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Theoretical studies of a planar tunnel junction between two superconductors with antisymmetric spin-orbit
coupling are presented. The half-space Green’s function for such a superconductor is determined. This is then
used to derive expressions for the dissipative current and the Josephson current of the junction. Numerical
results are presented in the case of the Rashba spin-orbit coupling, relevant to the much studied compound
CePt3Si. Current-voltage diagrams, differential conductance and the critical Josephson current are presented for
different crystallographic orientations and different weights of singlet and triplet components of the pairing
state. The main conclusion is that Josephson junctions with different crystallographic orientations may provide
a direct connection between unconventional pairing in superconductors of this kind and the absence of inver-
sion symmetry in the crystal.
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I. INTRODUCTION

The question of how parity violation affects superconduc-
tivity has until recently not been subject to much experimen-
tal studies. In recent years, however, superconductivity has
been discovered in several materials with a noncentrosym-
metric crystal structure. This offers an arena for the study of
superconductivity in the absence of inversion symmetry.
Theoretical studies of such systems have predicted several
exotic features, reviewed in Refs. 1 and 2. The absence of
inversion symmetry allows an antisymmetric spin-orbit cou-
pling in the Hamiltonian. This has, among other things, the
consequence that the pairing state of the superconductor may
not be classified as a spin singlet or a spin triplet state.3,4

The most famous and studied example of the noncen-
trosymmetric superconductors is the heavy fermion com-
pound CePt3Si, which possesses several interesting
properties.1,2,5,6 For instance, the pairing state of CePt3Si
seems to contain line nodes5 even though NMR measure-
ments are of the kind expected for a conventional
superconductor.6 Several theories have been put forward to
explain this.7–9 Other examples of noncentrosymmetric su-
perconductors are UIr, Li2Pd3B, Li2Pt3B, Cd2Re2O7, and
possibly KOs2O6. The absence of inversion symmetry in
these materials destroys spin degeneracy through antisym-
metric spin-orbit coupling. This is expected to be strong in
some of the materials mentioned above,10,11 especially in
compounds containing atoms with a large atomic number.
Line nodes also seem to appear in the pairing state of
Li2Pt3B,12,13 whereas Cd2Re2O7, Li2Pd3B, and KOs2O6 ap-
pear to be nodeless.12,14,15

The experiments performed on these materials so far
mostly concern quantities such as specific heat, magnetic
penetration depth, and the nuclear spin-lattice relaxation rate.
They are all important in order to determine the pairing state
of a superconductor. However, tunneling spectroscopy and
experiments on Josephson junctions are also a very useful
tool in this respect, both in conventional and high-Tc
superconductors.16–18

Recently, theoretical studies of transport in a junction be-
tween a normal metal and a noncentrosymmetric supercon-

ductor were performed.19,20 These kinds of transport mea-
surements do not probe bulk properties directly but will
depend on how the pairing state is affected by the surface.
Due to the possible triplet component, one may expect the
gap to deviate from its bulk value21,22 and formation of An-
dreev bound states near the surface.17,23

The transport properties of a Josephson junction consist-
ing of two noncentrosymmetric superconductors have been
investigated in Ref. 24. Given particular pairing states, it was
noted that both the quasiparticle current and the critical Jo-
sephson current would depend on the relative crystal orien-
tation of the superconductors. Similar effects may appear
with the two-band superconductor MgB2.25,26 However, in
Ref. 24, the bulk density of states was used, neglecting the
effect of surface scattering. One might therefore question the
validity of these results, since the effect of surface reflection
was not considered.

In this paper, the effect of surface scattering is taken into
account when determining the transport properties of the
above mentioned Josephson junction. It is shown that the
effects predicted in Ref. 24 may still appear, even though the
surface provides a strong coupling between the spin-orbit
split bands. Thus, in some cases, one may expect qualitative
changes in the differential conductance for different relative
crystal orientations of the two superconductors. In addition,
quantitative changes in the critical Josephson current may be
expected. This could make it easier to establish a direct con-
nection between the unconventional pairing and the absence
of inversion symmetry. This paper is hence an attempt to
motivate experimental work on such junctions.

The paper is organized as follows. In Sec. II, we define
the model containing a general antisymmetric spin-orbit cou-
pling. The Green’s function is then established, first in the
bulk case and then in a half-space or semi-infinite scenario.
Expressions for the tunneling currents are presented in Sec.
III. In Sec. IV, numerical results using the Rashba spin-orbit
coupling are presented to exemplify the predicted effects.

II. MODEL

We will start by considering the bulk properties of a clean
superconductor with spin-orbit split bands. The model will

PHYSICAL REVIEW B 76, 184513 �2007�

1098-0121/2007/76�18�/184513�14� ©2007 The American Physical Society184513-1

http://dx.doi.org/10.1103/PhysRevB.76.184513


be written down in the continuum limit. Having established
the bulk Green’s function, we move on to derive the Green’s
function in the presence of a reflecting surface.

A. Bulk properties

Let the Hamiltonian consist of two terms, H=HN+HSC, a
normal part and a part describing superconductivity. In the
bulk, the normal part is

HN =� dk�k
†���k − ��1 + Bk · ���k, �1�

where �k
†= �ck↑

† ,ck↓
† �, �k is the band dispersion, and � is the

chemical potential. The vector � consists of the three Pauli
matrices.

The vector Bk describes the antisymmetric spin-orbit cou-
pling. It removes the spin degeneracy from the band �k. The
absence of inversion symmetry is reflected in the property
B−k=−Bk. An electron in a state with momentum k will align
its spin parallel or antiparallel to Bk. The symmetries of Bk
may be determined from point group symmetry
considerations.27

Diagonalization of Eq. �1� gives HN=��=±,k��,kc̃�,k
† c̃�,k,

where �±,k=�k−�± �Bk�. The spin of an electron in a state
with momentum k will point parallel �antiparallel� to Bk in
band � ���.

We write down the term responsible for superconductivity
in terms of the long-lived excitations in the normal state, i.e.,

HSC =
1

2�
��
� dkdk�V���k,k��c̃�,−k

† c̃�,k
† c̃�,k�c̃�,−k�. �2�

We will consider the limit where the spin-orbit splitting is
much larger than the superconducting gaps. This is a relevant
limit, at least for the materials CePt3Si �Ref. 10� and
Cd2Re2O7.11 In that case, interband Cooper pairs are strongly
suppressed, even though the two bands may touch at some
isolated points on the Fermi surface.10 Thus, model �2� con-
tains only intraband Cooper pairing. However, it does in-
clude an internal Josephson coupling, i.e., scattering of Coo-
per pairs between the bands.

The standard mean field approach gives

HSC =
1

2�
�
� dk��̃�,kc̃�,k

† c̃�,−k
† + �̃�,k

* c̃�,−kc̃�,k� , �3�

where �̃�,k=−���dk�V���k ,k��	c̃�,k�c̃�,−k�
. �̃�,−k=−�̃�,k

follows from the fermionic anticommutation relations. One
should note that the two bands are decoupled in the mean

field approximation. However, the gaps �̃±,k are, in general,
not independent but related through the self-consistency
equations due to the above mentioned possibility of inter-
band pair scattering.28

Let K denote the time-reversal operator, whose effect on
the operators in the spin basis is K :ck,	

† =−	c−k,−	
† . It may be

derived that K : c̃�,k
† = t�,kc̃�,−k

† , where t�,k=−t�,−k is a gauge-

dependent phase factor. One may write �̃�,k= t�,k
�,k, where

�,k is the order parameter for pairs of time reversed states
on which observable quantities will depend. Thus, 
�,k

=
�,−k may be expanded in terms of even basis functions of
irreducible representations of the space group.29

Define the matrix �k whose elements are the gap func-
tions �k,		� in a spin basis. By transforming Eq. �3�, one
arrives at

�k = �k,S�− i	y� + �k,T�B̂k · ���− i	y� . �4�

Thus, in the absence of spatial inversion symmetry, the order
parameter in a spin basis has no definite parity but is, in
general, a linear combination of a singlet �S� and a triplet �T�
part.3,4,8,30 The singlet and triplet components are determined
by

�k,S =
1

2
�
+,k + 
−,k� ,

�k,T =
1

2
�
+,k − 
−,k� . �5�

There is no need to specify the momentum dependence of
the gaps 
�,k at this point.

In the bulk, the Green’s functions are diagonal in
momentum space due to translational symmetry. In the
imaginary time formalism, define the normal and anomalous
Green’s functions as Gb,		��k ,��=−	T�ck	���ck	�

† �0�
 and
Fb,		��k ,��= 	T�ck	���c−k	��0�
, respectively, where the sub-
script b denotes bulk. It is convenient to transform to fermi-
onic Matsubara frequencies 
n= �2n+1�� /�, where � is the
inverse temperature. The bulk Green’s function in spin
�particle-hole space,

Gb�k,i
n� = � Gb�k,i
n� − Fb�k,i
n�

− Fb
†�k,i
n� − Gb

t �− k,− i
n� � , �6�

is found by solving the Gor’kov equations �Eq. �A1�� pre-
sented in Appendix A. The components are matrices in spin
space, given by

Gb�k,i
n� =
1

2 �
�=±

	
B̂k

�
G��k,i
n� ,

Fb�k,i
n� = −
i

2 �
�=±

	
B̂k

�
	yF��k,i
n� , �7�

in terms of the complex scalar functions

G��k,i
n� = −
i
n + ��,k


n
2 + ��,k

2 + �
�,k�2
,

F��k,i
n� =

�,k


n
2 + ��,k

2 + �
�,k�2
, �8�

and the matrices

	
B̂k

�
= 1 + �B̂k · � . �9�

B. Half-space Green’s function

The bands � and � defined in the previous section has
the property that reversing the direction of an electron’s mo-
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mentum while preserving its spin requires a change of bands.
Thus, one would expect that the independence of bands �
and � could be vulnerable to scattering, e.g., from impuri-
ties. In fact, it has been shown that a small concentration of
nonmagnetic impurities does not change the picture of inde-
pendent bands in the mean field approximation.31 A perfectly
reflecting surface should, however, lead to a severe mixing of
the bands. This needs to be taken into account when describ-
ing transport in heterostructures containing these materials.

The presence of a surface will make the Hamiltonian and
the Green’s function nondiagonal in momentum space. Still,
due to the nature of the spin-orbit coupling, it is convenient
to work in a plane wave basis. We will assume that the sur-
face is perfectly smooth. Of course, any real surface will
have some roughness, which may very well modify the re-
sults of this paper. However, at least for not too rough sur-
faces, this model is an appropriate starting point. We will
also assume that the surface is spin inactive, i.e., nonmag-
netic.

Consider the simplest case of a perfectly smooth surface
at x=0, such that the electrons are confined to x�0. We seek
the Green’s function G�k1 ,k2 ,�� whose elements are

G		��k1,k2,�� 
 − 	T�ck1,	���ck2,	�
† �0�
 ,

F		��k1,k2,�� 
 	T�ck1,	���c−k2,	��0�
 , �10�

where ck1,	 is the annihilation operator for a plane wave
state. In the presence of a scattering surface, these correlation
functions will not be diagonal in momentum space.

Due to translational invariance in the y and z directions,
it is natural to introduce the 4�4 Green’s function in
spin�particle-hole space in a mixed representation,

G̃�x1 ,x2 ,k� , i
n�. We have defined k� =kyŷ+kzẑ. The

normal and anomalous components are G̃		��x1 ,x2 ,k� ,��
=−	T�cx1,k�,	

���cx2,k�,	�
† �0�
 and F̃		��x1 ,x2 ,k� ,��

= 	T�cx1,k�,	
���cx2,−k�,	��0�
, respectively. The Green’s func-

tion is determined by the Gor’kov �Eq. �A3��, which are
presented in Appendix A. The boundary conditions are

G̃�x1,x2,k�,i
n� = 0, x1 = 0 or x2 = 0. �11�

The pair potential in this mixed basis, ��x1 ,x2 ,k��, should be
determined self-consistently. Even though it may deviate sig-
nificantly from the bulk near surfaces,21,22 we will approxi-
mate it by its bulk value. This approximation is expected to
give qualitatively correct results.17,20 In Appendix A, it is
shown that this approximation enables us to express the half-
space Green’s function in terms of bulk Green’s functions.
This may be realized by treating the surface as a wall of
nonmagnetic impurities of infinite strength.32 The momen-
tum space Green’s function then becomes

G�k1,k2,i
n�

= �Gb�k1,i
n���k1,x − k2,x�

− Gb�k1,i
n�G̃b
−1�0,0,k�,i
n�Gb�k2,i
n����k1,� − k2,�� .

�12�

To determine this, we need the inverse of the matrix

G̃b�0,0,k�,i
n� = �
−�

�

dkxGb�k,i
n� . �13�

Let us now define k
�kx ,k�� and k̄
�−kx ,k��. From the pre-
vious Section, we saw that the gaps 
±,k were unchanged
upon reversal of the momentum. At this point, we restrict
ourselves to surfaces such that the gaps are unchanged also
when reversing the component of the momentum perpen-
dicular to the surface only, i.e., 
�,k̄=
�,k. Although this is
not a necessary requirement to determine the Green’s func-
tion, it will simplify the calculations and be sufficient for the
scenarios considered here. We will also assume ��,k̄=��,k.

Using these approximations, the properties G��k̄ , i
n�
=G��k , i
n� and F��k̄ , i
n�=F��k , i
n� follow from Eqs. �8�.
We now convert the kx-integral in Eq. �13� to an energy
integral. The integrand will be strongly peaked about the
Fermi level. Thus, we apply the quasiclassical approximation
of replacing all momentum-dependent quantities by their
value at the Fermi level.33 We introduce the notation

kF 
 �kF,x,k��, k̄F 
 �− kF,x,k�� , �14�

where kF,x�0 is determined by �kF
=0 given k�. We define

the quasiclassical or �-integrated Green’s functions by

g��kF,i
n� = −
i
n

�
n
2 + �
�,kF

�2
,

f��kF,i
n� =

�,kF

�
n
2 + �
�,kF

�2
. �15�

The integral over the normal Green’s function in matrix �13�
is found using

1

2
�

−�

�

dkx	B̂k

�
G��k,i
n� = �N�,kF

x 	bk�

� g��kF,i
n� , �16�

where N�,kF

x is ��kx
��,k�−1 taken at kF. The vector

bk�
=

1

2
�B̂kF

+ B̂k̄F
� �17�

has the property b−k�
=−bk�

but is not a unit vector. Similarly,
the integral over the anomalous Green’s function is obtained
from

1

2
�

−�

�

dkx	B̂k

�
F��k,i
n� = �N�,kF

x 	bk�

� f��kF,i
n� . �18�

We now assume that the difference in the density of states of
the two spin-orbit split bands is small and may be neglected.
Consequently, we also let N+,kF

x =N−,kF

x 
NkF

x .34 This is not a
necessary step in order to proceed, but it simplifies the cal-
culations.

The inverse of matrix �13� is then
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G̃b
−1�0,0,k�,i
n�

=
1

�K�kF,i
n�NkF

x

��
�=±
� 	bk�

� g�
*�kF,i
n� i	bk�

� 	yf��kF,i
n�

− i	y	bk�

� f�
*�kF,i
n� − 	y	bk�

� 	yg��kF,i
n� � .

�19�

We have introduced the function

K�kF,i
n� = 2�b+,k�
+ b−,k�


n
2 + Re�
+,kF


−,kF

* �

�
n
2 + �
+,kF

�2�
n
2 + �
−,kF

�2� ,

�20�

where b±,k�
=1± �bk�

�2. Later, it will be apparent that zeros in
K�kF , i
n� will correspond to surface bound states.

Introduce the simplified notation G�,1
G��k1 , i
n�, F�,2


F��k2 , i
n�, and g�
g��kF , i
n�. No momentum index is
needed on the latter since it depends only on the parallel
momentum and k1,� =k2,� 
k�. We are then ready to write
down the half-space Green’s function. The normal and
anomalous parts, defined in Eq. �10�, are

G�k1,k2,i
n�

=
1

2��
�

	
B̂k

�
G�,1��k1,x − k2,x�

−
1

2�K�kF,i
n�NkF

x �
���

	̃k1,k2

���

��G�,1�g�
*G�,2 + f�F�,2

* � + F�,1�f�
*G�,2 − g�F�,2

* ���
���k1,� − k2,�� �21�

and

F�k1,k2,i
n�

= −
i

2��
�

	
B̂k

�
	yF�,1��k1,x − k2,x�

−
1

2�K�kF,i
n�NkF

x �
���

	̃k1,k2

��� 	y

��G�,1�g�
*F�,2 − f�G�,2

* �

+ F�,1�f�
*F�,2 + g�G�,2

* �����k1,� − k2,�� , �22�

respectively. These functions are found by inserting Eqs. �6�
and �19� into Eq. �12�.

We have defined the matrix

	̃k1,k2

��� = 	
B̂k1

�
	bk�

� 	
B̂k2

� 
 �k1,k2

��� 1 + �k1,k2

��� · � , �23�

where the expressions for the scalar �k1,k2

��� and the vector
�k1,k2

��� are given in Appendix B.

III. CALCULATION OF TUNNELING CURRENTS

Let us now consider a planar tunnel junction between two
superconductors with spin-orbit split bands. We name the
systems A and B and let the x axis point perpendicular to the
junction. In addition, we use the letter c for operators and k
for momenta on side A, and d and p for the corresponding
quantities on side B. The spin-orbit coupling is described by
the vectors Bk

A and Bp
B on each side. These vectors are not

necessarily equal. Let us briefly exemplify this by consider-
ing the Rashba spin-orbit coupling, Bk=��n̂�k�, even
though we will work with a general Bk. Here, the vector n̂
describes the direction of broken inversion symmetry of the
crystal. This means that if the crystallographic orientation on
side B is different from side A, Bk

A and Bp
B will point in

different directions even when k=p.
The tunneling process is described by

HT = �
		�

� dkdp�Tkp,		�ck	
† dp	� + Tkp,		�

* dp	�
† ck	� .

�24�

The validity of results using perturbation theory in the tun-
neling Hamiltonian formalism has been shown by Prange.35

We emphasize that the systems are described in terms of
plane wave states. Thus, Tkp,		� is the transfer amplitude
from an incoming plane wave state with momentum p on
side B to an outgoing plane wave state with momentum k on
side A. When scattering a plane wave on a barrier, the per-
pendicular momentum of the transmitted wave points in the
same direction as the incoming wave. In addition, we assume
that the tunneling process conserves spin. These properties
result in

Tkp,		� 
 Tk,p��kxpx��	,	�, �25�

where ��x� is the Heaviside step function. Time-reversal
symmetry also demands T−k,−p

* =Tk,p.
Of course, there is also an amplitude for the incoming

plane wave being reflected. However, when treating Eq. �24�
as a perturbation, the current will be expressed as Green’s
functions of the unperturbed systems A and B. Thus, the
reflection is taken into account by using the half-space
Green’s functions obtained in the previous section.

The current from side B to side A is defined as I�t�
=−e	ṄA
, where NA is the total charge operator on side A

and the operator ṄA is given by the Heisenberg equation

ṄA= i�HT ,NA�. Treating the tunneling Hamiltonian as a per-
turbation, the Kubo formula gives I�t�= Iqp+ IJ�t�,36 where

Iqp = − 2e Im ��eV� ,

IJ�t� = 2e Im�e−2ieVt��eV�� . �26�

In the imaginary time formalism, when defining M���

�		��dkdpck	

† ���dp	����, we have

��i
�� = − �
0

�

d�ei
��	T�M���M†�0�
 ,
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��i
�� = − �
0

�

d�ei
��	T�M���M�0�
 . �27�

The time dependence of the operators are given by the un-
perturbed Hamiltonian, and the expectation values are to be
taken in the unperturbed state. The voltage is defined by
eV=�A−�B. The bosonic Matsubara frequency is 
�

=2�� /�, which will be subjected to i
�→eV+ i0+.
Equations �27� may be written as

��i
�� =
1

�
� dk1dk2dp1dp2Tk1,p1

Tk2,p2

* �

n

�Tr�GA�k2,k1,i
n − i
��GB�p1,p2,i
n�� �28�

and

��i
�� =
1

�
� dk1dk2dp1dp2Tk1,p1

Tk2,p2

* �

n

�Tr�FA
† �k2,k1,i
n − i
��FB�p1,p2,i
n�� ,

�29�

where the components of the Green’s functions are defined in
Eq. �10� and Tr denotes a trace in spin space.

As before, when converting the momentum integrals to
energy integrals, we replace all momentum-dependent quan-
tities by their value on the Fermi level. The density of states
N�kF� at the Fermi level is assumed equal in both bands. In

addition, we assume N�k̄F�=N�kF� and Tk̄F,p̄F
=TkF,pF

.

A. Quasiparticle current

Inserting the Green’s function �21� in Eq. �28�, one arrives
at

��i
�� =
�2

4
��

dk̂��
dp̂�TkF,pF

�2NA�kF�NB�pF�

��A1
���kF,pF�S1

���kF,pF,i
��

−
1

2
A2

�����kF,pF�S2
�����kF,pF,i
��

−
1

2
A3

�����kF,pF�S3
�����kF,pF,i
��

+
1

4
A4

�������kF,pF�S4
�������kF,pF,i
��� , �30�

where repeated Greek indices are to be summed over. The
prime indicates that the integrals over the Fermi surfaces are

restricted to positive k̂x , p̂x. The Ai’s are defined by37

A1
���k,p� = Tr 	

B̂k
A

�
	

B̂p
B

�
+ Tr 	

B̂
k̄

A
�

	
B̂

p̄
B

�
,

A2
�����k,p� = Tr 	

B̂k
A

�
	̃p,p

��� + Tr 	
B̂

k̄

A
�

	̃p̄,p̄
���,

A3
�����k,p� = Tr 	̃k,k

���	
B̂p

B
�

+ Tr 	̃
k̄,k̄

���
	

B̂
p̄
B

�
,

A4
�������k,p� = Tr 	̃k,k

���	̃p,p
��� + Tr 	̃

k,k̄

���
	̃p̄,p

��� + Tr 	̃
k̄,k

���
	̃p,p̄

���

+ Tr 	̃
k̄,k̄

���
	̃p̄,p̄

���. �31�

These quantities depend on B̂k
A, B̂

k̄

A
, B̂p

B, and B̂p̄
B, and explicit

expressions are given in Appendix B. The Si’s depend on the
momenta through the gaps and are defined as

S1
���k,p,i
�� =

1

�
�

n

g�
A�k,i
n − i
��g�

B�p,i
n� ,

S2
�����k,p,i
�� =

1

�
�

n

g�
A�k,i
n − i
������

B �p,i
n� ,

S3
�����k,p,i
�� =

1

�
�

n

����
A �k,i
n − i
��g�

B�p,i
n� ,

S4
�������k,p,i
�� =

1

�
�

n

����
A �k,i
n − i
������

B �p,i
n� .

�32�

The function g��k , i
n� was defined in Eq. �15�. The function
�����k , i
n� is

�����k,i
n� =
g��g�

*g� + f�f�
* � + f��f�

*g� − g�f�
* �

K�k,i
n�
, �33�

where the arguments of the g’s and f’s were omitted for
clarity. Note that �����kF , i
n� does not depend on NkF

x .
In Eq. �30�, we have reached the point at which the cur-

rent Iqp is expressed as two surface integrals over half of the
Fermi surface on each side. In addition, one is left with the
Matsubara sums which may be converted to energy integrals.
To get further, one must insert the appropriate angular depen-

dence of the quantities 
�,kF
, B̂kF

, and N�kF� on each side as
well as �TkF,pF

�. In most cases, the remaining integrals need to
be performed numerically. Both the energy and angle inte-
grands contain integrable singularities which must be
handled with care.

We will now assume that the two gaps 
±,k are phase
locked due to the internal Josephson coupling. We write out
the phase explicitly, such that 
±,k

A →
±,k
A ei�A

. 
+,k
A and 
−,k

A

are real from now on, but not necessarily of the same sign.
Obviously, the same also applies to the gaps on side B.

To obtain the current Iqp, we need Im ��i
��. Since the
Ai’s are real �see Appendix B�, the only complex parts are
contained in the Matsubara sums. By converting the sums to
contour integrals in the complex plane and deforming the
contour, one finds that Im Si�eV+ i0+� may be expressed as
energy integrals containing the functions Im g��k ,E+ i0+�,
Im �����k ,E+ i0+�, and the Fermi-Dirac distribution nF�E�.
Details of this procedure and the choice of appropriate
branch cuts are found in Appendix C. The first function is
proportional to the usual bulk density of states
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Im g��k,E + i0+� = − ���E� − �
�,k��
�E�

�E2 − �
�,k�2
. �34�

As before, ��x� is the Heaviside step function. The second
function is somewhat complicated but may be written as

Im �����k,E + i0+�

= ���E� − �
m,k��P����E�

+ ���
m,k� − �E����− 
+,k
−,k�P̄����E����E� − E0,k̂� ,

�35�

where �
m,k�
min��
+,k� , �
−,k��. The functions P����E� and

P̄����E� are even functions of E and may be found by using
Eqs. �C2� and �C3� in Appendix C. If one interprets
Im �����k ,E+ i0+� as a density of states, the first term de-
scribes a continuum above the smallest gap. However, the
second term describes additional discrete states below the
smallest gap. These are the Andreev bound states induced by
the reflection from the surface. Note that they appear only
when the signs of the two gaps differ, as was also noted in
Ref. 20. The energy E0,k̂ is the positive solution to the equa-
tion

b−,k�
�
+,k
−,k − E

0,k̂

2 � + b+,k�
��
+,k�2 − E

0,k̂

2 ��
−,k�2 − E
0,k̂

2
= 0

�36�

and is measured relative to the Fermi level. Thus, we get a
band of low energy surface bound states in the part of mo-
mentum space where 
+,k
−,k�0. Equation �36� corresponds
to Eq. �14� of Ref. 20, but here we have made no assumption
of the particular form of Bk.

Let us also comment on what happens in the limit of a
singlet superconductor. From Eq. �5�, we see that this limit
corresponds to 
+,k=
−,k. In that case, there are obviously no
Andreev bound states and �����k , i
n�=g+�k , i
n� /4
=g−�k , i
n� /4. The current Iqp then equals the result obtained
using bulk Green’s function.36,38

Whereas the limit 
+,k=
−,k corresponds to a singlet su-
perconductor, setting the gaps to zero corresponds to a nor-
mal metal. The current will, in those cases, not depend on the
nature of the spin-orbit coupling vector Bk. The reader may
wonder why there are no remnants of the spin-orbit coupling
in these limits. This is a consequence of the approximation of
equal densities of states for the two bands.

B. Josephson current

The two-particle current is found by inserting the Green’s
function �22� in Eq. �29�, giving

��i
�� =
�2

4
��

dk̂��
dp̂�TkF,pF

�2NA�kF�NB�pF�

��A1
���kF,pF�S̃1

���kF,pF,i
��

−
1

2
A2

�����kF,pF�S̃2
�����kF,pF,i
��

−
1

2
A3

�����kF,pF�S̃3
�����kF,pF,i
��

+
1

4
A4

�������kF,pF�S̃4
�������kF,pF,i
��� . �37�

As before, the integrals are restricted to positive k̂x and p̂x

and repeated Greek indices are summed over. The S̃i’s are
defined as

S̃1
���k,p,i
�� =

1

�
�

n

f�
*A�k,i
n − i
��f�

B�p,i
n� ,

S̃2
�����k,p,i
�� =

1

�
�

n

f�
*A�k,i
n − i
������

B �p,i
n� ,

S̃3
�����k,p,i
�� =

1

�
�

n

����
*A �k,i
n − i
��f�

B�p,i
n� ,

S̃4
�������k,p,i
�� =

1

�
�

n

����
*A �k,i
n − i
������

B �p,i
n� .

�38�

The function f��k , i
n� is defined in Eq. �15� and
�����k , i
n� is

�����k,i
n� =
g��g�

*f� − f�g�
* � + f��f�

*f� + g�g�
* �

K�k,i
n�
. �39�

As in the previous section, we assume that the gaps are phase
locked, i.e., 
±,k

A →
±,k
A ei�A

, and treat 
±,k�p�
A�B� as real.

In the limit of a singlet superconductor, �����k , i
n�
= f+�k , i
n� /4= f−�k , i
n� /4. The Josephson current reduces
to the result found using bulk Green’s functions.39

It should be noted that Eq. �37� is a tunneling limit ex-
pression. Thus, it may not capture all the unusual phenomena
that arise when Andreev bound states contribute to Joseph-
son currents.40

IV. RESULTS

In this section, we consider a junction consisting of two
equal superconductors and present numerical results on the
quasiparticle and Josephson currents. We choose to study the
Rashba interaction

Bk = ��n̂ � k� , �40�

both because of its simplicity and its relevance to real mate-
rials such as CePt3Si �Ref. 27� and Cd2Re2O7 �Ref. 29�. The
vector n̂ represents the direction of broken inversion symme-
try of the crystal.

We restrict ourselves to junctions where n̂A and n̂B are
perpendicular to the tunneling direction, i.e., n̂A�B� · x̂=0. The
angle � is defined by

cos � 
 n̂A · n̂B. �41�

Of course, from an experimental point of view, only discrete
values of the angle � may be realizable.
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The variation of the current with � is a result of the facts
that n̂ determines the spin structure of the spin-orbit split
bands and that spin is conserved in the tunneling process. It
should be noted that replacing one of the superconductors by
a ferromagnet with magnetization MB and varying n̂A·MB

would not necessarily give similar conductance variations.41

A. Quasiparticle current

We now present numerical results on the quasiparticle
current Iqp given by Eq. �30�. In addition to the choice of
Rashba spin-orbit coupling, we also need the angular depen-
dence of the gaps 
±,k. As before, we write the phase explic-
itly, such that 
+,k and 
−,k are real.

We consider the same gaps as in Refs. 8 and 20, given by

�k,S=� and �k,T=��n̂� k̂�. The singlet and triplet compo-
nents, �k,S and �k,T, are defined in Eqs. �4� and �5�. � and �
are treated as constants for simplicity. We also assume that
��0 and ��0 without loss of generality. The gaps in the
spin-orbit split bands are then


±,k = � ± ��n̂ � k̂� . �42�

Let us define q=� /�. Whereas 
+,k is fully gapped if q
 0, the gap 
−,k contains line nodes if 0�q�1. See Ref. 8
for details. At this point, we should mention that other ex-
planations of line nodes in CePt3Si have been put forward.7,9

It is also for q�1 that we may expect Andreev bound
states at the surface, since 
+,k
−,k�0 on a part of the Fermi
surface in that case. However, one should note that formation
of Andreev bound states does not depend on the presence of
gap nodes. Isotropic 
±,k with different signs will also result
in subgap surface bound states.

For simplicity, we assume a spherical Fermi surface and
let the density of states be constant over the Fermi surface,

N�kF�=N. Let us introduce spherical coordinates by k̂
= �cos � sin ! , sin � sin ! , cos !�. As mentioned before, the x
axis is perpendicular to the junction. In addition, we let n̂A

and n̂B point along or opposite to the ẑ direction. The gaps
are then given by 
±,k /�=q±sin !. For q�1, Andreev
bound states are formed for momenta with arcsin�q��!
��−arcsin�q�. As mentioned in Sec. III A, these surface
bound states form below the smallest gap, i.e., below
�
−,k� /�= �q−sin !�. Figure 1 shows the spectrum of Andreev
bound states E0,k̂ in the case q=0. The dependence on the
azimuthal angle � is shown for three different polar angles !.
We see that E0,k̂→0 as �→0, which corresponds to ky =0
and thus �bk�

�=0. The maximal value of E0,k̂ is given by �q
−sin !�.

The tunneling matrix element, defined in Eqs. �24� and
�25�, will typically favor momenta with a large component in
the tunneling direction. Also, in the case of a smooth barrier,
the parallel momentum is conserved in the tunneling process.
Thus, we assume that

�TkF,pF
�2 = tk̂xp̂x��k̂� − p̂�� �43�

will capture the qualitative features of the tunneling matrix
element, where t is a constant.42

One may show that the variation of the current with the
angle � disappears when only perpendicular momenta con-
tribute. In other words, the effect is dependent on a finite
tunneling cone, where also nonzero parallel momenta con-
tribute to the current.

Tunneling spectroscopy on superconductors are interest-
ing at low temperatures. At higher temperatures, sharp fea-
tures giving information on pairing states may be smeared
out. Thus, we investigate the limit of zero temperature here.
However, for q�1, the current at low voltage is dominated
by resonant transport between Andreev bound states. This is
contained in the sum S4

������ �kF ,pF , i
��, where a product
of two delta distributions enters. At zero temperature, this
leads to a discontinuity at V=0, where the current jumps
from zero to a finite value. The discontinuity disappears for
nonzero temperatures and a sharp zero bias conductance
peak appears. To get realistic current-voltage diagrams, we
therefore retain a small temperature �T /�=0.015� in this par-
ticular term, such that this discontinuity at zero voltage is
smeared out. Such a small temperature will have no signifi-
cant effect on the other terms.

The current-voltage diagrams for several q are now pre-
sented, where we have defined iqp
−Iqp/ �2e�2t2N2�. We
consider the cases of �=0 and �=�, i.e., equal and opposite
directions of broken inversion symmetry. In addition, we
present the differential conductance G�eV�
diqp/d�eV�,
which may be directly accessible in experiments. The latter
has been obtained through a Savitzky-Golay smoothing
filter43 to remove noise from the numerical integration.

We start by considering the q=0 case, which corresponds
to a pure spin triplet state. The gaps 
+,k and 
−,k are then of

opposite signs on the entire Fermi surface except at k̂F
= ± n̂, where they have point nodes. Figure 2 shows the
current-voltage diagram when q=0. The differential conduc-
tance is presented in Fig. 3. The large current at small volt-
ages is due to transport between Andreev bound states on
each side. This gives rise to a zero bias conductance peak
followed by negative differential conductance. Similar phe-
nomena appear in some d-wave junctions.40 We observe that
there is no difference between the cases �=0 and �=� in the
pure triplet case. As stated before, this is also the case for the

0
0

0.2

0.4

0.6

0.8

1

φ

E0,k /∆

−π/2 π/2

θ = π/2

θ = π/4

θ = π/8

FIG. 1. �Color online� Energy spectrum for the bound states E0,k̂
in the case q=0. The dependence on the azimuthal angle � is shown
for three different polar angles !.
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pure singlet case, q→�.44 However, we will see that this
changes for finite q when the gap is a mixture of singlet and
triplet.

Figure 4 shows the current-voltage diagram in the case
q=0.4. In this case, 
+,k is fully gapped �although aniso-
tropic�, whereas the gap 
−,k has got line nodes at !
�23.6° and !�66.4°. Andreev bound states exist between
these angles. Observe that the cases �=0 and �=� differ.
This becomes clearer when studying the differential conduc-
tance in Fig. 5. We do not attempt to explain every feature in
this figure, as this depends on the particular pairing state
chosen. In addition, some of these features might also be
smeared out in experimental results. However, the important
thing to notice, which might be observable, is the qualitative
difference of a junction with equal n̂ vectors ��=0� and one
with opposite n̂ vectors ��=��.

The next current-voltage diagram, presented in Fig. 6, is
for q=1. Then, the line nodes have moved to the equator
�!=� /2� and will disappear for q 1. Now, there is no part
of the Fermi surface where 
+,k
−,k�0, such that there are

no Andreev bound states. In the differential conductance in
Fig. 7, there is a clear difference between �=0 and �=�. See
Ref. 24 for a simplified discussion of why this occurs.

Finally, we examine the scenario where the singlet to trip-
let ratio is q=2. At this value, both 
+,k and 
−,k are fully
gapped and of the same sign. The current-voltage diagram is
given in Fig. 8 and the differential conductance in Fig. 9.
Above eV /�=2, the behavior is similar to the q=1 case.

In the cases q=1 and q=2, we observe that the graphs
differ in the region 2�q−1��eV /��2�q+1�. This will also
be the case for higher values of q, but the width of this
region �2�q+1�−2�q−1�=4� becomes small relative to the
voltages at which the graphs differ �eV /��2q�. In the limit
q→�, we are left with the singlet result, with a single step in
the current for both �=0 and �=�.

B. Josephson current

We now move on to the Josephson current, given by Eq.
�37�. This has not been investigated in as much detail as the
quasiparticle current. In this section, we only suggest that the
critical Josephson junction at zero voltage may depend on

0 0.5 1 1.5 2 2.5
0

4
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12

16

eV/∆

iqp/∆ ζ = 0

ζ = π

FIG. 2. �Color online� Current-voltage diagram in a Josephson
junction when q=� /�=0. Transport between Andreev bound states
dominates for small voltages. There is no dependence on � in this
pure triplet case.
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0

35

70
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G(eV) ζ = 0

ζ = π

FIG. 3. �Color online� Differential conductance as a function of
voltage when q=0. For small voltages, the zero bias conductance
peak followed by negative differential resistance is due to transport
between Andreev bound states on each side. There is no dependence
on � in this pure triplet case.

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

eV/∆

iqp/∆ ζ = 0

ζ = π

FIG. 4. �Color online� Current-voltage diagram when q=0.4.
Transport between Andreev bound states dominates for small
voltages.
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FIG. 5. �Color online� Differential conductance in the case q
=0.4. Transport between Andreev bound states dominates for small
voltages.
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the angle � between the axes of broken inversion symmetry
of the crystal. We make no attempt to give any quantitative
estimates here, since this depends not only on the particular
pairing state of the material in question but also on several
other issues, such as the details of the tunneling matrix ele-
ments. Only experiments can determine whether this effect
really occurs and to what degree.

The critical or maximal Josephson current at eV=0,
IJ,c���, is defined as the absolute value of the Josephson cur-
rent at phase difference �B−�A= ±� /2. We still use the
Rashba spin-orbit coupling and consider only one pairing
state, given by


+,k = const, 
−,k = 0. �44�

This is probably not very realistic but suffices to illustrate the
effect.45 In this case, there are no Andreev bound states.

As mentioned in the previous section, the dependence on
� disappears when only perpendicular momenta contribute to
the current. This is also the case for the Josephson current.
We illustrate this by introducing a cutoff in the angle inte-
grals, integrating over !c�!��−!c and −� /2+�c��
�� /2−�c. Here, !c=�c=0 corresponds to integration over

the entire semisphere, whereas only perpendicular momenta
contributes when !c=�c→� /2.

Figure 10 shows the variation of the critical Josephson
current with �. Note the difference in current for the cases
�=0 and �=�. One should also observe that the variation is
reduced when the cutoff angle increases, corresponding to a
narrowing of the tunneling cone.

Although we have only studied a special scenario, the
general message is that a variation of the critical Josephson
current with � may be expected when the gap is a mixture of
singlet and triplet components.

V. CONCLUDING REMARKS

We have investigated both the current-voltage diagram
and the critical Josephson current in planar tunnel junctions
consisting of two superconductors with antisymmetric spin-
orbit coupling. This is relevant for several recently discov-
ered superconductors, where the spin-orbit coupling is a con-
sequence of the crystal lacking inversion symmetry.
Expressions for the currents have been derived in the tunnel-
ing limit using a general spin-orbit coupling.

Numerical results have been presented in the case of the
Rashba spin-orbit coupling. We have investigated the depen-
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FIG. 6. �Color online� Current-voltage diagram when q=1. At
this point, there are no Andreev bound states.
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FIG. 7. �Color online� Differential conductance when q=1. Note
the qualitative difference in the two cases for eV /��4.
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FIG. 8. �Color online� Current-voltage diagram when q=2. At
this point, both bands are fully gapped.
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FIG. 9. �Color online� Differential conductance when q=2. The
two cases of �=0 and �=� differ significantly when 2�eV /��6.
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dence on the relative angle between the directions of broken
inversion symmetry on each side of the junction. It has been
shown that if the gap is a mixture of spin singlet and spin
triplet parts, qualitative changes in the differential conduc-
tance may be expected when varying this angle. One may
also observe quantitative changes in the critical Josephson
current. This is a result of the fact that spin is conserved in
the tunneling process, whereas the spin structure of the spin-
orbit split bands is determined by the direction of broken
inversion symmetry. One should note that broken inversion
symmetry on both sides of the junction is of importance. As
stated earlier, similar conductance variations does not neces-
sarily appear when replacing one of the superconductors
with a ferromagnet and varying its magnetization.

The experimental verification of these phenomena re-
quires synthesis of junctions with specific crystallographic
orientation on each side. It is worth mentioning that Joseph-
son junctions with controllable crystallographic orientation
were essential in proving the d-wave symmetry of the order
parameter in the high-Tc cuprates.18 Furthermore, the rough-
ness of the tunnel barrier should be as small as possible. In
addition, the planar tunnel junctions must be thin enough to
ensure that momenta with finite parallel components contrib-
ute to the current. Finally, it should be pointed out that a
difference in the normal phase densities of states of the two
bands could give rise to some of the above mentioned effects
even for conventional pairing. However, this should be pos-
sible to detect by measuring the current-voltage characteris-
tics in the normal phase above Tc.

Many approximations and assumptions have been made
in order to produce these results. Thus, the results presented
here are expected to be of qualitative value only. The main

message is that experiments on Josephson junctions of non-
centrosymmetric superconductors may provide a direct con-
nection between the possibly unconventional pairing and the
lack of inversion symmetry in the crystal.
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APPENDIX A: DERIVATION OF THE HALF-SPACE
GREEN’S FUNCTION

First, we note that the momentum space Gor’kov equa-
tions in the bulk are

A�k,i
n�Gb�k,i
n� = 1 , �A1�

where

A�k,i
n�

= ��i
n − ��k − ���1 − Bk · 	 − �k

− �k
† �i
n + ��k − ���1 − Bk · 	*�

�A2�

and Gb�k , i
n� are matrices in spin�particle-hole space. The
subscript b denotes bulk. 
n= �2n+1�� /� is a fermion Mat-
subara frequency. The definition of Gb�k , i
n� and the solu-
tion of Eq. �A1� are given in Sec. II A.

We now want to determine the normal and anomalous
Green’s function when we restrict our system to a half-space,
i.e., x�0. Contrary to the bulk case, the Green’s function
will not be diagonal in momentum space. We do, however,
assume translational symmetry in the y and z directions,
such that the Green’s function will be diagonal in k� =kyŷ
+kzẑ. It is convenient to work in a mixed basis, where

we define the Green’s functions G̃		��x1 ,x2 ,k� ,��
=−	T�cx1,k�,	

���cx2,k�,	�
† �0�
 and F̃		��x1 ,x2 ,k� ,��

= 	T�cx1,k�,	
���cx2,−k�,	��0�
. The Gor’kov equations in the

continuum limit are

�
−�

0

dxA�x1,x,− i�x,k�,i
n�G̃�x,x2,k�,i
n� = ��x1 − x2�1

�A3�

in spin�particle-hole space. We have defined

A�x1,x,− i�x,k�,i
n� = ��i
n1 − HN�x,− i�x,k�����x1 − x� − ��x1,x,k��
− �†�x,x1,k�� �i
n1 + HN

* �x,− i�x,− k�����x1 − x�
� �A4�
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FIG. 10. �Color online� The variation of the critical Josephson
current with � for three different cutoff angles. Note the difference
in the cases �=0 and �=�. The variation diminishes as the tunnel-
ing cone is narrowed.
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where � and HN are 2�2-matrices in spin space. The 4
�4 Green’s function is

G̃�x,x2,k�,i
n� = � G̃�x,x2,k�,i
n� − F̃�x,x2,k�,i
n�

− F̃†�x,x2,k�,i
n� − G̃t�x2,x,− k�,− i
n�
�

�A5�

and should fulfill proper boundary conditions. The equations
are valid for x1 ,x2�0. The difference from the full space
Gor’kov equations is the restriction x�0 in the integral. The
bulk version of Eq. �A3� reduces to Eq. �A1�.

The pair potential ��x1 ,x ,k�� in Eq. �A3� should be deter-
mined self-consistently. It is well known that it may differ
from its bulk value near surfaces.21,22 However, we will now
apply the usual approximation17 of replacing the pair poten-
tial by its bulk value. Although this is a crude approximation,
it is expected to give qualitatively correct results.17,20

One way of deriving the half-space Green’s function is to
consider an infinite system and then introduce a wall of in-
finitely strong nonmagnetic impurities in order to confine the
electrons to one side of the system.32 The wall of impurities
must ensure that there is no transport �“hopping”� across the
wall and no interaction between the two sides. Since we use
a continuum model, a single plane of impurities at x=0 will
provide an impenetrable surface. It will, however, not pre-
vent interaction between the two sides due to the possibly
nonlocal nature of the pair potential. Nevertheless, this inter-
action with “ghosts” on the other side of the impurity wall is
tantamount to approximating ��x1 ,x ,k�� by its bulk value. In
other words, we construct an auxiliary system for x 0 such
that a particle in x1 “feels” the pair potential �b�x1 ,x ,k��
from all x as it would in the bulk. Thus, in the approximation
stated above, we may extend the x integral in Eq. �A3� to
also include positive x and use the bulk pair potential
�b�x1 ,x ,k��. However, we must demand that the boundary

condition G̃�x1 ,x2 ,k� , i
n�=0 for x1=0 or x2=0 is fulfilled
due to the infinitely strong impurities at x=0.

Having made the above mentioned approximation, it is
easy to show that the ansatz

G̃�x1,x2,k�,i
n� = G̃b�x1,x2,k�,i
n� − G̃b�x1,0,k�,i
n�

�G̃b
−1�0,0,k�,i
n�G̃b�0,x2,k�,i
n�

�A6�

satisfies the boundary conditions and the Gor’kov equations.
Thus, we have expressed the half-space Green’s function in
terms of bulk Green’s functions.

Since we desire a description of the system in terms of
plane wave states, we are interested in the Fourier represen-
tation of the Green’s function �Eq. �A5��,

G̃�x1,x2,k�,i
n� = �
−�

�

dk1,x�
−�

�

dk2,xG�k1,k2,i
n�

�e−ik1,xx1+ik2,xx2. �A7�

Using the Fourier representation of the bulk Green’s func-

tion, G̃b�x1 ,x2 ,k� , i
n�=�−�
� dkxGb�k , i
n�e−ikx�x1−x2�, we arrive

at

G�k1,k2,i
n� = �Gb�k1,i
n���k1,x − k2,x�

− Gb�k1,i
n�G̃b
−1�0,0,k�,i
n�

�Gb�k2,i
n����k1,� − k2,�� . �A8�

We see that the half-space Green’s function differs from the
bulk function by the second term, which is nondiagonal in
the perpendicular components of the momenta.

APPENDIX B: TRACE CALCULATIONS

In Sec. II B, we defined 	̃k1,k2

��� =	
B̂k1

�
	bk�

� 	
B̂k2

� 
�k1,k2

��� 1

+�k1,k2

��� ·�, where 	
B̂k

�
=1+�B̂k ·�. Using the algebra of Pauli

matrices, one arrives at

�k1,k2

��� = 1 + ���B̂k1

A · bk�

A� + ���bk�

A · B̂k2

A � + ���B̂k1

A · B̂k2

A �

+ i���B̂k1

A · �bk�

A � B̂k2

A � ,

�k1,k2

��� = �B̂k1

A + �bk�

A + �B̂k2

A + i���B̂k1

A � bk�

A�

+ i���bk�

A � B̂k2

A � + i���B̂k1

A � B̂k2

A �

+ �����bk�

A · B̂k2

A �B̂k1

A + �B̂k1

A · bk�

A�B̂k2

A

− �B̂k1

A · B̂k2

A �bk�

A� , �B1�

and similarly for side B, where A→B, � ,� ,�→� ,� ,�, and
k→p. We now intend to find the functions Ai�kF ,pF� defined
in Eq. �31�, on which both the one-particle current Iqp and the
two-particle current IJ depend. First, note that

Tr 	
B̂k

A
�

	
B̂p

B
�

= 2�1 + ���B̂k
A · B̂p

B�� ,

Tr 	
B̂k

A
�

	̃p1,p2

��� = 2��p1,p2

��� + ��B̂k
A · �p1,p2

��� �� ,

Tr 	̃k1,k2

��� 	
B̂p

B
�

= 2��k1,k2

��� + ���k1,k2

��� · B̂p
B�� ,

Tr 	̃k1,k2

��� 	̃p1,p2

��� = 2��k1,k2

��� �p1,p2

��� + ��k1,k2

��� · �p1,p2

��� �� , �B2�

obtained by using Tr 1=2 and Tr 	i=0. To simplify the ex-

pressions Ai�kF ,pF�, some useful relations are B̂kF

A ·bk�

A

= B̂
k̄F

A
·bk�

A = �bk�

A �2 and B̂kF

A · B̂
k̄F

A
=2�bk�

A �2−1. In addition, we are

only interested in Ai�kF ,pF� as appearing in the Fermi sur-
face integrals �30� and �37�. This allows further simplifica-

tions when using the symmetries 
�,k=
�,k̄ and B̂−k=−B̂k.
Thus, when appearing in the integrals �30� and �37�, we have
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A1
���kF,pF� = 4�1 + ���B̂kF

A · B̂pF

B �� ,

A2
�����kF,pF� = 4�1 + �� + ��� + ���bp�

B �2 + ��� + � + 2����bp�

B �2��B̂kF

A · B̂pF

B � + ���1 − ���B̂kF

A · bp�

B � ,

A3
�����kF,pF� = 4�1 + �� + ��� + ���bk�

A �2 + ��� + � + 2����bk�

A �2��B̂kF

A · B̂pF

B � + ���1 − ���bk�

A · B̂pF

B � ,

A4
�������kF,pF� = 4��1 + �� + ��� + ���bk�

A �2��1 + �� + ��� + ���bp�

B �2� + �1 − �� + �2�� + ��� + ����bk�

A �2�

��1 − �� + �2�� + ��� + ����bp�

B �2� + ��� + � + 2����bk�

A �2��� + � + 2����bp�

B �2� + �� + ����B̂kF

A · B̂pF

B �

+ ��� + � + 2����bk�

A �2���1 − ��� + �� + ����1 + �����B̂kF

A · bp�

B � + ���1 − ����� + � + 2����bp�

B �2� + ��1 + ���

��� + ����bk�

A · B̂pF

B � + ���1 − �����1 − ��� + ��1 + �����1 + �����bk�

A · bp�

B � + ��� + ����B̂kF

A · B̂p̄F

B �

− �1

4
��� − ����� − �� + ��� +

1

2
��� + ������ +

1

2
��� + �����B̂kF

A � B̂
k̄F

A � · �B̂pF

B � B̂p̄F

B �� . �B3�

APPENDIX C: MATSUBARA SUMS

The fermion Matsubara sums in Eq. �32� and �38� may be converted to contour integrals in the complex plane through the
identity

1

�
�

n

A�i
n − i
��B�i
n� = −
1

2�i
�

C

dzA�z − i
��B�z�nF�z� , �C1�

for general A�z− i
�� and B�z�. The contour C must encircle the poles of the Fermi-Dirac function nF�z�= �1+e�z�−1. The
functions A�z− i
�� and B�z� appearing in Sec. III will have branch cuts and possibly poles on the lines Im z= i
� and Im z
=0, respectively. This must be taken into account when deforming the contour. After the deformation has been performed, we
may let i
�→eV+ i0+.

The functions entering sums �32� and �38� are

g�
B�z� = −

z

��
�,p
B �2 − z2

,

f�
B�z� =


�,p
B

��
�,p
B �2 − z2

ei�B
,

����
B �z� = −

z�
�,p
B 
�,p

B + 
�,p
B 
�,p

B − 
�,p
B 
�,p

B − z2���
−d,p
B �2 − z2

2��
c,p
B �2 − z��b−,p�

B �
+,p
B 
−,p

B − z2� + b+,p�

B ��
+,p
B �2 − z2��
−,p

B �2 − z2�
,

����
B �z� =

�
�,p
B 
�,p

B 
�,p
B − z2�
�,p

B + 
�,p
B − 
�,p

B ����
−d,p
B �2 − z2

2��
c,p
B �2 − z��b−,p�

B �
+,p
B 
−,p

B − z2� + b+,p�

B ��
+,p
B �2 − z2��
−,p

B �2 − z2�
ei�B

, �C2�

where we have defined c=sgn��+�+�� and d=���.
We choose the branch cuts such that

��
�,p
B �2 − �E ± i0+�2 = ��
�,p

B �2 − E2���
�,p
B � − �E�� " i sgn�E��E2 − �
�,p

B �2���E� − �
�,p
B �� , �C3�

and similarly for side A.
The functions g�

B�p ,E+ i0+� and ����
B �p ,E+ i0+� have the property B�E+ i0+�=B�E− i0+�*. In addition, Im B�E+ i0+� is an

even function of E. Using this, one finds that the imaginary part of the sums in Eq. �32� may be expressed as
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Im Si�eV + i0+�

= −
sgn�eV�

�
�

−�

�

dE Im�A�E − �eV� + i0+��Im�B�E + i0+��

��nF�E − �eV�� − nF�E�� . �C4�

The functions f�
B�p ,E+ i0+� and ����

B �p ,E+ i0+� have the

property B̃�E± i0+�= �B̃R�E�± iB̃I�E��ei�B
, where the real

functions B̃R�E� and B̃I�E� are even and odd in E, respec-

tively. At eV=0, this enables us to write the imaginary part
of the sums in Eq. �38� as

Im S̃i�i0+�

=
sin��B − �A�

�
�

−�

�

dE�ÃR�E�B̃I�E� + ÃI�E�B̃R�E���1

− 2nF�E�� . �C5�
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