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The properties of a mixture of mutually interacting bound electron pairs and itinerant fermions �the boson-
fermion model� on a lattice are further studied. We determine the superconducting critical temperature from a
pseudogap phase by applying a self-consistent T-matrix approach, which includes the pairing fluctuations and
the boson self-energy effects. The analysis is made for a three dimensional cubic lattice with tight-binding
dispersion for electrons and for both standard bosons and the case of hard-core bosons. The results describe the
BCS-Bose-Einstein condensation crossover with varying position of the bosonic �local pair� level and give a
further insight into the nature of resonance superfluidity in the boson-fermion model.
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I. INTRODUCTION

The model of coexisting local pairs �LPs� and electrons
�mixture of charged bosons and fermions� for nonconven-
tional superconductors was proposed several years ago.1–3 It
has been demonstrated that in this model, due to the inter-
subsystem charge exchange coupling, a mechanism of super-
conductivity can be developed, which leads to the supercon-
ducting state involving both types of particles. The properties
of a mixture of interacting bosons �bound fermion pairs� and
itinerant electrons can show features which are intermediate
between those of local pair superconductors and those of
conventional BCS systems.2–4 Such a two-component model
is of relevance for high temperature superconductors
�HTSs�.2–13 The boson-fermion system has also been widely
adopted as a model of resonance superfluidity and BCS-
Bose-Einstein condensation �BEC� crossover in ultracold fer-
mionic atomic gases with a Feshbach resonance.14–16

In the context of HTS, the two-component boson-fermion
�BF� model has been proposed on the phenomenological
grounds or it has been derived as the effective low-energy
model. In particular, it has been obtained from the general-
ized periodic Anderson model with on-site hybridization be-
tween wide- and narrow-band electrons, in which the
narrow-band electrons are strongly coupled with the lattice
deformation, and formation of polarons and LP �bipolarons�
takes place.2 These LPs are hard-core bosons made up of two
tightly bound fermions. The boson-fermion model can also
be justified as a low-energy model for hole pairing in
strongly correlated systems, showing resonating valence
bond plaquette states.10 The BF scenario has been proposed
in studies of superconductivity mechanism based on hetero-
geneity of the electronic structure of HTS in the pseudogap
phase, both in the momentum space7,9,12 and in the real
space.8,11 The effective boson-fermion model on the cluster
lattice has been recently derived from the inhomogeneous
�checkerboard� Hubbard model.11

In the atomic Fermi gases near the Feschbach resonance,
the BF scenario describes a macroscopic coherence between
the atom pairs and molecules, which is controlled by the
applied magnetic field.14–16 Here, the standard bosons are
envisioned to be the “closed channel” bosons associated with
a Feshbach resonance. Thus, the model considered contains

rich physics with important applications for both fields: HTS
and ultracold atomic gases. Recently, we have studied a gen-
eralization of the model to the case of anisotropic pairings of
d-wave symmetry or extended s-wave type.12,13

In this paper, we discuss the pseudogap behavior and
present the evaluation of the superconducting transition tem-
perature from a pseudogap phase by going beyond the BCS-
mean-field approximation �MFA�. In our analysis, we have
applied a generalized T-matrix approach adapted to a two-
component boson-fermion model. Our approach is an exten-
sion of the pairing fluctuation theory of the BCS-BEC cross-
over developed previously for one-component fermion
systems with attractive interaction.16–18 �For a review of the
self-consistent T-matrix approach, see Ref. 16.� In Sec. II,
we give equations determining Tc from the pseudogap phase
for the boson-fermion model in the case of standard bosons,
while those for the hard-core bosons are given in Sec. III.
The numerical results, for a three dimensional �3D� cubic
lattice assuming the tight-binding dispersion for fermions,
are presented and discussed in Sec. IV.

II. PAIRING FLUCTUATIONS: EQUATIONS FOR Tc

FROM THE PSEUDOGAP STATE

We consider the boson-fermion model with s-wave pair-
ing on the lattice �bosons without hard core� given by the
following Hamiltonian, written in the momentum space:

H = �
k�

��k − ��ck�
† ck� + �

q
�Eq

0 + 2�0 − 2��bq
†bq

−
U

N
�

k,k�,q

ck+q/2,↑
† c−k+q/2,↓

† c−k�+q/2,↓ck�+q/2,↑

+
I

�N
�
k,q

�bq
†c−k+q/2,↓ck+q/2,↑ + ck+q/2,↑

† c−k+q/2,↓
† bq� .

�2.1�

Here, ck�
† ,ck� are the fermion operators and bq ,bq

† represent
the boson operators satisfying the standard commutation
rules. �k is the electron band energy and Eq

0 is the boson
kinetic energy, and they are defined on the hypercubic lattice.
E0

0=0. 2�0 is the bottom of the boson band and � is the
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chemical potential. I is the intersubsystem coupling constant.
U is the direct �nonresonant� interaction between fermions.
The total number of particles per site is n=nF+2nB, where
nF= 1

N�k��ck�
† ck�� is the electron concentration, nB

= 1
N�q�bq

†bq� the boson concentration, and N the number of
lattice sites.

If I=0, we have practically two independent subsystems
and they can undergo a transition at TBCS �for weak attraction
U� and TBEC. For I�0, there will be one common phase
transition to the superfluid state.

In the following, we give only the final equations deter-
mining the critical temperature �Tc� resulting from the
T-matrix theory applied to the coupled boson-fermion
system.19 They are for I�0,

1 = �U +
I2

2��0 − ��� 1

N
�
k

tanh��cEk/2�
2Ek

, �2.2�

�pg
2 =

Ief f
2

1 + Ief f
2 A0�

1

N
�
q�0

b��̃q�, �̃q =
Eq

0 + Ief f
2 A0��q

1 + Ief f
2 A0�

,

�2.3�

n = nF + 2nB =
1

N
�
k
�1 −

�̄k

Ek
tanh��cEk/2�� + 2nB,

�2.4�

Ief f
2 = 	2��0 − ��U + I2
2/I2, nB = �pg

2 /Ief f
2 , �2.5�

Ek=��̄k
2 +�pg

2 , �̄k=�k−�, b�x�=1/ 	exp��cx�−1
 is the Bose
function, and �c=1/kBTc.

Equation �2.2� is obtained from the Thouless criterion of
the T-matrix 	�q ,�� divergence at q=�=0. Simultaneously,
the bosonic Green function diverges, indicating a common
transition in the boson-fermion system.19,20 Equation �2.3� is
for the pseudogap parameter �pg=�pg�Tc�, which is the real
quantity, and Eq. �2.4� is the particle number equation. The

effective boson dispersion is given by �̃q 	Eq. �2.3�
, in
which �q describes propagating long-lived finite q pairs of c
electrons, and this spectrum is determined self-consistently.

�q =
1

A0�

1

N
�
k
� f�Ek� + f��̄q−k� − 1

�̄q−k + Ek
uk

2 +
f��̄q−k� − f�Ek�

�̄q−k − Ek
vk

2

+
1 − 2f�Ek�

2Ek
� , �2.6�

A0� =
1

2�pg
2 �nF −

1

N
�
k

2f��̄k�� , �2.7�

uk
2 =1−vk

2 = 1
2
�1+

�̄k

Ek
�, and f�x�=1/ 	exp��x�+1
 is the Fermi

function.
In the long wave limit, �q has the following form 	taken

in Eq. �2.3�
: �q=Cq2= q2

2M� , where M� is the effective mass.
We note that there are two types of �hybridized� bosonic
contributions to �pg 	Eq. �2.3�
: i.e., that coming from the
long-lived finite q pairs of c electrons, which due to the

intersubsystem coupling �and the direct interaction U� give
rise to the bosonic dispersion, and from the direct bosonic
hopping Eq

0.
We should add that the number of bosons nB is deter-

mined from the boson Green function and has the form

nB =
1

1 + Kef f
2 A0�

1

N
�
q

b�Eq
0 + Kef f

2 A0��q

1 + Kef f
2 A0�

� ,

Kef f
2 = I2/	1 − U
�0�
2, �2.8�

where 
�0�= 1
N�k

tanh��cEk/2�

2Ek
and �q and A0� are given by Eqs.

�2.6� and �2.7�, respectively. With the use of Eq. �2.2� and the
definition of Ief f

2 , one has Kef f
2 = Ief f

2 , hence; the relation
�pg

2 = Ief f
2 nB at Tc. In comparison with the BCS-MFA for Tc,

the self-consistent T-matrix approach to the boson-fermion
model includes pairing fluctuations and takes into account
the boson self-energy effect.

It is of interest to remark that for I=0, but U�0, the
pseudogap equation has the simple form

�pg
2 =

1

A0�

1

N
�
q�0

b��q� , �2.9�

with �q and A0� given by Eqs. �2.6� and �2.7� and has been
obtained for the fermion system with attractive interaction in
Refs. 16 and 18. In such a case, the pseudogap is caused by
the long-lived finite q pairs of electrons which can exist due
to the direct attraction U.

III. HARD-CORE BOSON-FERMION MODEL

The case of hard-core boson-fermion model and s-wave
pairing is described by the following Hamiltonian:2

H = �
i,j,�

�tijci�
† cj� + �D − ���

i,�
ci�

† ci� + �
i

�2�0 − 2��b̂i
†b̂i

− �
i,j

�Jijb̂i
†b̂j + I�

i

�b̂i
†ci↓ci↑ + ci↑

† ci↓
† b̂i� . �3.1�

The hard-core boson operators b̂i , b̂j
† obey the Pauli spin-1

2

commutation relations: 	b̂i , b̂j
†
= �1−2n̂i��ij, 	b̂i , b̂j
=0, �b̂i

†�2

= �b̂i�2=0, b̂i
†b̂i+ b̂ib̂i

†=1, and n̂i= b̂i
†b̂i. These operators are

commuting for different sites but obey the anticommutation
rules on the same lattice site. The hard-core condition allows
the only single-boson occupancy of a given lattice site. Jij is
the direct bosonic hopping. Here, D=zt, where t is the near-
est neighbor hopping parameter of c electrons and z is the
coordination number of the underlying lattice, the primed
sum excludes terms with i= j. I is the on-site boson-fermion
coupling; �0 is the position of the bare LP level with respect
to the bottom of the electronic band. The total number of
particles per site is given by n=nF+2nB, where nF

= 1
N�i��ci�

† ci�� and nB= 1
N�i�b̂i

†b̂i�. As in Sec. II, we apply the
T-matrix approach for calculation of the critical temperature,
however, with modification of the normal state boson Green
function because of the hard core.19,12

The Thouless criterion yields for Tc,
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1 = �J0 +
I2

N
�
k

tanh��cEk/2�
2Ek

� 1 − 2nB

2��0 − ��
, �3.2�

where Ek=���k−��2+�pg
2 , �k=D− t�� exp�ik ·��, where �

is the vector linking the nearest neighbor sites.
Equation for the pseudogap parameter at Tc has the form

�pg
2 =

g2

1 + g2A0�

1

N
�
q�0

b� Ẽq
0 + g2A0��q

1 + g2A0�
� , �3.3�

where now Ẽq
0 = �J0−Jq��1−2nB� and g2= I2�1−2nB�. Jq is

the Fourier transform of Jij. Moreover, one finds that nB
=�pg

2 / I2. In Eq. �3.3�, the pair dispersion �q and A0� are the
same as given previously 	Eqs. �2.6� and �2.7�
. Equations
�3.2� and �3.3� are solved together
with the particle number condition n=nF+2nB, where
nF is given as in Eq. �2.4�. If one sets �pg=0 and
1−2nB=tanh	�c��0−��
 in Eq. �3.2�, then it reduces to the
BCS-MFA result for Tc.

2,12 We should add that in strictly two
dimensional �2D� system, the presented method yields
Tc=0, in agreement with the Mermin-Wagner-Hohenberg
theorem.

IV. RESULTS

The numerical results presented in Figs. 1 and 2 are
for a 3D simple cubic �sc� lattice, assuming the tight-binding
dispersion for fermions and bosons of the following
form: �k=D�1−�k�, Jq=J0�q, J0=zJ, �k= 	cos�kx�+cos�ky�
+cos�kz�
 /3, and z=6. For the free bosonic dispersion, we
take Eq

0 =J0−Jq. In contrast to the continuum case, the mo-
mentum summations are restricted to the first Brillouin zone.

Figure 1 shows the evolution of Tc, the chemical potential
at Tc, the pseudogap parameter at Tc, as well as nF and nB
with the position of bosonic level �0, for the boson-fermion
model 	Eq. �2.1�
. Bosons are without hard core, but the
direct boson hopping and interaction between fermions are
included. We set here Eq

0 
Jq2 and J / t=1/2, which corre-
spond to mB=2mF, where mB=1/ �2J�, mF=1/ �2t� are effec-
tive masses of bosons and fermions on the lattice, respec-
tively �
=a=1, where a the lattice spacing�.

The superfluid transition changes smoothly from
BCS-like to BEC-like when fluctuations associated with
Cooper pairs are included. One notices that the stable un-
damped bosons exist if the renormalized 	due to boson
self-energy �B�q�
 threshold energy is negative; i.e., 2�*

=2�0+�B�q��0. In this regime, the bosons practically can-
not decay, the chemical potential is negative, and the transi-
tion temperature approaches the BEC temperature for free
bosons with decreasing �0. Moreover, the strong effective
pairing interaction binds fermions into the preformed pairs.
However, if �*�0, the interchange boson-pair of fermions
�c-electrons� process is responsible for the resonance sperflu-
idity and for the enhancement of Tc. The regime of resonance
superfluidity is additionally characterized by a pseudogap
	�PG� region in Fig. 1
. Finally, in the BCS-like regime,
dominated by fermions, the decay �bosons into two fermi-
ons� rate is low, as is nB, and the Tc approaches the BCS-

MFA result. In the latter regime, the chemical potential ap-
proaches the Fermi energy, and the pseudogap becomes very
small. The weak �to moderate� direct attractive interaction U
expands the BCS-like regime, but the repulsive U shrinks it.

Figure 2 presents the evaluation of Tc and the phase dia-
gram for the hard-core boson-fermion model 	Eq. �3.1�
,
without direct boson hopping. Here, the hard-core bosons are
initially incoherent, and the interchange process gives rise to
boson itinerancy and common superconducting transition.
Except for the c-electron regime, the calculated Tcs are much
lower as compared to BCS-MFA results, and if J=0, Tc is
strongly depressed as soon as �0 is close to the bottom of the
electronic band. Let us add that the almost vanishing asymp-
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FIG. 1. Self-consistent T-matrix results for the boson-fermion
model on the lattice, the bosons without hard core. n=0.5,
�I0 � /D=0.5, �I=−�I0 � �, U /D=0.25, D=6t, and J / t=0.5. Panel �a�:
superfluid transition temperature from T matrix. Tc vs �0 is shown
by the solid line; the line with circles is for U=0. The dotted lines
indicate the BCS-MFA transition temperatures. The dot-dashed line
shows the BEC temperature in the absence of interactions. Panel
�b�: chemical potential �solid line� and pseudogap parameter at Tc

�in D-units� �dashed line� vs �0. The dot-dashed line is the chemical
potential for BEC transition in the absence of interactions �2�
=2�0�. Panel �c�: nF and nB vs �0 at Tc.
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tote to Tc in the deep LP �BEC� regime in Fig. 2 compared to
the finite asymptote in Fig. 1�a� is a consequence of turning
off the direct boson hopping.13 In the pseudogap region, the
electronic spectrum is gapped, and the pseudogap parameter
at Tc for �*�0 essentially measures a mean square ampli-
tude of the pairing field �of the c electrons�. The values of the
pseudogap parameter at Tc, beyond the c regime, are compa-
rable to the zero temperature superconducting gap values in
the fermionic spectrum 	�F�0�
 computed in the BCS-MFA
�see Ref. 13�. Almost a constant difference between �pg�Tc�
given by !I !�nB�Tc� and �F�0� in the LP regime 	where

�F�0�→ ! I !�nB�0�	1−nB�0�

 partially reflects the approxi-
mate treatment of the hard-core effects by the present
T-matrix approach. This difference becomes smaller with
lower nB. In addition, when the �renormalized� LP level
reaches and goes below the bottom of the electronic band,
the concentration of c electrons is small, and strong attractive
interaction gives rise to the formation of bound c-electron
pairs.12,13 In this regime, a superconducting state is formed
by two kinds of �hybridized� bosons: preformed c-electron
pairs and LPs �LPS+PPS region in Fig. 2�.

In the self-consistent T-matrix approach, the fluctuations
of the order parameter are included at the Gaussian level.

Nevertheless, it is interesting to observe that the phase dia-
gram, shown in Fig. 2, displays similar regimes as that de-
termined in Refs. 12 and 13 from the BCS and Kosterlitz-
Thouless theories in 2D. We also remark that for J0=0, in
both cases, the shapes of Tc vs �0 are qualitatively similar.
As we proceed from the regime of predominantly c electrons
�nF�nB� to that of predominantly LPs �nF�nB� with de-
creasing �0, Tc at first sharply increases, then it goes through
a maximum inside the mixed regime and is suppressed when
the �renormalized� LP level reaches the bottom of the c band
and the system enters the LP regime.

The two versions of the boson-fermion model analyzed in
this paper can also be considered as particular cases of a
more general coupled boson-fermion-Hubbard model with
s-wave pairing of the form

H̃ = HF + HB + H1, �4.1�

HF = �
i,j,�

�tijci�
† cj� + �D − ���

i,�
ci�

† ci� + UF�
i

ci↑
† ci↑ci↓

† ci↓,

�4.2�

HB = �
i

�2�0 − 2��bi
†bi − �

i,j

�Jijbi
†bj + UB�

i

�bi
†�2�bi�2,

�4.3�

H1 = I�
i

�bi
†ci↓ci↑ + ci↑

† ci↓
† bi� , �4.4�

and n=nF+2nB. The bosonic part HB 	Eq. �4.3�
 is given by
the boson Hubbard model with the on-site repulsion UB and
fermionic part HF 	Eq. �4.2�
 by the Hubbard model with the
on-site interaction UF. If UB=0, we obtain the boson-fermion
model 	Eq. �2.1�
, where �0→�0−J0 /2 and UF=−U. If
UB→�, one gets the case of hard-core bosons �or pseu-
dospins�, i.e., for UF=0 the model 	Eq. �3.1�
, which we
analyzed.

In conclusion, by using the self-consistent T-matrix ap-
proach, we have presented the results for the superfluid tran-
sition temperature and the phase diagram of the boson-
fermion model on the lattice. The results go beyond the
mean-field theory and describe the BCS-BEC crossover with
varying position of the LP level. The region of the resonance
superfluidity is preceded by the pseudogap due to pairing
correlations. An extended version of this work19 will be pub-
lished elsewhere.

ACKNOWLEDGMENTS

R.M. acknowledges support from the Foundation for Pol-
ish Science �FNP�. Thanks are also due S. Robaszkiewicz
and T. Kostyrko for helpful discussions.

1 J. Ranninger and S. Robaszkiewicz, Physica B & C 135, 468
�1985�; R. Micnas, J. Ranninger, and S. Robaszkiewicz, J.
Magn. Magn. Mater. 63-64, 420 �1987�.

2 S. Robaszkiewicz, R. Micnas, and J. Ranninger, Phys. Rev. B 36,
180 �1987�.

3 R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod. Phys.

−1 −0.5 0 0.5 1
∆0/D

0

0.05

0.1

0.15

0.2

k B
T

/D
∆pg(Tc)/D
∆F(0)/D

(LPS+ES)

LP PG

SC
LPS+PPS

E

FIG. 2. Phase diagram of the hard-core boson-fermion model as
a function of �0 /D for s-wave pairing and sc lattice. n=0.25,
�I0 � /D=0.5, D=6t, and J=0. The transition temperature derived
within the T-matrix approach is shown by the solid line. The
dashed line indicates the BCS-MFA transition temperature. The
dot-dashed line and dotted line indicate the pseudogap and the
zero temperature fermionic gap in the superconducting state,
respectively. LP—normal state of predominantly LPs,
SC—superconducting state �LPS+ES�, E—electronic metal, and
PG—pseudogap region. LPS+PPS indicates the region where the
superconductivity results from both LPs and preformed pairs of c
electrons.

R. MICNAS PHYSICAL REVIEW B 76, 184507 �2007�

184507-4



62, 113 �1990�, and references therein.
4 R. Friedberg and T. D. Lee, Phys. Rev. B 40, 6745 �1989�; R.

Friedberg, T. D. Lee, and H. C. Ren, ibid. 42, 4122 �1990�.
5 J. Ranninger and J. M. Robin, Solid State Commun. 98, 559

�1996�; Phys. Rev. B 53, R11961 �1996�; T. Domanski and J.
Ranninger, ibid. 63, 134505 �2001�; 70, 184503 �2004�.

6 R. Micnas and S. Robaszkiewicz, in High-Tc Superconductivity
1996: Ten Years after the Discovery, NATO ASI Series E Vol.
343 �Kluwer, The Netherlands, 1997�, p. 31.

7 V. B. Geshkenbein, L. B. Ioffe, and A. I. Larkin, Phys. Rev. B 55,
3173 �1997�.

8 A. H. Castro Neto, Phys. Rev. B 64, 104509 �2001�.
9 A. Perali, C. Castellani, C. Di Castro, M. Grilli, E. Piegari, and A.

A. Varlamov, Phys. Rev. B 62, R9295 �2000�.
10 E. Altman and A. Auerbach, Phys. Rev. B 65, 104508 �2002�.
11 W.-F. Tsai and S. A. Kivelson, Phys. Rev. B 73, 214510 �2006�.

12 R. Micnas, S. Robaszkiewicz, and A. Bussmann-Holder, Phys.
Rev. B 66, 104516 �2002�; Physica C 387, 58 �2003�.

13 R. Micnas, S. Robaszkiewicz, and A. Bussmann-Holder, Struct.
Bonding �Berlin� 114, 13 �2005�, and references therein.

14 M. Holland, S. J. J. M. F. Kokkelmans, M. L. Chiofalo, and R.
Walser, Phys. Rev. Lett. 87, 120406 �2001�.

15 Y. Ohashi and A. Griffin, Phys. Rev. Lett. 89, 130402 �2002�.
16 Q. Chen, J. Stajic, S. Tan, and K. Levin, Phys. Rep. 412, 1

�2005�.
17 R. Micnas, M. H. Pedersen, S. Schafroth, T. Schneider, J. J.

Rodriguez-Nunez, and H. Beck, Phys. Rev. B 52, 16223 �1995�.
18 Q. Chen, I. Kosztin, B. Janko, and K. Levin, Phys. Rev. B 59,

7083 �1999�; I. Kosztin, Q. Chen, Y.-J. Kao, and K. Levin, ibid.
61, 11662 �2000�.

19 R. Micnas �unpublished�.
20 T. Kostyrko, Acta Phys. Pol. A 91, 399 �1997�.

SUPERFLUID TRANSITION TEMPERATURE OF THE… PHYSICAL REVIEW B 76, 184507 �2007�

184507-5


