the deliberate synthesis of disordered-built materials or films.
The high-temperature superconductors (HTSs) introduced
new aspects into this area of study. First, inhomogeneous
states (normal and SC) seem to be intrinsic to HTSs, at least
in the underdoped regime, similar to quenched disorder in
the metal-insulator transition in two dimensions (2D).*> Sec-
ond, the inhomogeneity occurs on a smaller length scale of
just a few lattice constants as evidenced by scanning tunnel-
ing spectroscopy (STS) at the nanoscale.®

In addition, the strong electronic correlation in HTS cu-
prates plays a major role in the elucidation of the inhomoge-
neous SC state; indeed, the inhomogeneity is widely believed
to arise from the strong intra-atomic interactions that tend to
frustrate bandlike conduction, to induce local magnetic mo-
ments, and to drive charge and spin order on a few lattice
constant scale. The study of the doped Mott insulating phase
has been one of the most active areas of theoretical study of
HTSs, one that has proven to be unexpectedly complex and
rich and which is still under intense exploration and debate.
Surprisingly, holes doped into the high-temperature super-
conductors tend to arrange themselves nonuniformly in the
CuO, planes in the form of stripes, checkerboard, or perhaps
even more exotic structures.!®"'* Moreover, spatially varying
density and spin structures have also been observed in the
physics of the manganites'>~!8 and cobaltites.!*?°
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A variety of physically relevant models such as the repul-
sive Hubbard and #-J Hamiltonians have been extensively
studied to understand the interplay between spatial inhomo-
geneity, magnetism, and superconductivity.?'~* In the repul-
sive Hubbard and #-J Hamiltonians in particular, inhomoge-
neity has been introduced either through the hopping
amplitude ¢ or magnetic coupling J or the local energy on the
lattice sites. For the 2D square lattice these two models are
known to display antiferromagnetism at half-filling and, al-
though it is less certain, perhaps also d-wave superconduc-
tivity when doped. There is considerable evidence that they
also might possess inhomogeneous stripe or checkerboard
ground states.?4-28:30.31.33.34 phenomenological d-wave BCS
Hamiltonians with spatially inhomogeneous pairing
amplitude*!=* or lattice site energy*>** have also been em-
ployed mostly to reproduce the local density of states
(LDOS) results obtained from scanning tunneling micros-
copy (STM).* In addition, there have been theoretical stud-
ies of the SC quantum phase fluctuations using the QED;
effective theory of the HTSs in relation with the inhomoge-
neous pattern formation in cuprates from the STM experi-
mental results.*647

While density matrix renormalization group (DMRG)
treatments®* provide detailed information on the real-space
charge, spin, and pairing orders, the precise nature of the
interplay, and whether the different orders compete or coop-
erate, remains unclear. In addition, the enhancement of the
superconducting transition temperature 7. by local inhomo-
geneity has been demonstrated by Martin et al. in Ref. 48
and also in Ref. 49. Recently, the XY model Hamiltonian
with certain types of inhomogeneous patterns for the
coupling constant between spins sitting on two nearest-
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neighboring sites has also been shown to enhance 7. by Loh
and Carlson in Ref. 50.

Many of the basic characteristics of this short-range-scale
inhomogeneous superconducting state can be addressed with
a more tractable model, one which is well understood in the
homogeneous limit. This model is the attractive Hubbard
model, which has been applied previously to address some
aspects of the impact of inhomogeneity. Recently old sugges-
tions based on ‘“negative-U” superconductivity have been
revived,*>! which may provide additional applications for
the results we present in this paper. Tl-doped PbTe achieves
a critical temperature up to 1.5 K, and more extensive heat
capacity and transport data’>>3 have led to an analysis in
terms of a “charge Kondo effect” that could be linked to the
observed superconductivity.”* This system intrinsically in-
volves both negative-U centers and inhomogeneity.

This article extends previous work*® to a more general
range of noninteracting site concentration f values. We show
the presence of different conduction phases both in the phase
diagram at T=0 and in the density of states (DOS). We also
show the local occupation and SC order parameter for elec-
trons on different lattice sites as the concentration f varies
for different inhomogeneity patterns. Finally, the 7. enhance-
ment conditions are also extracted based on the relationship
between the average doping of electrons, 7, on the lattice and
inhomogeneity concentration f.

The paper is organized as follows: in the next section we
introduce our model and describe the method we have em-
ployed. In Sec. III we present and discuss the phase diagram
at zero temperature. Section IV contains our finite-
temperature results, and Sec. V summarizes our findings.

II. MODEL AND METHODOLOGY

This article focuses on a general question: Under what
conditions is it more favorable to have an inhomogeneous
pairing attraction, compared to the same average strength
spread homogeneously over the lattice? By “conditions” we
refer to the average occupation number of electrons per site,

n; the average attraction strength per lattice site, U, which
remains constant in any comparison between systems with
and without inhomogeneity; and the inhomogeneity concen-
tration f. We address this question by comparing the average

zero-temperature pairing amplitude A over the entire lattice
and the SC transition temperature 7. for a system in the
presence and absence of inhomogeneity.

For the cuprate superconductors, for example, such a
question is complicated by the presence of other types of
order such as antiferromagnetism and exotic spin-gap phases
and by the nontrivial d-wave symmetry of the SC order pa-
rameter. For these systems and phenomena, models like the
repulsive Hubbard or #-J Hamiltonians are essential.?!-3
Nevertheless, it is yet beneficial to study the problem first by
employing a more simple and phenomenological model.
Here we will present a solution of the inhomogeneous
Bogoliubov—de Gennes (BdG) equations for the attractive
Hubbard Hamiltonian,
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with ¢ the hopping amplitude, u the chemical potential, and
U, the local attractive interaction between the fermions of
opposite spins residing on the same lattice site i. We will
study inhomogeneous patterns in the interaction U;. The ori-
gin of the attraction in this model can result from, for ex-
ample, integrating out a local phonon mode.”> The two-
dimensional uniform attractive Hubbard model is known to
yield degenerate superconductivity and charge-density-wave
(CDW) long-range order at half-filling and zero
temperature.’>8 However, away from half-filling, the CDW
pairing symmetry is broken and superconductivity is more
favorable, and the SC phase transition is at finite tempera-
ture.

The BdG mean-field decomposition bilinearizes the
Hamiltonian by replacing the local pairing amplitude and
local density by their average values, A;={c;;c;) and (n;,)
={c] ¢;,» and yields the quadratic effective Hamiltonian

Hepp=—t E (C,Tgcjg"' C;aci,a) - 2 ﬁiC,ToCm— 2 U
1
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where f;=u+|U;(n;)/2 includes a site-dependent Hartree
shift with (n;)== (n;,). All energies will be referenced to ¢
=1.

We adopt the criterion of comparing the tendency for su-
perconductivity in the homogeneous system with the same
attraction —U on all lattice sites, with cases when sites with
attraction are mixed with sites where the attraction is
absent—i.e., U;=0.4%%%0 Specifically, we have studied sys-
tems in which sites with attractive interaction are randomly
distributed® or arranged in checkerboard and stripe patterns.
The last two regular patterns have been purposely chosen
due to their relevance to the experimentally observed pattern
formation in the HTS cuprates.

Figure 1, panel (a), presents the patterns for the interact-
ing lattice sites with four different values for the fraction of
noninteracting sites, f. The uniform pattern corresponds to

f=0 with interaction U;=U=-U on all lattice sites. Check-
erboard, stripes, and random patterns with f=0.25 include
1-f=75% interacting sites with U;=3U=-3U and f=25%
noninteracting sites with U;=0. For f=0.5, half of the sites
are interacting with U;=-2U and half noninteracting with
U;=0. f=0.75 corresponds to 25% interacting sites with U;
=—4U and 75% noninteracting sites with U;=0, once again
averaging to U=—-U per site.

For the random pattern we have averaged over typically
20 different disorder realizations. One may note that regard-
less of the pattern and the impurity fraction, the average

attraction per site—i.e., U=—U—remains constant. We adopt
this criterion throughout the rest of this article for compari-
son between uniform and inhomogeneous lattices. This cri-
terion is believed to be most appropriate for exhibiting the
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FIG. 1. (Color online) Panel (a): regular patterns for the inter-
acting sites in the attractive Hubbard model at different inhomoge-
neity concentration values. Stripes and checkerboard have been par-
ticularly selected because of their relevance to the experimental
observations in cuprates. Panel (b): color coding and numbering
different types of sites for the checkerboard and stripes blocks as
presented in panel (a) (two colors for f=0.5 and four for f=0.25
and 0.75). Sites carrying identical color code and number are
equivalent by the symmetry in the lattice geometry. Panel (c): color
coding of the lattice sites for the random inhomogeneous pattern at
different f values. Regions of interacting (noninteracting) sites are
coded black (red or dark gray in the grayscale version) with the
appropriate weight of 1—7(f).

effect of inhomogeneity in particular in the systems having
the same strength on average for forming superconducting
Cooper pairs.

Panel (b) depicts the color coding and numbering of the
lattice sites for the checkerboard and stripes based on their
value of f. Due to the regular geometry and periodicity of
their inhomogeneous patterns, lattices with the checkerboard
and stripe patterns can be classified into blocks including two
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and four different types of sites at f=0.5 and f=0.25 or 0.75,
respectively, as illustrated by different colors and numbers in
panel (b) of Fig. 1. Sites carrying the same color or number
are equivalent by the symmetry in the pattern geometry. For
the random pattern, due to the lack of both regularity and
periodicity, we average over all the interacting and all the
noninteracting sites separately [black and red (red shows
dark gray in the grayscale version) regions in panel (c) of
Fig. 1, respectively] before the configurational averaging
over all different impurity patterns is performed.

We self-consistently diagonalize the BdG mean-field
Hamiltonian in Eq. (2) by assigning initial values to the local
occupation number n; and order parameter A; and solving
again for these parameters after diagonalizing the Hamil-
tonian, until convergence is achieved at a desired tolerance.
For the checkerboard and striped patterns, sites with the
same color have the same density, due to symmetry, and do
not need to be averaged. For the random pattern we calculate
the average occupation number 7.y, and order parameter
A o1or peT site at the different types of sites by averaging

1
E n,

Neolor =
Neotor ie{color}

1
Air=—— 2 A, (3)

N, color i e {color}

For the checkerboard and striped patterns with f=0.5 and
for the random pattern (all f) we simply have nyac="plack
and nge.=n,q (red shows dark gray in the grayscale version).
For the striped and checkerboard with f=0.25 we have
Nyirac= (Mgreent27q) /3 (green shows light gray in the gray-
scale version) and nge. =Ny Whereas for f=0.75 we have
ytirac=Mplack AN Ngree = (Mgreen+2M1eq) /3. The same combina-
tions hold for A, and Ag... The average occupation num-

ber n and order parameter A, per site are defined

n= (1 _f)nattrac + e

Einhom = (l _f)Aaltrac +fAfree' (4)

The chemical potential x in Eq. (2) is self-consistently ad-
justed after every iteration in order to arrive at a desired total
average occupation per site, n, for the entire lattice. For the
regular patterns—i.e., uniform, checkerboard, and stripes—
due to their periodicity, by Fourier transforming the Hamil-
tonian into momentum space, we significantly reduce the nu-
merical cost of the calculations and at the same time can
increase the size of the lattice close to the thermodynamic
limit to avoid finite-size artifacts in the results (up to 1500
X 1500 lattice sites in our calculations). For the random pat-
tern, however, such a simplification is not possible due to the
lack of periodicity. Hence, we are limited to the finite-size
lattices of up to 24 X 24 sites. As a result, especially at small

values for the average on-site interaction magnitude |U],
finite-size effects are to be cautiously monitored. Our calcu-
lations also include the DOS for the entire lattice. We study
simultaneous variations of the average on-site interaction

magnitude |l_] , occupation number 7, and also temperature
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and their effects in the average order parameter A,,,,, and
DOS. Our goal is to obtain the phase diagram for the effect
of inhomogeneity in superconductivity and discuss the con-
ditions under which inhomogeneity can result in enhance-
ments in the average superconductivity order parameter or
SC phase transition temperature 7.

It is further realized that our conventional mean-field ap-
proach does not capture the Kosterlitz-Thouless nature of the
phase transition in two dimensions. Nevertheless, this weak-
ness can be repaired®' upon regarding the local pairing am-
plitudes as complex variables and performing a finite-
temperature Monte Carlo integration over the associated
amplitude and phase degrees of freedom. Unlike BCS, this
Monte Carlo mean-field (MCMF) approach allows identifi-
cation of the weak- and strong-coupling regimes via the
phase correlation function. In an earlier work*® this Monte
Carlo technique was employed as an independent examina-
tion for the validity of our results and the agreement between
the two techniques was clearly confirmed.

II1. PHASE DIAGRAM AT T=0

Figure 2 presents the phase diagram for the average inter-

action magnitude |U| and electron doping n per site at T=0
for three different inhomogeneous patterns of checkerboard,
stripes, and random and for f values of 0.25, 0.5, and 0.75.

We show isocontours of 7=A; pom/ Auniform—i-€-» the ratio of
the average inhomogeneous pattern order parameter over its
uniform pattern counterpart. Thus, whenever r> 1, inhomo-
geneity leads to a larger average order parameter at 7=0
compared to a homogeneous system and therefore is more
favorable for superconductivity over a uniform pattern of the

interacting sites. We also adopt the lower limit of |U|=1,

since for smaller values of |l_/ , r will be the ratio of two very
small numbers and is subject to numerical uncertainty. The
first row of Fig. 2 [panels (a)—(c)] corresponds to the con-
centration value of f=0.25 for the noninteracting sites. At
first glance, one can observe that regardless of the geometry
for the inhomogeneity, above n=1.5=2(1-f), inhomogene-
ity gradually [or abruptly for the checkerboard pattern in
panel (a)] results in the obliteration of superconductivity
consistent with the findings of Litak and Gyorffy> We can
understand how this obliteration takes place if we examine
the behavior of the system in strong coupling. When we start
with an empty system and add electrons they are placed on
the attractive sites first due to the strong attractive interac-
tions. It is useful to define n*=2(1-f), which for a given f
corresponds to the density for which all attractive sites are
doubly occupied and all free ones are empty. As we will see
below, this density corresponds to an insulating charge-
ordered state. Above this density, superconductivity is re-
duced because the pairs cannot move within the attractive
sublattice, since it is completely filled.

For the checkerboard pattern in panel (a), there are two
insulating regions within the phase diagram at n=1 and 1.5
(hatched orange lines), both corresponding to the formation
of charge-ordered phases of electrons in the interacting sites.
No superconductivity was observed for n=1 and 1.5 down to
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the lower limit of |U|=7. Beyond n=1.5, the system becomes
metallic. For stripes as shown in panel (b), similar features as
in panel (a) are observed. One exception is the lack of the
charge-ordered insulating phase at n=1. This can be the re-
sult of further overlap between the Cooper pairs, since for
the stripes, nearest-neighboring sites are interacting in one
dimension. The charge-ordered insulating phase at n=1.5

also forms for rather higher |U| values compared to the
checkerboard pattern. The random pattern in panel (c) also
shows features similar to the stripes.

The second row [panels (d)-(f)] corresponds to f=0.5
with rather similar features to the first row. As anticipated,
superconductivity gradually goes away above n=1=n" for
all the patterns. For the checkerboard in panel (d) and n>1,
superconductivity strictly goes away and the system turns
metallic. For the striped and random patterns, however, su-
perconductivity persists slightly above n=1 until it is totally
obliterated. At n=1, all three inhomogeneous patterns exhibit
a charge-ordered insulating phase for large enough values of

|U| (or the smallest value of |U| for the checkerboard). Nev-
ertheless, it can be readily seen that for f=0.5 compared to
f=0.25, the enhancement of the average order parameter due
to inhomogeneity is considerably larger as the ratio r in-

creases for small |U| values.
The third row [panels (g)—(i)] for f=0.75 shows ratios as

large as r=15 for small values of |U| and n values not much
larger than 0.5=n". For f=0.75, also, superconductivity
gradually dies away when n>0.5=n" and a charge-ordered

phase sets in for large enough |U| values at n=0.5=n" analo-
gous to f=0.25 and 0.5. The only difference is a slight rem-
nance of superconductivity for the checkerboard pattern at
n>0.5. Thus, by further diluting the interacting sites in the
lattice and keeping the attractive pairing energy constant at
the same time, superconductivity is driven towards smaller n
values; on the other hand, the average order parameter be-
comes significantly more enhanced due to inhomogeneity.

Generally, regardless of the pattern, for large enough |17 | val-
ues, inhomogeneity weakens superconductivity for every
value of n due to the localization and compression of the

Cooper pairs in the interacting sites. For n<n', Ainhom in-
creases as a function of |U| and saturates for large |U| values.
For n=n", Apom reaches a maximum as a function of |U]
and eventually vanishes for large enough |U| values. How-

ever, Ayyiform 1S @ monotonically increasing function of |U]
and is symmetric with respect to n=1. Therefore, for suffi-

ciently large |l7 , the ratio 7=A;om/ Auniform becomes  less
than 1 while n<n" and eventually 0 when n=n" as illus-
trated in Fig. 2.

The obliteration of superconductivity is associated with

the vanishing of the average order parameter A,;,.,=0.
Whether a non-SC state is a metal or insulator is determined
by the DOS results for that state. In Fig. 3, panel (a) presents

the DOS results for the checkerboard pattern at |U|=6¢ (the

largest in our calculations for f=0.25) and four different val-
ues for the average electron doping n. There is a gap in the
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FIG. 2. (Color online) Panel (a): the contour plot phase diagram for the checkerboard pattern at f=0.25 and T=0. The horizontal axis
presents the average occupation of electrons per site n and the vertical axis refers to the average interaction magnitude between two electrons
per site |l7 |. Lines with numbers next to them correspond to different ratios of = A heckerboard! Aunitorm- Solid lines at r=1 determine the
enhancement boundary. Dashes along r=0 lines indicate charge-ordered insulating phase behavior. Dotted lines at |U|=r are lower limits for
the interaction as for too small \f/| values, r is an ill-defined quantity. Panel (b): the same results for stripes with rzﬂstripeS/Aumfmm at f
=0.25 and T=0. r=0 line for stripes is diverted towards larger n values at smaller |U| and does not run down to arbitrarily small | U] values
at n=1.5. Dashes along the r=0 line for stripes appear only at n=1.5, and beyond that, r=0 corresponds to a metallic phase. Panel (c)
presents results for the random pattern. Similar to the stripes, for the random pattern, the =0 line does not run down to arbitrarily small |l_] \
values at n=1.5 either. Panels (d), (e), and (f) correspond to f=0.5. Note that the charge ordered phases for the striped and random patterns
at f=0.5 again occur only at n=1 portion of the r=0 line and beyond that, r=0 yields a metal. Similarly in panels (g), (h), and (i)
corresponding to f=0.75, all three different inhomogeneous patterns have a r=0 line portion above n=0.5 at which the systems become

metallic. Panel (i) also lacks the r=15 contour due to the finite-size-effect uncertainties at small |U| values.
DOS around the Fermi energy at w=0 at n=0.4. This gap respond to insulators for n=1.5. In the second row of Fig. 3
corresponds to a SC state as for n=0.4, A;ypom #0. The gaps  [panels (d)—(f)], for all the patterns at f=0.5 and |U|=5¢ (the
at n=1 and n=1.5 both correspond to insulating states as for  largest in our calculations for f=0.5), the system is supercon-
both these n values A, .=0. At n=1.8, we also find ducting for n<<1, insulating for n=1, and metallic for n>1

A —0 according to Fig. 2, panel (a). However, the DOS in conjunction with the results of the second row in Fig. 2.
inhom = . 4 . 5 i . . _
at n=1.8 has a finite value around the Fermi energy at @  1he third row of Fig. 3 [panels (g)-(i)], for f=0.75 and |U]
=0 as shown in panel (a) of Fig. 3, indicating a metallic =~ =4 (the largest of our calculations for f=0.75), confirms the
results presented in Fig. 2 [panels (g)—(i), respectively]—

state.
In panels (b) and (c) in Fig. 3 for striped and random namely, superconductiv_ity for n<m', insulator at n=0.5
, and metal for n=0.65>n" for all

patterns, respectively, gaps at n=1 do not correspond to in-
sulating phases as opposed to panel (a) whereas they do cor- inhomogeneous patterns.
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FIG. 3. (Color online) Panel (a): density of states (DOS) for the checkerboard pattern at f=0.25 and |U|=6¢ (the largest in our
calculations for f=0.25) for different values of the average electron occupation per site n. Panels (b) and (c): the same results as in panel (a)

for striped and random patterns respectively. Panel (d): results of panel (a) at f=0.5 and |U|=5 (the largest in our calculations for f=0.5).
Panels (e) and (f): the same results as in panels (b) and (c) for striped and random patterns, respectively. Panels (g), (h), and (i) correspond

to f=0.75 and |U|=4 (the largest in our calculations for f=0.75) for the checkerboard, striped, and random patterns, respectively. The
particular selection of colors is for better visibility in both the color and grayscale versions.

The insulating state for the phase diagram in Fig. 1 at all
values of f and n and all inhomogeneous patterns is always
associated with the formation of a charge-ordered state. In
Fig. 4, panel (a), for the checkerboard at f=0.25, for the

insulating phase at n=1, as |U| increases, electrons form
pairs in the interacting sites with higher symmetry [sites 2
and 4 in red (dark gray in the grayscale version)], leaving the
noninteracting and lower-symmetry interacting sites [sites 1
and 3 in black and green (light gray in the grayscale version),
respectively] essentially empty. For the insulating phase in
panel (a) at n=1.5, the lower-symmetry interacting site [site
3 in green (light gray in the grayscale version)] also obtains
a pair, leaving only the noninteracting site (site 1 in black)
empty. In other words, charges rearrange themselves into or-
dered pair configurations forming an insulating phase. Ac-
cording to panel (b) in Fig. 1 for stripes, n=1 does not cor-
respond to an insulating phase. Panel (b) in Fig. 4 confirms
this finding as the local occupation of the interacting sites

[sites 2, 3, and 4 in red (dark gray in the grayscale version),
green (light gray in the grayscale version), and red, respec-

tively] for large |ljl | at n=1 does not approach 2 while for the
noninteracting sites (sites 1 in black) it approaches zero.
For the random pattern in panel (c) of Fig. 4 at f=0.25,
we plot iy, and 77,4 (red shows dark gray in the grayscale
version) as defined in Eq. (3). The fact that 7, does not

approach 2 as |(7 | increases (no pair compression) is consis-
tent with the lack of an insulating phase at n=1 for the ran-
dom pattern at f=0.25 [Fig. 1, panel (c)]. However, at n
=1.5, both striped and random patterns turn insulating as a
result of charge-ordered phase formation as shown in panels
(b) and (c) in Fig. 4, where their occupation numbers on the

interacting sites all approach 2 as |(_]| increases. Charge-
ordered phase formation is more obvious in the second row
[panels (d)-(f)] and third row [panels (g)-(i)] of Fig. 4 for

£=0.5 and £=0.75, respectively, at large enough |U| values.
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FIG. 4. (Color online) Panel (a): the evolution of the local electron occupation number 7; on different lattice sites [as color coded inside
the blocks in Fig. 1, panels (b) and (c)] for the checkerboard pattern at f=0.25 and n=1 and n=1.5 [referring to charge-ordered phases in

Fig. 2, panel (a)] as a function of |U|. Panels (b) and (c): the same results as in panel (a) for the striped and random patterns, respectively.
For the random pattern, data are taken by averaging the occupation number over the interacting and noninteracting sites. Panels (d), (e), and
(f): the same results at f=0.5 and n=1 [charge-ordered phases in Fig. 2, panels (d), (e), and (f)]. Also panels (g), (h), and (i) at f=0.75 and

n=0.5 [charge-ordered phases in Fig. 2, panels (g), (h), and (i)].

The proximity effect for the noninteracting sites neigh-
bored by the interacting sites plays a key role in the magni-

tude of the average order parameter A, in the inhomoge-
neous lattice. In Fig. 5, panel (a), for the checkerboard at f
=0.25 and n=0.25, the local order parameter on all the in-
teracting sites [2, 3, and 4 in red (dark gray in the grayscale
version), green (light gray in the grayscale version), and red,

respectively] increases as a function of |U]. The noninteract-
ing site (1 in black) is also superconducting due to the prox-
imity effect of its neighboring sites. However, its local order

parameter has a maximum at a critical |U,| value beyond
which it decreases as a result of the compression of the Coo-
per pairs in the interacting sites and therefore their weaker

overlap around the noninteracting site. Thus, A, on all
these four sites will be larger than its uniform pattern coun-
terpart due to this proximity effect as long as the noninter-
acting site local order parameter (A; in this case) does not

plummet too far down with respect to its maximum as a

function of |U|.
Panel (b) shows the same behavior for stripes. In panel

(b), there is an intersection between A, and A; near |U|
~ 3¢, indicating that due to the particular symmetry of the
stripes, sites 2 and 3 behave very closely. In panel (c), we
have plotted Ao and A4 (red shows dark gray in the gray-
scale version) as defined in Eq. (3) and it is clear that A 4

eventually falls off at large |U| values. In the second row of
Fig. 5 [panels (d)—(f)] corresponding to f=0.5 and n=0.5,
there are only two different sites for each pattern and the
lattice has a more dilute interacting pattern. As a result, com-

pared to f=0.25 results, Ajom at f=0.5 tends to saturate for

large |(_] | values for all the patterns. In the third row of Fig. 5
[panels (g)—-(i)] for f=0.75, the lattice is even more dilute in

terms of interacting energy. Therefore, Aj,m Shows even
faster saturation at smaller |U| values.
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FIG. 5. (Color online) Panel (a): the evolution of the local order parameter A; on different lattice sites [as color coded inside the blocks

in Fig. 1, panels (b) and (c)] for the checkerboard pattern at f=0.25 and n=0.5 as a function of |U|. The curve symbolized with stars refers

to the average order parameter A, . Panels (b) and (c): the same results as in panel (a) for the striped and random patterns, respectively.

One notices that curves for A, and A; in panel (b) intersect around |l_]| =~ 3t. Panels (d), (e), and (f) present the same results at f=0.5 and
n=0.5 for the checkerboard, striped, and random patterns, respectively. Also panels (g), (h), and (i) at f=0.75 and n=0.25.

As mentioned earlier in this section, for n<n", Ainom
increases as a function of |U| and saturates for large enough
|U| values while Ao is @ consistently increasing function
of |U| and is symmetric with respect to n=1. Therefore, for

n<n" as illustrated in Fig. 1 for r=A;om/ Aunitorm at a given
n,

l_/2>l_/1:>r(l_/2)<r(l_]1). (5)
Now since
Einhom(l_JZ) > 5inh()m(l_]l) = 5inhom(r( [_]2))
> Kipom(r(U))  for (n<n"),  (6)

and as a result

Aipom(r=1)> Aypon(r>1)  for (n <n").

(7

Therefore, knowing that r=1 yields the largest magnitude of

Ainhgm that is still enhanced compared to A iform When n
<n , the optimum effect due to inhomogeneity corresponds
to a value of n along the r=1 contour in Fig. 1, for which

A hom 18 maximized. Figure 6 demonstrates the variation of

Aihom(r=1) as a function of n for different f values. In panel
(a) corresponding to f=0.25, all three different inhomoge-

neous patterns yield the maximum A, (r=1) within the
range of n=0.5-0.75. In panel (b) for f=0.5, the maxima are
closer to n=0.5 while in panel (c) for f=0.75 they are around
n=0.25. These results indicate that apparently the optimum
value for the doping of electrons in these inhomogeneous
systems is 7y~ 1 —f=n"/2. In strong coupling this density
corresponds to leaving the free sites empty and singly occu-
pying the attractive ones. By comparing this behavior with
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FIG. 6. (Color online) The magnitude of the averaged order
parameter A for the inhomogeneous patterns along the enhancement
boundary (r=1) in Fig. 1 as a function of the average electron
occupation n for f=0.25 [panel (a)], f=0.5 [panel (b)], and f
=0.75 [panel (¢)].

the uniform system for which, due to particle-hole symmetry,
ne=1 we can understand why n,,~n /2. Also, one ob-
serves in Fig. 6 that by further diluting the interacting sites in

a lattice, the magnitude of A; oy at Nop decreases.

We conclude in this section that by further diluting the
density of interacting sites in a lattice while maintaining the
average pairing energy per site constant at 7=0, the average

order parameter A, may enhance. This enhancement re-
sults from the proximity effect in the noninteracting sites due
to their interacting neighbors leading to a larger average or-
der parameter compared to the uniform lattice and in many
respects is independent of the particular inhomogeneous pat-
tern. Superconductivity in an inhomogeneous lattice of inter-
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FIG. 7. (Color online) Panel (a): (main) the variation of the

averaged order parameter A for the uniform and three different
inhomogeneous patterns of checkerboard, stripes, and random at f
=025, n=1.35<n", and T=0 as a function of |U|. The inset pre-
sents the evolution of these order parameters as a function of tem-
perature for |U|=6¢ (the largest at T=0). Panel (b): (main) the same
results as in panel (a) for n= 1.5=n" and T=0. The inset shows the
evolution of order parameters against temperature for two different
values of |U|=2¢ (solid line with solid symbols) and 4¢ (dashed line
with open symbols) as indicated in the T=0 results by the dashed
lines.

acting sites gradually vanishes above n=n" and for large

enough |U| values at n=n" we have an insulating phase as a
result of a charge-ordered phase formation. For larger f val-

ues, the enhancement ratio r=A; om/ Auniform Will be larger
for small values of |l7 | and n. However, the enhancement of

Ajphom Occurs at smaller values of n. We also find an opti-
mum value of n,,~1- f=n*/ 2 for the largest enhanced

Ajihom for a system in the presence of inhomogeneity.

IV. RESULTS AT FINITE T

The SC transition temperature 7. of a lattice with an in-
homogeneous pattern of interacting sites can also be larger
compared to a uniform interaction distribution on the same
lattice. In this section, we investigate the conditions under
which inhomogeneity in any form can lead to the enhance-

ment of 7, as a function of |U| and n at different concentra-
tion values f. In Fig. 7, panel (a) presents the variation of the
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average order parameter A, and A i a@s functions of
|U| for £=0.25, n=135<15=n", and T=0. We pick the
value of |U|=6t, the largest in panel (a), at T=0 and plot both
Anom(T) and A i¢orm(7) as functions of 7 in the inset inside
panel (a). As seen in panel (a), for |U|=6t, A pirorm(T=0) has
already exceeded all its inhomogeneous counterparts appre-

ciably. Nevertheless, in the inset inside the same panel, 7. for
the inhomogeneous patterns are still larger than their uniform

pattern counterpart at |U|=6¢, indicating the strong enhance-
ment of T..

For the uniform pattern at all values of |U| and n, we find
T. in good agreement with the BCS prediction, k.7,
~[A(0)|U|1/1.76, as expected from our mean-field ap-
proach. In panel (b) in Fig. 7 for n=1.5=n", however, for
|U|=2t for which A pm(T=0) is slightly larger than
Aipom(T=0), we find that T, for all inhomogeneous patterns
[except the checkerboard whose Ajpom(7T=0)=0 at |U|=21]
are also slightly larger than the uniform pattern 7, as shown
in the inset of the same panel. At |U|=4t for which
Apnitorm(T=0) becomes noticeably larger than A, .n(7=0),
as presented in the inset inside panel (b), T, for the uniform
pattern also becomes larger than its inhomogeneous pattern

counterparts. In other words, the enha{klcement of T, is rather
k .
weak when n=n compared to n<<n and ceases to persist

as | U] increases. In panel (b), the checkerboard pattern has a
vanishing average order parameter at both 7=0 and finite 7.

For stripes, Ajnom Starts with a finite value at 7=0 and
gradually vanishes as T increases. For the random pattern,

Emhom starts at a value very close to zero at 7=0. However,
at |U|=4t as T increases, there is a slight rise in the magni-

tude of A, OVer some finite-temperature window before it
completely vanishes at high enough 7.
In Fig. 8, panel (a) presents similar results for f=0.5 at

n=0.9<n" and |U|=4t. As illustrated in the inset of the same
figure, even at |U|=4t for which A,pom(7=0)<Aitorm(T
=0), all inhomogeneous patterns lead to larger 7, compared
to the uniform pattern. In panel (b), for n=1=n", at |U|

=241, Ay pom(T=0) < A irorm(T=0). However, except for the
checkerboard, we still find an increase in 7, due to inhomo-
geneity. Similar to Fig. 7 panel (b), for both striped and

random patterns, we also find a gradual increase in A, (7)
as T increases before it totally vanishes at high enough 7.

The enhancement of 7, continues to persist up to |U|=3.5¢,
although A ;(7=0)=0 for all inhomogeneous patterns,

due to the gradual increase of Ajyom(7) With temperature.
Panel (c) corresponds to n=1.2>n" and it can be observed

that for |l_] | =1.5¢, for stripes only, T is increased. However,

at slightly larger |U|=1.8¢, T.. for the uniform pattern signifi-
cantly dominates the inhomogeneous pattern ones and no
gradual increase in A, ,,,(7) occurs as T increases.

Figure 9(a) has f=0.75 and n=04<n". Sin}kilar to the
behavior observed for f=0.25 and 0.5 when n<<n , up to the
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FIG. 8. (Color online) Panels (a), (b), and (c) refer to f=0.5 and
n=0.9<n*, n=1=n*, and n=1.2>n*, respectively. Two different

values of |U| have been chosen in panels (b) and (c) at finite tem-
perature as shown by the dashed lines in the 7=0 results. In panel

(b), for better visibility, results for stripes at |U|=3.5¢ (dashed line
with open diamonds) are shown in magenta inside the inset.

largest value of |U|=3t, inhomogeneity significantly in-
creases T, as illustrated in the inset of the same panel. This
occurs despite the fact that Ay yom(7=0) < Ayniorm(T=0). For
n=05=n", even at |U|=1.86f where A,om(T=0)=0, for
both the striped and random patterns we again find an in-
crease in T, due to inhomogeneity. In this case, the gradual

increase in A, ,0(7) as a function of T is further pronounced
until 7. totally vanishes for these two patterns at high enough
T. Panel (c) corresponds to n=0.65>n" and similar to f

=0.25 and f=0.5 cases when n>n", for large enough |U|
=1.5¢ (slightly larger than |U|=1.25¢ in the inset) inhomoge-
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FIG. 9. (Color online) Panels (a), (b), and (c) refer to f=0.75
and n=0.4<n*, n=0.5=n*, and n=0.65>n*, respectively. Two
different values of |U| have been chosen in all panels as shown by
the dashed lines in the 7=0 results. In panel (c), results for check-
erboard at |U|=1.5¢ (dashed line with open diamonds) are shown in
cyan inside the inset for better visibility.

neity no longer yields larger 7, compared to the uniform.
(See inset.)

The anomalous increase of A, as a function of T at
n=n" for f=0.5 is an actual feature and is believed to be
related to the gradual destruction of the charge-ordered phase
due to temperature, leading to an intermediate SC phase. In
Fig. 10 corresponding to Fig. 9, panel (b) for n=0.5, f
=0.75, and |U|=1.86t, panel (a) presents the DOS results at
several T values within the temperature window of the inset
in Fig. 9, panel (b). At T=0, the gap in the DOS is barely
nonzero at w=0 (Fermi energy), indicating a charge-ordered
phase. By increasing 7T to 0.6¢ the gap widens towards super-
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FIG. 10. (Color online) Anomalous behavior of the averaged
order parameter A as a function of temperature T at f=0.75 and n
=0.5 as presented in Fig. 9, panel (b) (inset), for stripes. Panel (a)
illustrates the evolution of the DOS as a function of temperature for
|U|=1.86¢. Panel (b) demonstrates how the local A; on any of the
individual four sites inside the block shown in Fig. 1, panel (b) vary
as a function of temperature 7. Panel (c): the evolution of the local
occupation number 7; on any of the individual four sites inside the
block shown in Fig. 1, panel (b), as a function of temperature 7.

conductivity consistent with the behavior shown inside the
inset in Fig. 9, panel (b). By further increasing 7, the gap
begins to shrink due to the destruction of superconductivity
by temperature until it entirely vanishes at 7=1.65¢, in agree-
ment with the results inside the inset in Fig. 9, panel (b).
Panel (b) in Fig. 10 illustrates the variation of the local
order parameter on all four different types of sites for stripes
at f=0.75. Only A, along the line of interacting sites varies
appreciably as T increases. Panel (c) of Fig. 10 shows the
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FIG. 11. (Color online) Same as Fig. 10, but for the random
pattern.

local occupation numbers on all the four different types of
sites for stripes at f=0.75 [Fig. 1, panel (b)]. By increasing
T, while the occupation of the interacting sites gradually
drops from n=2 to n=1, an indication of the destruction of
the charge-ordered phase, the occupation of the noninteract-
ing sites grows, leading to additional mobility and overlap of
the Cooper pairs and therefore enhancing 7.

Figure 11, panel (a) shows the DOS results for the random

pattern for n=0.5, f=0.75, and |U|=1.86¢ depicted in Fig. 9,
panel (b). Similar to stripes, over the window of temperature
studied in panel (a), the gap in the DOS initially grows up to
T=t and then gradually drops to zero slightly beyond T
=1.6¢ to indicate the formation of a metallic phase as the
temperature destroys superconductivity. Panel (b) in Fig. 11
also shows significant variation of the local order parameter
only on the interacting sites on average. Hence, similar to
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stripes, temperature acts against the more localized charge-
ordered phase, allowing for the Cooper pairs to move and
overlap more freely and consequently the enhancement of T...
Panel (c) also confirms that the charge-ordered phase is in-
deed destroyed by temperature, allowing the noninteracting
sites to become more occupied, resulting in an intermediate
SC phase. Metallic behavior is established at sufficiently
high temperature.

It is also noteworthy that this anomalous increase in

Aihom Was not observed for the checkerboard pattern for
Wthh there is no superconductivity at any temperature when
n=n". One possible explanation is that due to the particular
geometry for the checkerboard, localized Cooper pairs are
farther apart from one another compared to the strlped and
random patterns. As mentioned earlier, when n= n" we have
two electrons per interacting site. For the checkerboard lat-
tice, this leads to a pair localized in the interacting sites with
empty nearest-neighboring sites. Therefore, the effect of tem-
perature is minor in causing further overlap among the pairs
before it totally destroys them [especially at f=0.5 and 0.75
as shown in Fig. 1, panel (a)].

A similar increase in 7, upon introducing a checkerboard
pattern is found in the MCMF calculations as well, arising
from the loss of long-range phase coherence. This is particu-
larly significant because the MCMF approach incorporates
the subtle nature of the SC transition in 2D discussed earlier.
We have also independently confirmed that our conclusions
and arguments equally apply for a model with nearest-
neighbor attraction, leading to a d-wave SC close to half-
filling, which reflects the cuprates’ phenomenology more
truthfully. 6!

We have found that upon introducing inhomogeneity into
the pattern of interacting sites on a lattice. 7. can be in-

creased over a wide range of |U] as long as n<n" even if
Ainom(T=0) < Anitorm(7=0). When n> n", however, for suf-

ficiently large |l_] |, inhomogeneity acts against superconduc-
tivity and therefore 7. becomes smaller compared to the um-
form pattern of interacting sites. The case of n= n* s
anomalous. The charge-ordered phase established at large

enough |U| values at T=0 gradually vanishes as T increases.
Ajhom first increases with increasing 7, leading to a SC phase
(at least for large enough f values and lower-symmetrical
inhomogeneity patterns), and then vanishes, indicating a me-
tallic state.

V. SUMMARY AND DISCUSSION

In summary, we have shown that for the attractive Hub-
bard model on a square lattice, there is a significant range of
electron doping and interaction strength over which the av-
erage superconducting order parameter is larger for a lattice
with inhomogeneous patterns of interacting sites than a uni-
form distribution of these interacting sites at a constant in-
teraction strength per site. We have presented the phase dia-
grams for three different inhomogeneous patterns,
checkerboard, stripes, and random, and also three different
values for the concentration of the noninteracting sites. Apart
from a few particular features, the overall physics illustrated

184521-12



s-WAVE SUPERCONDUCTIVITY PHASE DIAGRAM IN...

in the phase diagrams is pattern independent. As we vary the

mean interaction strength |U| and the doping level n at zero
temperature, we have verified the existence of at least three
different phases—namely, (i) superconducting, (ii) insulating
due to the charge order phases, and (iii) metallic. Our find-
ings and claims are strongly supported by studying the be-
havior of a variety of quantities computed in this work all
consistently corroborating one another.

The enhancement of the average order parameter for the
inhomogeneous interacting site patterns is due to the prox-
imity effect—i.e., the tunneling effect of the Cooper pairs
from the interacting sites, leading to finite order parameter
values on neighboring sites. This conclusion is supported by
the effect occurring at weak coupling, where the coherence
length is large, rather than in the strong-coupling regime of
preformed pairs. Agreement between the BdG results and the
MCMEF calculations justifies the application and conclusions

of the BdG approach within the small-|U| regime. Our cal-
culations also clearly confirm that an inhomogeneous inter-
action potential can lead to the increase in the phase transi-

tion temperature 7, over a wide range of n and |U| for
various f values. Counterintuitively, as long as 7 is less than
or equal to twice the fraction of interacting sites, this in-

crease in T, continues even for values of |U| for which the
order parameter is larger for the uniform pattern than for
inhomogeneous patterns at 7=0.

One possible explanation takes into account that in this
weak-coupling parameter regime, 7, is a supralinearly in-
creasing function of U. In such a case, it may be that in the
inhomogeneous system the sites with larger U produce a
nonlinear enhancement relative to 7. of the uniform system
and, through the proximity effect, drag the noninteracting
sites along with them. This trend changes when n exceeds
twice the number of interacting sites (i.e., some electrons
must occupy noninteracting sites), for which at large enough

|(7 | values inhomogeneity fails to increase T, over that of the
uniform pattern. The n=2(1—f)=n" case for sufficiently
large f values and less symmetric inhomogeneous patterns
(such as stripes and random as opposed to the checkerboard)

is anomalous as it shows the enhancement of Einhom(T) as
temperature increases.

It is even more surprising to find that a system which is
nonsuperconducting (charge-ordered insulator) at 7=0 can
become superconducting upon increasing 7 for a finite win-
dow of temperature before turning metallic. This anomalous
behavior was shown to be related to a crossover from a

charge-ordered insulating phase for n=n"at large enough |U]
values to an intermediate SC phase upon increasing 7 before
entering the metallic phase at sufficiently large 7.

We wish to emphasize that in this article we have focused
on the enhancement (or not) of the pairing amplitude (our A
defined in Sec. II), rather than its product with the local
interaction strength-|U,| which is more directly related to the
gap but contains less information, and gives less insight, be-
cause it automatically vanishes on any site without interac-
tion. Thermodynamic measurements would probe quantities
which include the energy scale, such as the specific heat or
superfluid rigidity which our results may not have direct im-
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plications to. However, for an inhomogeneous system being
a mixture of different phases, defining an average SC gap is
not trivial. Thus, the thermodynamic properties of inhomo-
geneous superconductors will not necessary exhibit the same
behavior as their homogeneous counterparts. It has been
shown that the rise of the specific heat in inhomogeneous
superconductors obeys a power law behavior as opposed to
exponential in homogeneous ones using the attractive Hub-
bard model with random interacting sites.%> Also, the super-
fluid density and stiffness in general decrease due to the pres-
ence of disorder.® Nevertheless, lower superfluid density
does not necessarily lead to lower 7. as according to the
Anderson theorem, a nonmagnetic impurity should not affect
the 7, and therefore thermodynamic properties of an s-wave
superconductor. We have presented clear evidence for the
enhancement of 7, which does have a direct experimental
implication. Thermodynamic properties of inhomogeneous
superconductors are very rich in physics and a great deal of
contributions and new ideas in this area are yet to appear.

While the attractive Hubbard Hamiltonian obviously does
not incorporate many of the features of high-7,. supercon-
ductors (notably the symmetry of the pairing), the model has
been shown to provide useful insight into some of their
phenomenology—for example, the spin gap.®* It is therefore
tempting to speculate that our results concerning inhomoge-
neity may have similar connections. Specifically, earlier
angle-resolved photoemission spectroscopy (ARPES) data®
suggest that the underdoped phase of LSCO (La,_,Sr,CuO,)
consists of SC clusters, embedded in the antiferromagnetic
host. In such a system, inhomogeneous gaps appear naturally
and our results here indicate that the SC transition is in fact
determined by the largest gap values rather than the much
smaller gaps found at phase boundaries, as one might naively
think. This renders the SC phase more stable than it would
otherwise be and also simplifies the description of these sys-
tems.

It is worth emphasizing that in most situations, inhomo-
geneities reduce values of order parameters®’ and critical
temperatures, even when comparisons are made, as they are
in this article, to homogeneous systems with the same aver-
age value of all parameters. This is true, for example, for
classical site-diluted Ising models, where the ferromagnetic J
is increased to compensate for absent sites, and quantum
models like the boson Hubbard model where random chemi-
cal potentials monotonically decrease and ultimately destroy
superfluidity.®®%7 An exception is the increase of Ty by
randomness reported in density mean-field theory studies of
the repulsive model®® and recently, the SC T, in the XY
model Hamiltonian with certain types of inhomogeneous pat-
terns for the coupling constant between spins sitting on
nearest-neighboring sites.>
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