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Understanding the intricate relationship amongst fundamental properties of superconductors, in general, is
paramount for unraveling the origin of high-temperature superconductivity. An analytical formula for the
superconducting transition temperature Tc is derived from the T→0 limit of a recently proposed expression for
the vortex glass melting line, Hg�T�, wherein the energy scale kBTc is shown to be proportional to the product
of the ground state condensation energy density Hc

2 /2�0, a Cooper pair coherence volume Vcoh, and the
Lindemann number cL, which characterizes the stability of the solid vortex state to thermal and quantum
fluctuations. This expression provides a fundamental starting point from which the empirical scaling relation
�s��dcTc, established by Homes et al. �Nature �London� 430, 539 �2004��, as well as other recent observa-
tions, can be derived. Compatibility of the “bad metal” theory of superconductivity of Emery and Kivelson
�Nature �London� 374, 434 �1995�� with the results obtained herein is examined.
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I. INTRODUCTION

As there is to date no agreed upon theory for high-
temperature superconductivity, many experimental studies
over the past few decades have been focused on identifying
universal trends amongst the various physical properties of
high-temperature superconductors. Uemura et al.1,2 first ob-
served that the relation

Tc � �s�0� � �0
−2 �1�

provided a good description of the relationship between the
superconducting critical temperature Tc and the superfluid
density �s�0� �or penetration depth �0� in underdoped layered
cuprate superconductors. This simple linear scaling relation-
ship breaks down, however, for optimally and overdoped
materials. A few years later, Basov et al.3 established a linear
relation between the �c-axis� penetration depth and the
�c-axis� normal-state conductivity at the critical transition
temperature, �n,c�Tc�, with

�c
−2 � �n,c�Tc� . �2�

Again, this simple relationship breaks down for overdoped
samples.4 The same relationship given in Eq. �2� was also
later found by Pimenov et al.5 between the ab-plane penetra-
tion depth and the ab-plane normal-state conductivity with
the same breakdown of the linear correlation in overdoped
samples.

Recently, Homes et al.6 demonstrated �within experimen-
tal error� a truly universal scaling relationship �referred to as
“Homes’ law” in Ref. 7� for a number of high-Tc supercon-
ducting materials over their entire doping range from under-
doped to overdoped, where

�s�0� = �120 ± 25��n�Tc�Tc, �3�

for both the a-b plane and c-axis conductivities ��n is
referred to as �dc in Ref. 4�. An interpretation of this scaling
relationship was given by the authors for the ab-plane data
which require the systems to be approaching the clean limit.
The authors show that by combining the Drude model with

the observation that the scattering rate 1 /� scales linearly
with Tc, it follows that �s�0���n�Tc�Tc. However, a different
reasoning was applied to the c-axis data in which it is
assumed that the superconducting gap maximum �0�Tc
so that the Josephson current density Jc��0 /Rn�Tc /Rn
�Rn=d /�n; d is the separation between planes�. The final
scaling relationship is arrived at from the expression for the
c-axis penetration depth, �c

2�1/Jc, which is then equivalent
to Eq. �3� above.

The above observation of Homes et al. has generated con-
siderable debate as to what this universality means. The dis-
cussion has centered on the properties of the electrical con-
ductivity �n. In particular, Zaanen7 argues that Homes’ law
implies that in high-temperature superconductors, the dissi-
pation time scale in the normal state is at the “Planckian
limit,” i.e., ��Tc��	 /kBTc, and, as such, these materials are
necessarily quantum critical. This reasoning has been criti-
cized by Phillips and Chamon8 on the basis that Zaanen’s
conclusion relies on the Drude formula, which, according to
their investigation of the hyperscaling form of the frequency
dependent conductivity, has nothing to do with quantum
criticality. In spite of the considerable success of the expres-
sion above observed by Homes, criticism has also been
raised as to whether or not the expression really has anything
to do with fundamental universal properties. Tallon et al.9

contend that the universality of Homes’ law is coincidental in
that many possible different and unrelated properties or phe-
nomena in the various superconducting materials examined
can independently exhibit behavior consistent with Eq. �3�.
Furthermore, in an apparent paradox, Zuev et al.10 have ob-
served for YBa2Cu3O6+x films that the superfluid density
scales with the critical superconducting temperature as
�s�0��Tc

2.3±0.4 and that their data also conform to the empiri-
cal scaling form of Homes’ law. A further complication to the
picture being developed within the context of Homes’ law is
the observation of a different “universal scaling law” by Pratt
and Blundell11 for molecular superconductors, which also in-
volves �s�0�, �n�Tc�, and Tc but includes an additional factor

 which characterizes the coupling strength in a BCS-type
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system. Clearly, it is important to understand what funda-
mental properties within the cuprate superconductors �and
possibly those of other classes of superconductors, as well�
lead to the universal scaling of Homes’ law.

The main result of this paper is the derivation of a scaling
relationship which relates the critical temperature Tc to the
energy associated with the suppression of the order param-
eter by a magnetic field H within a superconducting unit
volume Vcoh and to the stability of the solid vortex state. This
expression provides another viewpoint from which to exam-
ine the phenomenon of superconductivity. We show that the
scaling form of Homes’ law, the scaling observed by Zuev et
al., and the scaling equation of Pratt and Blundell can all be
arrived at from our expression. Furthermore, we examine
possible implications for the T-x phase diagram of the high-
Tc cuprates by inserting an expression for the value of �n�Tc�
from the “bad metal” model of superconductivity proposed
by Emery and Kivelson12,13 into the scaling relationship
found herein and then quantitatively comparing the result to
Homes’ law. However, we emphasize that our expression on
its own makes no statement as to the mechanism of super-
conductivity and as such is not limited in application to the
high-temperature superconducting cuprate-based com-
pounds.

II. VORTEX SOLID MELTING LINE AT T\ 0,
GINZBURG NUMBER, AND COOPER PAIR

COHERENCE VOLUME

In two recent communications,14,15 we developed two
similar universal expressions for the vortex lattice �glass�
melting line, Hg�T�, which were shown to describe the vortex
solid melting line data of numerous high-Tc and conventional
superconducting systems exceptionally well. These expres-
sions are based upon the incorporation of an empirically ob-
served temperature-field dependence of the relaxation time
�r

v of a single vortex flux line in the region of the vortex solid
melting transition into the two expressions arrived at in the
quantum fluctuation based model of Blatter and Ivlev.16,17

The first expression of Blatter and Ivlev is given by16

Hg�t� =
4Hc2�0��2

�1 + �1 + 4Q��2
, �4�

where � is a reduced temperature given by

�= ��cL
2 /�Gi��1− t�, Q= �Q̃u / ��2�Gi���r is a parameter

measuring the relative strength of quantum to thermal fluc-

tuations, t�T /Tc, Q̃u= e2

	

�n

d is the dimensionless quantum of
resistance, �n is the normal-state resistivity, cL is the Linde-
mann number, Gi=

1
2 (kBTc / �8��Hc

2�0� /2�0���3�0�	)2 is the
Ginzburg number �in mks units�, Hc is the thermodynamic
critical field, ���m /M�1/2 is the anisotropy parameter,  is a
cutoff frequency, and the single vortex relaxation time �r

v is
assumed in their model to be equal to the scattering relax-
ation time of the quasiparticles in the vortex core given by
the Drude formula �n

−1=�n=e2n�r /m, i.e., �r
v��r=m�n /e2n.

The second expression, arrived at by the inclusion of
compressional modes of the vortex lattice, c11�k�, which
were not in the initial model, is given by17

Hg�t� =
4Hc2�0��2

�1 + �1 + 4S�/t�2
, �5�

where the reduced temperature � is now given by

�=cL
2��th

Gi
�Tc /T−1�, S=q+cL

2��th

Gi
, q=

2��th

�3

Qu

�Gi
�r is the new

quantum-thermal fluctuation parameter, and �th�5.6. It is
observed that both of the modified expressions of Eqs. �4�
and �5� given in Refs. 14 and 15, respectively, provide
equivalently good descriptions of Hg�T� over the entire re-
duced temperature range of data for all systems examined
�0.03� t�1�, with the only significant difference being the
values extracted for the quantum parameters Q and q, with
q�Q /10. This difference is attributed to the more accurate
accounting of thermal fluctuations via the inclusion of com-
pressional modes of the vortex lattice.14,15 We emphasize that
with identical values of the parameters cL and s �defined
below�, the two lines given by the modified expressions of
Eqs. �4� and �5� nearly coincide �and are experimentally in-
distinguishable� for all temperatures over which the vortex
glass melting line exists, and, in particular, they both ex-
trapolate to the same field value at T=0.

In our earlier work, from the empirically determined ex-
pression for �r

v

�r
v = �0
 T

Tc
�s
1 −

T

Tc
�−s

, �6�

it is seen that as T→0, �r
v and, in turn, both Q and q→0.

This leads to the following conditions at T=0, for Eqs. �4�
and �5�, respectively:

Hg�0�
Hc2�0�

=
�2cL

4

Gi
1/2� �7�

and

Hg�0�
Hc2�0�

= 1, �8�

where the exponent � characterizes the approximate form of
the melting line at high temperatures, Hg��1−T /Tc��, via
the field dependent expression for the Ginzburg number,15

Gi�H��Gi
1/2�� H

Hc2�0� �1/�. Combining these two results, Eqs.

�7� and �8�, gives

Gi = ��2cL
4�2�. �9�

Before continuing, we return to the definition of the Gin-
zburg number, Gi=

1
2 �kBTc / ��8�Hc

2 /2�0�Vcoh�	2, which is a
measure of the relative size of the energy density Hc

2 /2�0
associated with the condensation energy of a unit volume,
with respect to the critical temperature, Tc. Combining Eq.
�9� and the above definition of the Ginzburg number, a
straight forward relationship between the critical temperature
Tc and the condensation energy is found, wherein

kBTc = 8��2��2cL
4��

Hc
2

2�0
Vcoh. �10�

For convenience, we define CL�8��2��2cL
4��, which is then

a measure of the fraction of the condensation energy con-
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tained within a unit volume associated with the pairing of a
single Cooper pair.

The unit volume is conventionally given as Vcoh=�a�b�c
�=��3 in most cases�. We argue, however, that, while the
above unit volume is appropriate for a type-I superconductor,
a different geometry applies for a type-II superconductor. A
more accurate determination of the unit volume Vcoh is that
over which the order parameter is suppressed within a unit
length of a vortex flux line �aligned along the c axis�,
V��

��rrms
2 �c, where rrms=��a�b. This argument is arrived at

by examining the expression for the thermodynamic critical
field Hc,

Hc =
�0

2�2���
=

�0

2�2A
, �11�

where, in this case, A=�rrms
2 is the area of a circle given by

the length scales � and � with an rms radius rrms=���. We
reason that since we are concerned with the expulsion of
the flux �0 from within a cross sectional area associated with
the energy scale set by the thermodynamic critical field Hc,
the same geometric factor, 2�2, ought to apply so that
V��

=2�2���3.
Using the unit volume V��

, the Ginzburg number for a
type-II superconductor is then

Gi = 
�0kBTc�0
2

2�0
2��0

�2

.

Returning to Eq. �9�, we arrive at the universal expression

Tc =
CL

4�2�
 �0

2

�0kB
� ��0

�0
2 � �1.39 � 10−2 K m�CL

��0

�0
2 .

�12�

Using the relation �0= �	vF� / ���0�, we can rewrite Eq. �12�
as

Tc =
CL

4�2�
 �0

2

�0kB
�	vF

�

�

�0
2�0

. �13�

III. QUANTITATIVE COMPARISON OF CALCULATED
AND MEASURED CRITICAL TEMPERATURES

In Fig. 1, we have plotted calculated values of the critical
temperature Tc vs the experimentally determined values of Tc
for samples of YBa2Cu3Ox presented in the work of Tallon et
al.18 using Eq. �13� �with �=3/2 for all samples� and the
data they give for �0 and �0. Note that the value of �0 in
Ref. 18 is the maximum spectral gap and not the order pa-
rameter. The inset to Fig. 1 shows the same calculation but
with the Lindemann number allowed to vary such that the
calculated and experimental values of Tc are equal. The value
of cL=0.30 is in close agreement with the values of 0.31 and
0.28 found for the pure YBa2Cu3O7−� and YBa2Cu3O6.5
samples, respectively, in Ref. 14 by fitting the melting line
data with the modified vortex glass melting line expression
of Blatter and Ivlev. We find that the variation is only
�cL=0.015. We could have instead allowed the values of

vF, �0, or �0 to vary individually by �10% to achieve the
same result. In any case, it is demonstrated that Eq. �12� �and
Eq. �13�� provides a quantitatively accurate description of the
values of Tc in YBa2Cu3Ox. Further examination of the en-
ergies kBTc and Hc

2 /2�0 as a function of doping in Fig. 1
indicates that CL�1.0 in the heavily under- and overdoped
regions, with somewhat smaller values down to �0.9 in the
optimally doped region. This result indicates that the coher-
ence volumes of Cooper pairs, at low temperatures, in
YBa2Cu3Ox overlap very little throughout the entire doping
range.

In Fig. 2, we have plotted the experimentally determined
values of kBTc and the calculated values of the volume en-
ergy �Hc

2 /2�0�V��
vs. hole concentration p for the same

YBa2Cu3Ox samples in Fig. 1 in the main panel and
�Hc

2 /2�0� and V��
vs hole concentration p in the inset. It is

readily seen that the fundamental property to which the su-
perconducting transition temperature Tc or correlation energy
kBTc is related is the volume energy defined by the thermo-
dynamic critical field Hc and the correlation volume V��

. The
final piece of the picture is provided by the Lindemann num-
ber which characterizes the stability of the system in the
solid vortex state to quantum and thermal fluctuations. It
follows that a system in which vortices are more stable to
fluctuations will have a higher critical temperature. However,
as elaborated upon below, the correlation between the stabil-
ity of the solid vortex ensemble and the critical temperature
Tc is most likely a reflection of the stability of the superfluid
condensate to fluctuations.

0

20

40

60

80

100

0 20 40 60 80 100

underdoped
overdoped

1/8 doping

optimal

critical doping

T
c

(K
)
[c
al
cu
la
te
d]

T
c
(K) [experimental]

YBa
2
Cu

3
O
x

0

20

40

60

80

100

0 20 40 60 80 100

T
c

(K
)
[c
al
c ]

T
c
(K) [expt]

c
L

= 0.30 ± 0.015

FIG. 1. Calculated value of Tc vs the experimentally determined
value of Tc. The value of Tc is calculated from Eq. �13� using the
values of �0 and �0 from Ref. 18, � from Ref. 19 a constant value
of cL=0.30, and a constant value of vF=9.3�104 m/s, derived
from the relation �0=	vF /��0, with �0�x=6.96�=13 Å and
�0�x=6.96�=15 meV �Ref. 20�. The experimentally determined
value of Tc is taken from Ref. 18. Inset: The same calculation with
cL allowed to vary for each sample so that the calculated value of Tc

is equal to the experimental value. The variation of cL is found to be
�cL= ±0.015, well within the experimental error, about an average
value of cL=0.30.
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IV. EQUIVALENCE WITH HOMES’ LAW

Equation �12� can be rewritten in another useful form us-
ing the expression for the dimensionless in-plane quantum of

resistance21 Q̃u,

Q̃u � 
 e2

	
�
 �n

��
� , �14�

and the value of the flux quantum �0= h
2e =�

	

e . With
�n=1/�n, Eq. �12� then becomes

Tc =
CL

4�2�
 �2	

�0kB
� 1

�nQ̃u

1

�0
2 , �15�

which, with the additional material dependent factor of

CL / Q̃u, is equivalent in form to, and provides an explanation
for, the origin of the empirical scaling relation observed by
Homes et al.,6 given in Eq. �3�.

Using the definition of the anisotropy parameter,

� � 
 m

M
�1/2

=
�ab

�c
=� �c

�ab
, �16�

we can readily see that �ab�ab
2 =�c�c

2, from which it follows
that

Tc �
CL

Q̃u

1

�ab�ab
2 =

CL

Q̃u

1

�c�c
2 . �17�

Equation �17� provides an explanation for the observation of
Homes et al., wherein both the a-b plane and c-axis conduc-
tivities scale with �s�ab��0���ab

−2�0� and �s�c��0���c
−2�0�, re-

spectively, onto the same universal line given by Eq. �3�
above. Note also that for the case where there is anisotropy

with respect to the a- and b-axis properties, �a, �b, etc., the
anisotropy parameter is simply redefined so that �c=�a�a
=�b�b or, equivalently, �c

2=�a�b�a�b��ab
2 �ab

2 . This redefini-
tion leaves Eqs. �12� and �13�, etc., unchanged in the same
fashion as shown in Eqs. �16� and �17� above.

By inverting Eq. �12� and using a fixed value of �=3/2,
we have calculated the Lindemann numbers cL for other
high-Tc compounds based on reported values of �0, �0, and �
�see Table I�. We urge caution in any interpretation of the
values of cL obtained at this point since the parameter values
used to calculate cL for each sample were not all taken from
measurements on the same sample, and the proper value of
the exponent � is not known. In particular, from Eq. �10� and
the related discussion, we must have CL�1. With �=3/2,
this requires cL�0.31, which is not the case for some of the
compounds listed in Table I. However, having demonstrated
that use of Eq. �12� gives reasonable and consistent values of
cL for these materials as well, the main point to be made is
that the equivalence of Eq. �12� to the universal scaling dem-
onstrated by Homes et al. implies that the same relationship
between Tc, Hc

2V��
, and the carrier concentration, displayed

in Fig. 2 for YBa2Cu3Ox, is valid for all systems which con-
form to Homes’ law. Furthermore, from the calculated values
of cL and the corresponding value of CL�1, it appears that
the Cooper pair coherence volumes also overlap very little in
these compounds, as illustrated for the YBa2Cu3Ox samples
in Fig. 2. Of further interest, the larger variation of the values
of cL for La2−xSrxCuO4 samples occurs on the underdoped
side corresponding to the doping range associated with the
smaller of the “two domes” of the Tc vs x phase diagram.
Confirmation of this result, with a more accurate determina-
tion of cL �i.e., by measuring the relevant quantities on the
same sample for each doping�, would seem to indicate an
evolution in the underlying intervortex behavior, implying
fundamental differences of the superfluid properties in each
dome.

V. RESOLUTION OF “ZUEV’S PARADOX”

As mentioned above, recent measurements performed by
Zuev et al.10 on severely underdoped to optimally doped
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FIG. 2. kBTc and volume energy �Hc
2 /2�0�V��

vs hole concen-
tration p. Hc is calculated using the same values of �0, �0, and �
used in Fig. 1. The shaded region represents the range of
�Hc

2 /2�0�V��
with a 5% variation in the values used for �0. Inset:

�Hc
2 /2�0� and V��

vs hole concentration p. Note that the coherence
volume V��

remains essentially constant over the optimally doped
to overdoped region but begins to enlarge rapidly as the system
becomes more underdoped.

TABLE I. Values of the Lindemann number cL for a range of
high-Tc cuprate compounds calculated via Eq. �12�. Values for �0,
�0, and � are taken from Refs. 6, 20, and 26–29.

x Tc�K� cL

HgBa2CuO4+� 96 0.27

HgBa2CuO4+� 52 0.21

Tl2Ba2CuOx 86 0.30

YBa2Cu4O8 80 0.29

La2−xSrxCuO4 0.075 19 0.31

La2−xSrxCuO4 0.08 26.5 0.34

La2−xSrxCuO4 0.1 36.9 0.35

La2−xSrxCuO4 0.125 34.8 0.42

La2−xSrxCuO4 0.15 39.5 0.31

La2−xSrxCuO4 0.17 36.2 0.30

La2−xSrxCuO4 0.2 33.9 0.29
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YBa2Cu3O6+x films �3 K�Tc�50 K, Tc=90 K� reveal a re-
lationship between the superfluid density and the supercon-
ducting critical temperature wherein �s�0��1/�2�Tc

2.3±0.4, in
contrast to the results of Uemura et al.,1,2 i.e., �s�0��Tc. It is
readily seen from Fig. 2 of Ref. 10 that the latter �linear�
power law relationship, inferred from data spanning much
less than a decade in either temperature �50 K�Tc�90 K�
or length scale, �20 �m−2�1/�2�80 �m−2�, does not accu-
rately represent a universal relationship between �s�0� and Tc

in the underdoped to optimally doped regions as originally
concluded.

Again, returning to Eq. �12�, we can also rewrite this ex-
pression using the relations between the penetration depth
and the superfluid density, �0

−2=�s�0� /c2=�0�0�s�0�, and be-
tween the Cooper pair coherence length and the supercon-
ducting critical temperature, �0=a	vF /kBTc, where a
�0.12–0.18, giving the result

Tc
2 = 
 CL

4�2�
�a��0

2	vF�0

kB
2 �s�0� , �18�

over all doping regimes, in agreement with the relation ob-
served by Zuev et al.,10 �s�0��Tc

2.3±0.4, for heavily under-
doped to lightly overdoped samples �including data from Ue-
mura et al.�.2 Thus, Eqs. �15� and �18� show that the finding
of Zuev et al., wherein their data conform to both Homes’
law and their empirical scaling relation, is, in fact, compat-
ible since both equations can be derived from the relation-
ship given in Eq. �10�.

VI. MOLECULAR SUPERCONDUCTORS

Next, we turn our attention to the universal scaling law of
Pratt and Blundell11 observed for molecular superconductors,
wherein they find that �s�0�, �n�Tc�, and Tc scale as

�0�s =
2kB

�	

�n�Tc�Tc, �19�

where 
=2� /kBTc �and �n�Tc� is denoted as �0�Tc��. Using
�0

−2=�0�0�s�0�, Eq. �19� can be rearranged

1

�0
2 =

2�0kB

�	

�n�Tc�Tc. �20�

By comparing Eq. �20� to Eq. �15� �or any of the equivalent
forms derived above�, we can see that the scaling relation-
ships of Pratt and Blundell are identical in form, implying
that, while there are certainly fundamental differences in the
behavior exhibited by molecular and high-Tc cuprate super-
conductors, ultimately the class of molecular superconduct-
ors are also described by the fundamental relationship given
in Eq. �10�.

VII. COMPARISON WITH BAD METAL MODEL OF
SUPERCONDUCTIVITY

While the expression we have arrived at in Eq. �12� does
not specify a mechanism of superconductivity, we find a
compelling result by turning to the bad metal theory of su-

perconductivity described by Emery and Kivelson �EK�.12,13

This theory addresses the importance of phase fluctuations of
the order parameter in superconductors with a small super-
fluid density, a class to which the cuprate-based high-
temperature superconductors belong. The consequence of the
small phase “stiffness” of the order parameter in these mate-
rials is that, unlike conventional metallic superconductors,
the onset of long-range phase order can occur at a tempera-
ture T�

max�TMF, where TMF is the BCS-Eliashberg mean-
field pairing temperature.22 When this is the case, the value
of Tc is determined by T�

max�Tc, and TMF is now the tem-
perature below which pairing becomes significant locally.
EK show that in bad metal superconductors, there is a con-
nection between the critical temperature Tc the value of
the conductivity at the critical temperature, �n�Tc�, and
the value of the quantum of conductivity �Q �defined as
�Q��2e�2 /hb in Ref. 12, where b is an appropriate length
scale of the order of �c�0��. This relationship is given by

�Q =
ln�T�

max/Tc�
ln��/kBTc�

�n�Tc� , �21�

where � is the energy scale associated with the coupling
mechanism.

We can rearrange Eq. �12� again as

Tc = CL �	

4�2�0kB
��Q

1

�0
2 , �22�

where we have defined the quantum of resistance, �Q=�Q
−1 to

agree with the dimensionless quantum of resistance Qu used
above in Eq. �14�, i.e., �Q=	��0 /e2.

Combining Eq. �21� with Eq. �22�, we have

1

�0
2 = CL

−1
4�2�0kB

�	
� ln�T�

max/Tc�
ln��/kBTc�

��n�Tc�Tc. �23�

Comparing Eq. �23� to Homes’ law, Eq. �3�, we must have

CL
−1
4�2�0kB

�	
� ln�T�

max/Tc�
ln��/kBTc�

� � 120  cm−1 K−1,

�24�

which gives a universal relationship of �n�Tc���25CL
−1��Q

for the conductivity of bad metal superconductors at Tc over
the entire doping range. This result agrees well with the es-
timate of �n�Tc��10�Q given by EK.12 Solving for the ratio
� /kBTc gives

�

kBTc
� 
T�

max

Tc
�25CL

−1

. �25�

The relationship given in Eq. �25� results in a modifica-
tion of the phase diagram given by EK in Fig. 1 of Ref. 12.
As indicated in Fig. 3, it appears that the boundary of T�

max

must follow closely the critical temperature boundary, even
in the overdoped region. Otherwise, the values of � neces-
sary to satisfy Eq. �25� become unphysical. This does not
necessarily imply that the critical temperature Tc in the over-
doped region is no longer determined by the mean-field pair-
ing temperature TMF, only that the upper bound in the over-
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doped region lies lower than previously thought. The change
with respect to T�

max in Fig. 3 does not alter the picture de-
scribed by EK, wherein the phase diagram of the cuprate
high-Tc superconductors consists of underdoped and opti-
mally doped materials, where the onset of superconductivity
is determined by phase coherence and overdoped materials
where the order parameter amplitude and phase coherence
are established close to or at the same temperature.12,13,23

VIII. DISCUSSION AND CONCLUSIONS

By considering the T→0 limit of a recently proposed
expression for the vortex glass melting line,14,15 Hg�T�, we
arrive at an analytical formula for the superconducting
transition temperature Tc wherein the energy scale kBTc
is found to be proportional to the condensation energy
Ec��Hc

2 /2�0�Vcoh. The proportionality is determined by the
extent to which the Cooper pair coherence volumes overlap
as characterized by the Lindemann number cL, which, in
turn, reflects the stability of the solid vortex state to thermal
and quantum fluctuations.

As pointed out above, the expression we have arrived at
in Eq. �12� does not specify a mechanism of superconductiv-

ity and is expected to be applicable to all classes of super-
conductors. Our expression does, however, identify three key
physical properties that theories and experimental studies of
superconductivity need to address: the energy scale Hc

2, the
geometry of the volume over which Cooper pairs are corre-
lated, V��

, and the relationship between the stability of the
solid vortex structure in the presence of fluctuations, as char-
acterized by cL, and the extent to which the coherence vol-
umes of Cooper pairs overlap, as characterized by CL. It
seems reasonable that, in accordance with our definition of
CL, it ought to be possible to generalize the meaning of the
value of the Lindemann number cL from only characterizing
the stability of the solid vortex state to a characterization of
the stability of the order parameter to quantum and/or ther-
mal fluctuations. Or, from another perspective, it should be
possible to arrive at an expression for Tc in terms of
�Hc

2 /2�0�Vcoh with a prefactor equivalent in meaning to that
of CL in Eq. �10� without the use of Eqs. �7� and �8�.

Equation �12� �as well as the equivalent equations� pro-
vides a simple and potentially useful means of analyzing the
change of the critical temperature Tc with respect to tuning
by doping, pressure, etc., i.e.,

�Tc

�X
= 
 �0

2

4�2��0kB
� �

�X

CL��0

�0
2 � , �26�

where X is a tuning parameter. We would anticipate that a
fundamental change of the nature of the superconducting
mechanism ought to be discernible in systems where the end
members of a doping regime, such as Pr�Os1−xRux�4Sb12,
consist of superconductors with distinctly different electronic
ground states,24 or in systems where there is �evidence for� a
change of the symmetry of the superconducting order
parameter.25

The results found in Eqs. �21�–�25� do not necessarily
constitute a proof of the bad metal model of superconductiv-
ity proposed by EK for the high-Tc cuprate superconductors.
However, the remarkable agreement between the value of the
ratio �n�Tc� /�Q estimated by EK and that found here with
the use of Homes’ law can, at least, be considered as support
for the theory. Within this context, a significant implication is
that the upper boundary for the temperature at which long-
range phase order of the superconducting order parameter
can be established, T�

max, is determined by the energy scale �
and the ratio kBTc /Ec=CL in all regimes, underdoped, opti-
mally doped, and overdoped.
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FIG. 3. �Color online� Modified sketch of the phase diagram of
high-temperature superconductors as a function of temperature T
and hole doping �h proposed by Emery and Kivelson in Ref. 12.
The temperatures Tc �solid, black�, TMF �short dashed, green�, and
T�

max �EK� �long-short dashed, gray� are qualitatively shown as
originally indicated in Ref. 12. The red and blue dashed lines are
the locations of T�

max�1.11Tc and T�
max�1.04Tc for the energy ra-

tios of � /kBTc equal to 13 and 3, respectively, in accordance with
Eq. �25� �with CL=1 over the entire doping range� in the text below.
These values roughly correspond to the ratios of antiferromagnetic
exchange energies and phonon energies to the critical temperature.
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