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We propose that in noncentrosymmetric superconductors with weakly asymmetric spin-orbit interaction, the
field-induced pair correlation between the spin-orbit split different bands ignored in previous studies yields
unique effects; i.e., the Pauli depairing effect is anisotropic in the momentum space and, as a result, magnetic
fields induce a point-node-like anisotropic gap structure of the quasiparticle energy even for isotropic s-wave
states, which seriously affects thermodynamic quantities at low temperatures. Also, it is shown that when the
magnitude of the spin-orbit interaction is smaller than the superconducting gap, the specific heat as a function
of the magnetic field exhibits a two-gap-like behavior, even when there is only a single gap. These features
characterize parity-violated Cooper pairs in weakly noncentrosymmetric systems. We suggest the possible
detection of these effects in the superconductor with weakly broken inversion symmetry Y2C3.
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I. INTRODUCTION

One of the intriguing features of the recently discovered
noncentrosymmetric superconductors1–5 is the realization of
parity-violated Cooper pairs, which lead various exotic
phenomena.6–22 The investigations for unique effects charac-
terizing parity violation have been mainly focused on the
case with strongly broken inversion symmetry �IS�, where
the spin-orbit �SO� band splitting ESO is enormous compared
to the superconducting �SC� gap �, because it is commonly
believed, and partly true, that effects due to broken IS are
more prominent for stronger SO interaction. However, in the
present paper, we propose the possibility of other phenomena
which characterize parity-violated Cooper pairs in a unique
way inherent in weakly noncentrosymmetric systems. These
phenomena are essentially raised by the Zeeman effect on
pairing states in the SO split two bands. In the weakly non-
centrosymmetric case ESO��, the Zeeman magnetic field
induces substantial pair correlation between the SO split dif-
ferent bands competing with the intraband pairs, which is, in
contrast, negligible in strongly noncentrosymmetric systems
with ESO��.6,14–16,18–20 We demonstrate that the field-
induced interband pair correlation changes drastically low-
energy properties of the SC state in the case with weakly
broken IS, yielding the following unique effects: �i� the Pauli
depairing effect is anisotropic in the momentum space and,
as a result, magnetic fields induce the point-node-like struc-
ture of the excitation gap even for isotropic s-wave states,
which seriously affects thermodynamic quantities, yielding
distinct behaviors of them at low temperatures. �ii� For ESO
��, the specific heat as a function of magnetic fields exhib-
its a two-gap-like behavior even when there is only a single
SC gap. These effects are associated with the momentum-
dependent spin orientation of Cooper pairs which character-
izes parity violation. Thus, our results suggest another pos-
sible direction of the experimental search for parity-violated
Cooper pairs.

As a matter of fact, our findings are relevant to the recent
experimental studies on the weakly noncentrosymmetric su-
perconductor Y2C3.25–28 This system has a cubic crystal

structure with the space group symmetry I4̄3d breaking in-

version symmetry. Thus, the asymmetric SO interaction can
be approximated by the Dresselhaus type interaction. The
unique feature of this system is that the SO splitting is almost
of the same order as the superconducting gap,29,30 and thus,
the situation considered in the present paper may be realized
in this material. In the last part of this paper, we shall com-
pare our results with the experimental observations for this
system and discuss the possible realization of the distinct
phenomena characterizing parity-violated Cooper pairs in
Y2C3.

Although the existence of the indispensable interband
pairing correlation, in addition to the intraband pairs men-
tioned above, plays an essential role in the above unique
phenomena, it also brings about some technical complexity
of theoretical treatment which hinders the elucidation of
properties of weakly noncentrosymmetric superconductors.
Moreover, the magnetic field induces the orbital depairing
effect as well as the Zeeman effect mentioned above. To deal
with these issues, we first analyze exactly the effects of the
Zeeman magnetic field on the quasiparticle energy, neglect-
ing the orbital depairing effect, and, afterward, to take into
account the orbital effect, we develop the quasiclassical
method which extends the classical works by Eilenberger23

and Larkin-Ovchinnikov24 to the case with both the intra-
band and interband pairs. A similar quasiclassical approach
was considered before by Hayashi et al.21 Here, we obtain
the explicit analytical solutions of the Eilenberger equations
which encompass both the intraband and interband pairs. Us-
ing them, we discuss the behaviors of thermodynamic quan-
tities under an applied magnetic field, in which the above-
mentioned unique features characterizing parity-violated
Cooper pairs appear.

The organization of this paper is as follows. In Sec. II, we
investigate the Zeeman field effect in a weakly noncen-
trosymmetric superconductor with the Dresselhaus type SO
interaction, neglecting the orbital depairing effect, and dem-
onstrate that in the case of ESO��, the Pauli depairing effect
is anisotropic in the momentum space, leading to the point-
node-like anisotropic structure of the excitation energy gap.
This phenomenon should be important in the mixed state of
type II superconductors. Thus, in Sec. III, we develop the
quasiclassical method, taking into account the orbital depair-
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ing effect in addition to the above-mentioned anisotropic
Pauli depairing effect. Based on this method, in Sec. IV, we
investigate the thermodynamic properties of the mixed state
and elucidate how the above features characterizing the
parity-violated Cooper pairs appear in experimentally ob-
servable quantities. It is demonstrated that for a sufficiently
small SO interaction, ESO��, the specific heat as a function
of magnetic fields exhibits a two-gap-like behavior even
when there is only a single SC gap. We shall also discuss the
implication of our results for the recent experimental re-
searches on the weakly noncentrosymmetric superconductor
Y2C3.25–28 A summary is given in Sec. V.

II. ANISOTROPIC PAULI DEPAIRING EFFECT

The absence of the inversion symmetry is characterized
by the asymmetric SO interaction,

HSO = � �
k,�,��

L0�k� · ����ck�
† ck��, �1�

where ck� �ck�
† � is the annihilation �creation� operator of an

electron with momentum k and spin �. The components of
�= ��x ,�y ,�z� are the Pauli matrices. Since we are con-
cerned with the application to the cubic system Y2C3 with

the space group symmetry I4̄3d, we assume the Dresselhaus
interaction, L0�k�= �L0x ,L0y ,L0z�= �kx�ky

2−kz
2� ,ky�kz

2−kx
2� ,

kz�kx
2−ky

2��.31

In the following, we consider the case of an s-wave state
with the isotropic SC gap �, for which the features of weakly
broken IS appear profoundly, as shown below. We ignore the
admixture with triplet pairs, which is justified for ESO/EF
�1. Our model Hamiltonian reads,

H = HBCS + HSO, �2�

HBCS = �
k,�

�kck�
† ck� − �

k

��ck↑
† c−k↓

† + �*c−k↓ck↑� . �3�

In the following, the spherical Fermi surface, �k=k2 /2m
−EF, is assumed for simplicity. In this section, we concen-

trate on the effects of the Zeeman interaction, expressed by
−�k,���	BH ·����ck�

† ck��, with H= �0,0 ,Hz�, leaving the
analysis of the orbital depairing effect until the next sections.
When the Zeeman term is added to the Hamiltonian �2�, the
magnetic field induces the pairing between electrons on the
SO split different bands, which gives rise to the Pauli depair-
ing effect. The important observation is that in the case of
ESO��, Cooper pairs with k for which the spin degeneracy
is not lifted by the SO interaction are more seriously affected
by the Pauli depairing effect than electron pairs in the
strongly SO split regions, leading to the anisotropic Pauli
depairing in the momentum space. The anisotropic Zeeman
effect in the strongly noncentrosymmetric case has already
been discussed by several authors.10,17 The unique point in
the weakly noncentrosymmetric case is that this effect dras-
tically changes the structure of low-energy excitations in the
SC state and yields the point-node-like structure of the
single-particle excitation gap even in isotropic s-wave states.
To demonstrate this, we calculate the single-particle excita-
tion energy Ek	 �	=1, 2, 3, and 4� by diagonalizing the
above mean field Hamiltonian �2� with the Zeeman term ex-
pressed in the 4
4 matrix form in the space spanned by the
basis �ck↑

† ,c−k↑ ,ck↓
† ,c−k↓�. The explicit expressions for Ek	 are

given in Appendix A. In Fig. 1, we depict the numerically
calculated single-particle excitation energy gap Egap for the
band �k−��k− ��L0�k�−	BH� in the case with � /EF=0.01
and � /EF=0.03. Here, Egap is defined by the magnitude of
Ek3 for k on the Fermi surface satisfying �k−=0. It is seen
that the point-node-like structure develops as the magnetic
field increases. As a matter of fact, the excitation energy Ek	

is not truly gapless, but the excitation energy gap Egap is
strongly anisotropic, with the structure similar to the point
nodes, reflecting the k dependence of the SO term even when
the superconducting gap � is independent of k. For instance,
the excitation energy gaps Egap for kF 	 �001�, kF 	 �111�, and
kF 	 �100� �equivalent to kF 	 �010�� are equal and given by

Egap
�001� = Egap

�111� = Egap
�100� = 
�	BHz�2 + �2 − 	BHz, �4�

while for kF 	 �110�,
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FIG. 1. �Color online� The structure of the single-particle excitation energy gap on the spherical Fermi surface of the band �k− for
Hz=0.0, 0.005, and 0.01.
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Egap
�110� � 
2f�Hz� + �2 − 2
f�Hz�2 + 	B

2Hz
2�2, �5�

with f�Hz�=2�2kF
6 +	B

2Hz
2. It is easily checked that Egap

�110�

�Egap
�001�. The positions of the gap minima coincide approxi-

mately with the zero points of L0�k� at which the SO split-
ting vanishes. The quasiparticle excitations for kF 	 �001�,
�111�, and �100� behave like Dirac fermions, with the mass
gap given by Eq. �4�. It should be stressed that in the situa-
tion considered here, the single-particle energy gap Egap does
not coincide with the superconducting gap �, which is k
independent. A similar anisotropic structure of the excitation
gap also appears for the band �k+��k+ ��L0�k�−	BH�.

Although we use the Dresselhaus interaction in the
present calculation, the point-node-like structure appears
generally for any forms of L0�k� which possess zero points
on the Fermi surface.

III. QUASICLASSICAL APPROACH FOR THE MIXED
STATE IN THE CASE WITH BOTH INTERBAND

AND INTRABAND PAIRINGS

The anisotropic Pauli depairing effect discussed in the
previous section is particularly important in type II supercon-
ductors. Thus, in the following, we consider the orbital de-
pairing effect as well as the Pauli depairing effect on the
basis of the quasiclassical analysis. For this purpose, we con-
sider the Green functions for quasiparticles defined on
the SO split bands, G�	���x ,x��=−�T�	�x���

†�x�� and
F�	���x ,x��=−�T�	

† �x���
†�x��, where �	�x� and �	

† �x� are
the field operators for quasiparticles in the 	 band corre-
sponding to the energy in the normal state �k	=�k
+	��L0�k��, with 	=±.32 As mentioned above, the inter-
band Green functions play important roles in addition to the
intraband Green functions. Fourier transforming G�	�� and
F�	��, we introduce the quasiclassical Green functions de-
fined by

Ĝ�k̂,r,�n� =�
g�++� − f �++� g�+−� − f �+−�

f �++� ḡ�++� f �−+�† ḡ�−+�

g�−+� − f �−+� g�−−� − f �−−�

f �+−�† ḡ�+−� f �−−�† ḡ�−−�
� , �6�

with g�	���k̂ ,r ,�n�=��d�k /��G�	���k ,r ,�n�, f �	���k̂ ,r ,�n�
=��d�k /��F�	���k ,r ,�n�, and ḡ�	��=g�	���−k ,r ,−�n�. Here, k
is the momentum conjugate to the relative coordinate x−x�,

r is the center of mass coordinate, k̂ is a unit vector param-
etrizing the direction of momentum k, and �n is the fermionic

Matsubara frequency. Hereafter, matrices Ă represent 2
2
matrices defined in the space spanned by the basis ��	 ,��

†�,
where 	=�=± or 	=−�=±, and matrices B̃ represent those
in the two-dimensional space spanned by the band indices �

and �. Using the standard method,23,24,33 we find that Ĝ sat-
isfies the Eilenberger equation in the clean limit,

i� ·
�

�r
Ĝ + ��z − M̂ + �̂,Ĝ� = 0, �7�

where �=2i�n+v · 2e
c A, with A a vector potential, and z

=1̃ � �̆z. The 4
4 matrix M̂ is defined by M̂�k̂�= �̃z

� (�L̆�k̂�), where L̆�k̂�=1̆��L�k̂��+ �L�−k̂��� /2+ �̆z��L�k̂��
− �L�−k̂��� /2 and ��L�k̂��= ��L0�k̂�−	BH�. The matrix gap

function �̂�k̂ ,r� is

�̂�k̂,r� = � �̆+�k̂,r� �̆2�k̂,r�

− �̆2�k̂,r� �̆−�k̂,r�
� , �8�

with �̆±�k̂ ,r�= i�̆y Re �±�k̂ ,r�+ i�̆x Im �±�k̂ ,r�, �̆2�k̂ ,r�
= �̆x Re �2�k̂ ,r�− �̆y Im �2�k̂ ,r�, �±�k̂ ,r�=��r�s±�k̂�,
�2�k̂ ,r�=��r�s2�k̂�, and

s±�k̂� = − ��+�k̂��−�− k̂� + �−�k̂��+�− k̂�����k̂� , �9�

s2�k̂� = �+�k̂��+�− k̂� − �−�k̂��−�− k̂� , �10�

where �±�k̂�=
�1±Lz�k̂��L�k̂��� /2 and �±�k̂�=−�Lx

± iLy� /
Lx
2+Ly

2. Here, we omit the corrections to the Fermi
velocity from the SO interaction, which are not important for
ESO/EF�1. In the case with strong SO interaction ���, the
contributions from the interband Green functions to Eq. �7�
are negligible and the two bands are decoupled. This simpli-
fied case was previously studied by several authors.21,22

In spite of the complications raised by the existence of
both the interband and intraband Green functions, the ana-
lytical solutions of Eq. �7� based on the Pesch type approxi-
mation are possible. In this approach, we assume the Abri-
kosov lattice solution for ��r� and the uniform magnetic field
in the system, and replace the normal Green functions g�	��

and ḡ�	�� with the spatial averages over a unit cell of the
vortex lattice, �g�	�� and �ḡ�	��, retaining only the spatial
variation of f �	�� and f �	��†. Utilizing the normalization con-

dition Ĝ · Ĝ=1 and the relations tr�Ĝ�=0 and g�+−�*=g�−+�,
which are derived from Eq. �7�,35 we find that the quasiclas-
sical Green functions are given by the solutions of the
coupled algebraic equations,

�
�=±

��g�	���2 − �
�,�=±

P��̃n
������s���g�� ��� − s��ḡ��� ��

− ��s2��g�� −��� + ��ḡ��� −����2 = − 1 �	 = ± � ,

�11�

�g�+−� = C �
	,�=±

��Y��̃n
�	����g�		� − Y��̃n

��	 ����ḡ�		�� ,

�12�

where �̃n
�	��=�n+ i�	

2 ��L�−��L���, L�=L�−k̂�, P���
= 1

2�Y��� /��, and Y��̃n�=
��2unW�2iun�̃n�, with �2

= ��2�r�, W�z�=e−z2
erfc�−iz�, and un=� sgn �n /v sin �,

with �=
�c /2eHz and � the polar angle of k̂, and C

=2is2s+��L�� / D̃ with
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D̃ = 4�2�L��L�� + 2i�s+�2���L� + �L����
	=±

	Y��̃n
�	−��

− 2is2
2���L� − �L����

	=±
	Y��̃n

�	+�� . �13�

Since the explicit expressions of the solutions are lengthy, we
will present them in Appendix B and, instead, concentrate on
the discussion on the results obtained from them in the fol-
lowing section.

IV. SPECIFIC HEAT COEFFICIENT AND
DENSITY OF STATES

Using the analytical solutions for Ĝ, we calculate the spe-
cific heat and the density of states of quasiparticles. For this
purpose, we determine the field dependence and the tempera-
ture dependence of the spatially averaged gap function
��Hz ,T�=
��2�r� by solving the quasiclassical BCS gap
equation,

��2�r� = �0T�
n

�
k̂

���r�f↑↓�k̂,r,�n� , �14�

f↑↓ = �−�̄−f �−+� + �+�̄+f �+−� − �+�̄−f �++� − �−�̄+f �−−�, �15�

where �̄�����−k̂�. �0 is a dimensionless coupling constant.
To compare our calculated results with the experimental ob-
servations for Y2C3 later, we tune the values of �0 and the
cutoff for the frequency sum �c so as to realize Tc=18 K
�e.g., �0=0.2703 and �c=700 K�. In this calculation, an im-
portant parameter is a0�
	B�c /2e�0 /��0, which is an in-
verse of the coherence length �0 normalized to be dimension-
less. Here, �0 is the gap function for Hz=0. For Y2C3, a0
�0.234. The specific heat in the SC state is

CS =� d�
�2

4T2 cosh2 ��/2T�
DS��� , �16�

where the density of states for quasiparticles DS��� is given

by DS���=DN�0��k̂�	=± Im�g�		��k̂ ,r ,�+ i��, with DN�0�
the density of states in the normal state. In Fig. 2, we present
the calculated results of the specific heat as a function of the

normalized magnetic field h=	BHz /�0 for the temperature
T /Tc=0.1 and several sets of the parameters � /�0 and a0. It
is found that in contrast to the case with strongly broken IS
where the SC state is quite robust against the Pauli depairing
effect, in weakly noncentrosymmetric systems, more low-
energy excitations are induced by the magnetic field than in
the case with inversion symmetry �=0. We interpret the ori-
gin of this behavior as the existence of the field-induced
nodal excitations mentioned above. The emergence of the
point-node-like excitations is more clearly observed in the
energy dependence of the density of states for quasiparticles,
which is plotted in Fig. 3 for � /�0=1.0. As the magnetic
field increases, the density of states exhibits the power-law
behavior Ds�����2.

When the SO coupling � is sufficiently smaller than �0,
another remarkable feature appears in the field dependence
of the specific heat. As shown in Fig. 4, for the low magnetic
fields h�0.1–0.2, a shoulderlike structure of CS�Hz� similar
to a two-gap behavior appears, though there is only a single
SC gap ��r�. The origin of this behavior is understood as
follows. For ���0, there are two different types of the Pauli
depairing effect, i.e., �i� one due to the generation of the
interband pairing correlation, which, instead, suppresses the
intraband pairing, and �ii� the other caused by the asymmet-

0

0.2

0.4

0.8

0.6

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
h

C
/C

S
N

a = 0.2340

a = 0.351
a = 0.468
0

0

FIG. 2. �Color online� Specific heat at T=0.1Tc divided by the
normal state value CN as a function of the normalized magnetic
field h=	BHz /�0 for � /�0=1.0 �solid line�, � /�0=0.0 �dotted
line�, and � /�0=10.0 �dashed line�.

1

1

1

10.5

0.5

D (ε)
D (0)Ν

h=0.13
h=0.12

h=0.11
h=0.10

α=0

ε/�

S

0

h=0.11

FIG. 3. �Color online� Log-log plot of the density of states
versus energy for � /�0=1.0. The density of states for �=0.0 and
h=0.11 is also shown for comparison �broken line�. The dotted line
is �2.

0

0.2

0.4

0.8

0.6

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6

C
/C

S
N

α/� =0.1
α/� =0.15

α/� =0.2

α/� =0.3
α/� =0.0

0

0

0

0

0

α/� =0.050

h

FIG. 4. �Color online� Specific heat as a function of the normal-
ized magnetic field h for small � /�0. a0=0.234 and T=0.1Tc.

SATOSHI FUJIMOTO PHYSICAL REVIEW B 76, 184504 �2007�

184504-4



ric deformation of the Fermi surface. The former is analo-
gous to the usual Pauli depairing effect in centrosymmetric
superconductors. The latter effect is inherent in noncen-
trosymmetric systems. The crucial point is that although the
former exists for any finite magnetic fields, the latter is ef-
fective only for small fields 	BHz�� and is suppressed for
larger fields 	BHz��. As a result, the character of the Pauli
depairing effect changes around Hz�� /	B in the case of �
��0, yielding the shoulder structure of the specific heat co-
efficient as demonstrated in Fig. 4. We would like to stress
that this effect is caused by the momentum-dependent spin
orientation of Cooper pairs characterizing parity violation.
Three remarks are in order. �1� For sufficiently small �, e.g.,
�=0.05, CS exhibits a hump rather than a shoulder, in
marked contrast with conventional two-gap behaviors. �2� As
� increases, the position of the shoulder shifts to larger h
regions, though its structure becomes obscure since the or-
bital depairing effect dominates for high magnetic fields. �3�
It should be cautioned that the Pesch approximation is not
valid for magnetic fields much lower than Hc2.33,34 However,
the shoulder structure of CS at h�0.1 stems from the Zee-
man effect rather than from orbital depairing effects. Thus,
the above results are applicable to systems with a sufficiently
large value of the Ginzburg-Landau parameter �, where
small magnetic fields can penetrate deeply into the SC re-
gions.

We, now, discuss the implication of the above results for
the experimental observations of the weakly noncentrosym-
metric superconductor Y2C3. This system is almost in the
London limit with ��10.25,27 According to the recent local-
density approximation calculation, the averaged magnitude
of the SO band splitting is roughly �0.01 eV,30 which is of
the same order as the SC gap �30 K.27 Thus, our analysis is
applicable. A remarkable experimental observation for Y2C3
is that the field dependence of the specific heat exhibits a
small shoulder structure for Hz�8�Hc2 /3 T at T=2.6 K.28

Although this behavior was interpreted as the indication of
the existence of two SC gaps with different magnitudes,26,28

it can be also, alternatively, explained by assuming the real-
ization of the unique effect associated with parity violation
as demonstrated in Fig. 4. A possible test for our scenario is

to investigate the field dependence of the nuclear spin relax-
ation rate,26 which should exhibit a gap energy scale different
from that observed in the specific heat.

V. SUMMARY

We have shown that in weakly noncentrosymmetric su-
perconductors, the Pauli depairing effect is anisotropic in the
momentum space, inducing the point-node-like structure of
the quasiparticle excitation energy gap even in isotropic
s-wave states. This effect is caused by the competition be-
tween the asymmetric SO interaction and the Zeeman mag-
netic field in the superconducting state, and yields unique
low temperature behaviors of thermodynamic quantities
quite different from those of conventional s-wave supercon-
ductors. Also, by using the quasiclassical method, we have
demonstrated that the magnetic field dependence of the spe-
cific heat exhibits a multi-gap-like structure for sufficiently
small SO interaction even when there is only a single gap.
These effects are associated with the momentum-dependent
spin orientation of Cooper pairs which characterizes parity-
violation. Thus, our results reveal the unique aspects of
parity-violated Cooper pairs inherent in weakly noncen-
trosymmetric systems. We have also discussed that our find-
ings may be relevant to the recent experimental observations
for Y2C3.
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APPENDIX A: QUASIPARTICLE ENERGY

The single-electron energies of the Hamiltonian �2� with
the Zeeman term −�k,���	BHz����

z ck�
† ck�� are given by the

solutions of the following eigenvalue equation:

�
�k − 	BHz + L0z − x 0 L0x − iL0y �

0 − �k + 	BHz + L0z − x − �* L0x + iL0y

L0x + iL0y − � �k + 	BHz − L0z − x 0

�* L0x − iL0y 0 − �k − 	BHz − L0z − x
� = 0. �A1�

Here, the matrix is defined in the space spanned by the basis �ck↑
† ,c−k↑ ,ck↓

† ,c−k↓�. The explicit solutions of Eq. �A1� are

Ek1 =
1

2�
�̃+
1/3 + �̃−

1/3 −
2

3
X +
 − 2Y


�̃+
1/3 + �̃−

1/3 − 2
3X

− �̃+
1/3 − �̃−

1/3 −
4

3
X� , �A2�
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Ek2 =
1

2�−
�̃+
1/3 + �̃−

1/3 −
2

3
X

−
 2Y


�̃+
1/3 + �̃−

1/3 − 2
3X

− �̃+
1/3 − �̃−

1/3 −
4

3
X� ,

�A3�

Ek3 =
1

2�
�̃+
1/3 + �̃−

1/3 −
2

3
X

−
 − 2Y


�̃+
1/3 + �̃−

1/3 − 2
3X

− �̃+
1/3 − �̃−

1/3 −
4

3
X� ,

�A4�

Ek4 =
1

2�−
�̃+
1/3 + �̃−

1/3 −
2

3
X

+
 2Y


�̃+
1/3 + �̃−

1/3 − 2
3X

− �̃+
1/3 − �̃−

1/3 −
4

3
X� ,

�A5�

where �̃±
1/3=e±i�4/3���±

1/3 and

�± =
1

2
� 1

27
�2X3 + 36XZ� − 4XZ + Y2

±
� 1

27
�2X3 + 36XZ� − 4XZ + Y2�2

−
4

729
�12Z + X2�3� ,

�A6�

with

X = − 2��k
2 + �2�L0�k��2 + 	B

2Hz
2 + �2� , �A7�

Y = 8	BHz�L0z�k, �A8�

Z = ��k
2 − �2�L0�k��2 − 	B

2Hz
2�2 + �4 + 2�2�k

2 − 4	B
2Hz

2�2L0z
2 .

�A9�

Since there is a term linear in x in Eq. �A1� with the coeffi-
cient given by Eq. �A8� for Hz�0, the particle-hole symme-
try is broken by the Zeeman magnetic field.21,36

APPENDIX B: SOLUTIONS FOR QUASICLASSICAL
GREEN FUNCTIONS

In this appendix, we present the explicit solutions for the
spatially averaged quasiclassical Green functions satisfying
Eqs. �11� and �12�, which are derived from the Eilenberger
equations �7� combined with the normalization condition

Ĝ · Ĝ=1. Using the decoupling approximation for the spatial
average, �g�	��2��g�	��2, �g�	��f �������g�	���f �����,
etc., we obtain the expressions for �g�		�,

�g�++��p� = − i sgn �n�1 − P��̃n
�++���s+�k̂��2�1 − r�p�

− 2���L�� − �L��s2�k̂��a�p� + b�p�r�p���2

+ 4�2�L��2�s+�k̂��2�a�p� + b�p�r�p��2 − P��̃n
�−−��


�s2�k̂��1 + r2�− p�� + 2���L�� + �L��


�s+�k̂��2�a�p� + b�p�r�p���2�−1/2, �B1�

�g�−−��p� = − r�p�r2�p��g�++��p� , �B2�

where

a�p� =
is2�k̂�

D̃
�Y�1� − Y�3� + r2�− p��Y�2� − Y�3��� ,

�B3�

b�p� = −
is2�k̂�

D̃
�Y�1� − Y�4� + r2�− p��Y�2� − Y�4��� ,

�B4�

r2�p� =
1

A+
�A− + 8�3��L�� − �L����L�2 − �L��2�


�s+�k̂��2s2�k̂�c0
3Y�1�� , �B5�

A± = Y�1� − 2���L�� − �L��s2�k̂�c0Y�1� − 4��L�s2�k̂�c0Y�3�

+ 4�2��L�� + �L���s+�k̂��2c0
2�Y�4��L�� − Y�3��L��

± 8�2��L�2 − �L��2�c0�s+�k̂��2�c±�Y�1�

− 2��L�Y�3�c0s2�k̂� − ���L��

− �L��s2�k̂�c0Y�1�� ± �c0
2s2�k̂��Y�3��L� � Y�4��L���� ,

�B6�

c+ =
is2�k̂�

D̃
�Y�2� − Y�1� + Y�4� − Y�3�� , �B7�

c− =
is2�k̂�

D̃
�Y�4� + Y�3� − 2Y�2�� , �B8�

c0 =
is2�k̂�

D̃
�Y�1� + Y�2� − 2Y�3�� , �B9�

r�p� =
1

2R
�− S + sgn �n


S2 − 4RQ� , �B10�

Q = Y�1� − 2���L�� − �L��s2�k̂�Y�1�a�p�

− 2��L��Y�4��1 + r2�p��s2�k̂�a�p� + a�p�2h�p� ,

�B11�
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R = − Y�1� − 2���L�� − �L��s2�k̂�Y�1�b�p�

+ 2��L��Y�4��1 + r2�p��s2�k̂�b�p� + b�p�2h�p� ,

�B12�

S = − 2���L�� − �L��s2�k̂�Y�1��a�p� + b�p��

+ 2��L��Y�4��1 + r2�p��s2�k̂�a�p�

− 2��L�Y�3��1 + r2�− p��s2�k̂�b�p� + 2a�p�b�p�h�p� ,

�B13�

with

h�p� = 4�2��L�� + �L���s+�k̂��2�Y�4��L�� − Y�3��L�� .

�B14�

Here, p= �k̂ ,�n�, Y�1��Y��̃n
�++��, Y�2��Y��̃n

�−+��, Y�3�
�Y��̃n

�−−��, and Y�4��Y��̃n
�+−��.

Substituting the above expressions for �g�		� into Eq.
�12�, we obtain the off-diagonal components of the normal
Green functions �g�+−� and �g�−+�.

Because of the existence of the Zeeman magnetic field,
the particle-hole symmetry does not hold, i.e., �g�	���−p�
�−�g�	���p�. Instead, we have

�g�++��− p� = r�p��g�++��p� , �B15�

�g�−−��− p� =
r2�− p�

r�p�r2�p�
�g�−−��p� , �B16�

�g�+−��− p� = −
�L�k̂��

�L�− k̂��
�g�+−��p� , �B17�

�g�−+��− p� = −
�L�k̂��

�L�− k̂��
�g�−+��p� . �B18�
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