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We first present a simple proof that for any bipartite lattice at half filling, the RKKY interaction is antifer-
romagnetic between impurities on opposite �i.e., A and B� sublattices and is ferromagnetic between impurities
on the same sublattices. This result is valid on all length scales. We then focus on the honeycomb lattice and
examine the theorem in the long distance limit by performing the low energy calculation using Dirac electrons.
To find the universal �cutoff-free� result, we perform the calculation in smooth cutoff schemes, as we show that
the calculation based on a sharp cutoff leads to wrong results. We also find the long distance behavior of the
RKKY interaction between “plaquette” impurities in both coherent and incoherent regimes.
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I. INTRODUCTION

The Ruderman-Kittel-Kasuya-Yosida �RKKY� interaction
between magnetic impurities in a metallic environment plays
a crucial role in the way magnetic impurities order both in
the dilute and the Kondo lattice limits.1 Perfect nesting of the
Fermi surface provides a mechanism for ordering due to the
divergence of the spin susceptibility at the nesting wave
vector.2 The square lattice at half filling provides the best
known example for perfect nesting and the consequent
�� ,�� antiferromagnetic ordering of the magnetic impurities.
The minimal form of nesting appears in the undoped single
layer of graphite3 where the Fermi surface shrinks to two
Dirac points. However, we show that the particle-hole sym-
metry provides another mechanism for ordering of the mag-
netic impurities in a metallic environment on all length
scales. This result can be applied to the undoped graphene
and is of value since low energy calculations are only valid
in the long distance limit. Furthermore, this result provides a
test for the low energy calculations and we show that the
calculation based on a sharp cutoff fails this test. We also
study the RKKY interaction between localized spins with
more complicated Kondo interactions. Interestingly, the be-
havior of the RKKY interaction is qualitatively different for
different types of magnetic impurities. It will be interesting
to see which one of the scenarios we considered—if not
all—can be realized in the laboratory.

The organization of the paper is as follows. In Sec. II, we
consider the simplest Kondo perturbation, where the impu-
rity is localized at a lattice site, and only has an on-site
Kondo interaction with the conduction electron spin. We
prove a theorem for the RKKY interaction between these
“site impurities” in bipartite lattices with hopping between
opposite AB sublattices at half filling. The result is that the
sign of the RKKY interaction depends only on whether the
impurities are localized at opposite sublattices �antiferromag-
netic� or on the same sublattices �ferromagnetic�. The sign is
dictated by particle-hole symmetry and is thus valid on all
length scales.

Section III focuses on the half-filled honeycomb lattice
with nearest neighbor hopping and examines the above theo-
rem in the long distance limit. We do a low energy calcula-
tion for the RKKY exchange in different cutoff schemes to

obtain the long distance behavior of the exchange. As will be
explained, due to the nature of the singularity of the spin
susceptibility near the Dirac nodes, the use of sharp cutoff is
inappropriate. We do the sharp cutoff calculation to demon-
strate this fact. We then examine two smooth cutoffs to find
the long distance behavior of the exchange. Two cutoffs are
considered to make sure that the calculation is cutoff inde-
pendent. They both lead to the same answer in the long dis-
tance limit.

It is important to note that although both antiferromag-
netic and ferromagnetic exchanges have the same algebraic
decay power in the long distance limit, the coefficients of
their decays are not the same. Furthermore, focusing on the
RKKY in a single class �i.e., the same or opposite sublat-
tices�, there is also magnitude “oscillations” of the form
cos(2kD · �R−R��) due to the nonanalyticity of the suscepti-
bility at the wave vector connecting the two nodes.

In Sec. III B, we discuss the extension of the RKKY be-
tween site impurities to more general cases. In particular, we
find the qualitative behavior of the RKKY for magnetic im-
purities sitting at the center of the hexagons of the honey-
comb lattice. We distinguish this type of impurity by calling
it plaquette impurity �vs site impurity�. In writing the Kondo
perturbation, these plaquette impurities can couple coher-
ently or incoherently with the conduction electrons. We find
that, for incoherent Kondo couplings, the RKKY exchange
between plaquette impurities is always antiferromagnetic.

We then obtain the RKKY behavior for plaquette impuri-
ties when they have a coherent Kondo interaction with the
conduction electrons around the plaquette. We find that, due
to a nontrivial phase cancellation, the 1 /R3 algebraic tail,
present in all other situations we considered, vanishes.

We conclude by summarizing our results and mentioning
our disagreements—specially in the sign of the RKKY
interaction—with other attempts4,5 made in calculating the
RKKY interaction in graphene. We also discuss the direct
implication of this paper for the Kondo lattice model on the
honeycomb lattice.

II. LATTICE RESULTS

To establish notation, we quickly review the RKKY
interaction.6 Imagine putting two test localized spins S at
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lattice sites i and j�i� j� and assume they have a small on-
site spin exchange interaction with the conduction electron
spin s. This perturbs the free hopping Hamiltonian

Ĥ = − t �
�ij�,a

�ĉia
† ĉja + H.c.� �1�

by

�Ĥ = j�Si · si + S j · s j� ��j� � t� . �2�

In perturbation theory, the leading interaction induced by this
term is

ĤRKKY = JijSi · S j , �3�

where Jij is given by

Jij = − j2� d��si
−���sj

+�0�� . �4�

To be precise, Jij is the coefficient of the Si
+Sj

−. However, due
to the SU�2� flavor symmetry of the unperturbed Hamil-
tonian, Jij

−+, Jij
+−, and Jij

zz are all equal. It is also understood
that this is the static �imaginary-time-averaged� part of the
RKKY interaction.

Nearest neighbor hopping on a bipartite lattice can be
viewed as a special case of hopping between A and B sub-
lattices. The particle-hole transformation

cia��� → �− 1�ic̄ia��� , �5�

where c and its conjugate c̄ are the Grassmann fields, leaves
the Lagrangian invariant. Lattice sites are labeled such that i
is odd on A sublattices and even on B sublattices. This trans-
formation sends the chemical potential � to −�. However, at
half filling, �=0 and the particle-hole transformation is a
symmetry of the partition function.

Using Wick’s theorem, we have

Jij = − j2� d��c̄i↓���cj↓�0���ci↑���c̄j↑�0�� . �6�

We drop the spin indices from now on since the Green’s
functions do not depend on the spin flavor. Since the ground
state is particle-hole symmetric, the particle-hole symmetry
of the Lagrangian implies

�ci���c̄j�0�� = �− 1�i+j�c̄i���cj�0�� . �7�

The above relation immediately results in

Jij = − j2�− 1�i+j� d�Gij���2, �8�

where Gij��� is defined to be

Gij��� = �c̄i���cj�0�� . �9�

In addition, Gij��� is real, as the space-time matrix connect-
ing the Grassmann variables is real. Therefore,

Jij

�Jij�
= �− 1�i+j+1. �10�

The same result is obtained if the Hamiltonian of Eq. �1�
contains more general hopping terms, but only between AB
sublattices. In summary, for any bipartite lattice at half fill-
ing, with hopping only between AB sublattices, the RKKY
interaction is antiferromagnetic between impurities on oppo-
site sublattices and is ferromagnetic between impurities on
the same sublattices.

III. LOW ENERGY CALCULATION

Next, we focus on the honeycomb lattice with nearest
neighbor hopping and examine the theorem we proved in the
long distance limit. The low energy theory is known to be
governed by a 2+1 dimensional Dirac action containing the
Dirac spinors—with internal A-B flavor—residing near the
two independent nodes ±kD. Being “near” the nodes is for-
mulated by introducing a momentum cutoff and a cutoff
scheme in the calculations.

The division of the honeycomb lattice to A and B sublat-
tices is a necessity, as the Bravais lattice has a basis with two
sites. Let us set the distance between the nearest neighbor
sites to be 1. In the limit �R−R���1, the RKKY interaction
JAB�R−R�� is calculated by Fourier transforming Eq. �6� and
constraining the momenta to be near the Dirac nodes:

JAB�R − R�� � − j2 �
D,D�

� d2q

�2��2eiq·�R−R��

�ei�D−D��kD·�R−R���AB
DD��q0 = 0,q�C	��q�� .

�11�

Here, R and R� refer to the Bravais lattice vectors. D and
D� are either +1 or −1. They denote near which Dirac nodes
±kD the �space� momenta reside. 	�1 is the cutoff and
C	��q�� is a function that takes care of cutting off the momen-
tum. Three examples for C	��q�� will be given below.

�AB
DD��q� is given diagrammatically by

χDD′

AB (q) =

�
d3k

(2π)3
A

�

k; D′

k+q; D

B.
�12�

We use the continuum limit “translation” of the fields in
terms of microscopic variables provided by Eqs. �45� and
�50� of Ref. 7 to obtain

�AB
++�0,q� =

3�q�
64

, �13�

�AB
−−�0,q� = �AB

++�q� , �14�

�AB
+−�0,q� =

1

64�q�
�qx + iqy�2, �15�

�AB
−+�0,q� = �AB

+−�q�*. �16�

In the above calculations, the Dirac dispersion velocity vc is
set to be 1 by scaling the space dimensions.

SAEED SAREMI PHYSICAL REVIEW B 76, 184430 �2007�

184430-2



To calculate JAB�R−R��, we examine the following cutoff
functions:

C	
1 ��q�� = 
�	 − �q�� , �17�

C	
2 ��q�� = e−�q�/	, �18�

C	
3 ��q�� = e−q2/	2

, �19�

where 
 is the step function.
The issue is that the susceptibility is dominated by larger

values of �q�, and the decay that phase integration causes, in
the sharp cutoff scheme, is not strong enough to compensate
that. This issue becomes more severe in the continuum limit
	�R−R��→�.

Since small �q� must dominate the large distance behavior,
we should adopt a different cutoff scheme than the sharp
cutoff. For the same reason, the answer should be universal,
not just the power of decay but also its coefficient. That is
why we examine two different cutoff schemes C	

2 and C	
3 to

make sure that we find the cutoff independent answer.

A. Examining different cutoffs

Next, we do the calculations for the three cutoff schemes
we have considered. We first show explicitly that the sharp
cutoff is inappropriate. We then find the universal answer for
the RKKY interaction using the smooth cutoffs C	

2 and C	
3 .

1. Sharp cutoff

Doing the integral of Eq. �11� for D=D�= +1 using C	
1

results in

JAB
++�R − R�� �

1

�R − R��3�0

	�R−R��
dxx2J0�x� . �20�

The Bessel function J0�x� is obtained by doing the angular
integration. The integrand in the above equation is a widely
oscillating function in the limit 	�R−R���1. Using the
asymptotic form for J0�x�, one easily obtains

JAB
++�R − R�� �

1

�R − R��3/2 sin		�R − R�� −
�

4

 . �21�

The changed scaling form, as well as the sine oscillations, is
generated by the sharp cutoff in momentum space. The sine
causes sign oscillations in contradiction to the theorem we
proved in Sec. I, thus making the sharp cutoff inappropriate.
Again even without the theorem; we can see that the integral
is dominated by larger values of �q�, and that is enough to
make the sharp cutoff inappropriate.

2. Smooth cutoffs

Because of this issue, we use the smooth cutoffs given by
Eqs. �18� and �19�. As expected, C	

2 and C	
3 both lead to the

same result in the continuum limit. The few integrals needed
for this calculation are given in the Appendix. The final re-
sult is

JAB�R − R�� �
3j2

64�

1 + cos„2kD · �R − R��…
�R − R��3

, �22�

where � is used since it is the continuum limit 	�R−R��
→� result. We also mention the results for �AA

DD�:

�AA
DD��0,q� = −

�q�
64

. �23�

The same cutoff functions C	
2 and C	

3 result in

JAA�R − R�� �
− j2

64�

1 + cos„2kD · �R − R��…
�R − R��3

. �24�

B. RKKY for plaquette impurities

The perturbation we considered in Eq. �2� is the simplest
Kondo perturbation one can consider. In general, the local-
ized spin could have interactions with several conduction
electrons. In the honeycomb lattice, this can be realized ex-
perimentally by having the localized spins near the center of
the graphene’s hexagons.

To study these situations, let us consider a slight change
of notations in denoting the localized spins. The Greek letter
index S is used to denote the localized spins in these situa-
tions. This is in contrast to the notation Si for the on-site
perturbations we started this paper with. To establish nota-
tion, we first consider the simpler theoretical problem in
which the impurity has an incoherent Kondo interaction with
the conduction electron spins around the plaquette. The per-
turbation to the free hopping Hamiltonian is then

�Ĥ = jTi
S · si ��j� � t� , �25�

where the sum over  �localized spins� and i �lattice sites� is
understood. We assume that S has interactions with only a
few si’s. For example, if S is located near the center of a
hexagon in the honeycomb lattice, we assume that Ti

 has
only six nonzero elements, corresponding to the sites sur-
rounding the hexagon.

The RKKY interaction between S and S� is

J�S · S�, �26�

where J� is given by

J� = Ti
Tj

�Jij , �27�

and Jij is given by Eq. �4�.
To be concrete, let us consider the honeycomb lattice and

imagine that the localized spins are located at the center of
the hexagons and are widely separated. We consider the “
s-wave” model in which the nonzero elements of Ti

 are all 1.
J��R−R�� is then given by summing over 36 terms that are
given by either Eq. �22� or Eq. �24�. Since A and B sites
surrounding the hexagons belong to different Bravais lattice
sites, the separations in Eq. �22� or Eq. �24� are, in general,
given by different R−R�, e.g., R−R�±a1, R−R�±a2, etc.
Here, a1 and a2 are the primitive vectors of the Bravais lat-
tice. However, in the long distance limit, all the decay factors
can be replaced by 1 / �R−R��3.
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Treating the cosine is a bit more delicate as
cos(2kD · �R−R��) is not a smooth function. It is straightfor-
ward to show that cos�2kD ·R� is either −1 /2 or 1. If we
decompose R into the primitive vectors

a1 = �3/2,�3/2� , �28�

a2 = �0,− �3� , �29�

R = ma1 + na2, �30�

together with

kD = 	0,
4�

3�3

 , �31�

one finds

cos�2kD · R� = cos„4��m + n�/3… . �32�

However, as we explain, this complication does not come
into play and the RKKY exchange between the plaquette
impurities we have considered is always antiferromagnetic.

To see this, one has to label the sites around the two
hexagons in terms of �m ,n� pairs. It is straightforward to see
that the set of

O = m + n − m� − n� �mod 3� �33�

for AA and BB sublattices is the same as the set for opposite
AB sublattices; thus, antiferromagnetism prevails. It can is

also found �see Fig. 1� that these sets will be grouped to
�0,1,2. Therefore, the cosine contributions of Eqs. �22� and
�24�, when summed over the sites around two plaquettes,
vanish; to the leading order, J��R−R�� is given by

J��R − R�� �
9j2

16�

1

�R − R��3
. �34�

To summarize, the RKKY exchange for plaquette impuri-
ties �in the long distance limit� is always antiferromagnetic.
Since the centers of the hexagons form a triangular lattice,
the RKKY exchange for the widely separated plaquette im-
purities is frustrated.

We also mention the results for the RKKY interaction
between a plaquette impurity and a site impurity. Again, the
cos(2kD · �R−R��), present in the RKKY for site impurities,
when summed over the plaquette, vanishes. The final result
is given by

JA
�R − R�� �

3j2

32�

1

�R − R��3
. �35�

The same result is obtained when the site impurity is on a B
sublattice.

We finally extend the incoherent Kondo coupling of
plaquette impurities with the conduction electron given by
Eq. �25� to the coherent one. The coherent Kondo perturba-
tion is more physical. It can be justified by going back to the
origin of the Kondo model, i.e., the Anderson model. In the
coherent Kondo coupling, the S has a Kondo interaction
with a coherent sum of conduction electron spin. The Kondo
perturbation is then given by

�Ĥ = jS · s ��j� � t� , �36�

where s is a coherent sum of the conduction electron spins
around plaquette , e.g., s

+ is given by

s
+ =

1

6 �
i,j�P

ĉi↑
† ĉj↓, �37�

and P is the set of sites surrounding plaquette . The sus-
ceptibility needed in these calculations carries four sublattice
indices:

χDD′

ikjl (q) =

�
d3k

(2π)3

i
j

�

k; D′

k + q; D

k
l

,
�38�

since in calculating �s
+s�

−�, four sites �i , j ,k , l are involved.
Here, i , j�P and k , l�P�. We avoided using a separate

notation for sublattice indices in �ikjl
DD��q�, e.g., i in �ikjl

DD��q�
should be replaced with A if i�A, etc. J*

� is then given by

J*
� � − j2 �

i,j�P
�

k,l�P�
�

D,D�
� d2q

�2��2ei�q+DkD�·�Ri−Rk�

�eiD�kD·�Rl−Rj��ikjl
DD��q0 = 0,q�C	��q�� . �39�

Asterisk � *� is used to make the distinction between the

1 2

3

45

6

7 8

9

1011

12

α

β

FIG. 1. �Color online� The honeycomb lattice. A sublattice is
denoted by odd �empty� sites. Plaquettes  and � and the sites
surrounding them are labeled. Fixing i on any site and running
j�A �around a plaquette� result in �0,1,2 patterns for
Oij =mi+ni−mj −nj �mod 3�. The same set is obtained by scanning
j�B. Thus, this procedure results in the set �−1 /2,−1 /2,1 for
cos�2kD ·Rij� and cos�kD ·Rij�.
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coherent RKKY and the incoherent RKKY of Eq. �34�.
It is straightforward to find that

�
i,j�P

� �
k,l�P�

� �
D,D�

eiDkD·�Ri−Rk�eiD�kD·�Rl−Rj� = 0, �40�

where �� is used to denote that in summing over indices,
each site index is restricted to be in a single sublattice. This
is just an immediate result of the observation we made in the
previous discussions and is explained briefly in the caption
of Fig. 1. Since

� d2q

�2��2eiq·�Ri−Rk��ikjl
DD��q0 = 0,q�C	��q�� �41�

is independent of D and D�, Eq. �40� implies that the
1 / �R−R��3 dependence of J*

� vanishes:

J*
��R − R�� = 0 + O�1/�R − R��4� . �42�

Note that the incoherent Kondo perturbation corresponds to
i= j and k= l. The sum in Eq. �40�, with this further con-
straint, does not factor out and it does not vanish �see Eq.
�34��.

IV. CONCLUSIONS

We first proved that the particle-hole symmetry for bipar-
tite lattices determines the sign of RKKY interaction be-
tween site impurities on all length scales. Second, the nature
of the singularity of the spin susceptibility in graphene in-
validates the use of sharp cutoff. In the sharp cutoff scheme,
the main contribution for the RKKY interaction comes from
the large momenta, thus invalidating the low energy theory.

We then studied the RKKY between plaquette impurities
and also between a plaquette impurity and a site impurity.
We first considered the simpler case of having an incoherent
Kondo perturbation. For these incoherent perturbations, the
RKKY involving plaquette impurities �in the long distance
limit� always ends up being antiferromagnetic. This comes
from the fact that in mediating RKKY, the contributions of
electrons on opposite sublattices dominate the contributions
from the same sublattices �Eq. �22� vs Eq. �24��. If they had
equal strengths, the 1 / �R−R��3 dependence of the RKKY
involving plaquette impurities would have vanished.

We then focused on plaquette impurities in the coherent
Kondo interaction regime. We found that the 1 /R3 algebraic
tail of the RKKY, present in all other situations we consid-
ered, vanishes. More work needs to be done for finding the
leading contribution for the RKKY in this case.

In terms of the magnitude of the RKKY in the long dis-
tance limit, our results can be summarized symbolically as

�J�� � �JA
� � �JAB� � �JAA� � �J*

�� . �43�

There had been other attempts in calculating RKKY in
graphene.4,5 They also observed a 1 /R3 dependence for the
RKKY. However, it was claimed that the RKKY is always
ferromagnetic due to graphene’s “semimetalic properties.”

Based on our result, this may only happen for the plaquette
impurities with coherent Kondo interactions �see Eq. �42��,
and in that case, the RKKY decay is faster than 1 /R3.

Finally, we mention the implications of this paper for the
Kondo lattice model on the honeycomb lattice. We started
the study of the Kondo-Heisenberg model on the honeycomb
lattice7 with the hope of finding the first examples of alge-
braic spin liquid phase in the presence of a semimetal, or a
Kondo-insulator–Néel deconfined quantum critical point.8

Based on the result of Sec. II, JH�0 will be generated in the
small JK limit of the Kondo lattice model,

Ĥ = − t �
�ij�,a

�ĉi
a†ĉj

a + H.c.� + JK�
i

si · Si, �44�

and in this regard, the Kondo lattice model transforms to the
model we studied in Ref. 7.
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APPENDIX: INETGRAL TABLE

� d3k

�2��3

k��k + q��

k2�k + q�2 =
− 1

64�q�
�q�q� + q2���� + ¯ ,

�A1�

�
0

2�

d
eix cos 
ein
 = 2�inJn�x� , �A2�

lim
→�

�
0

�

dxx2e−x/J0�x� = − 1, �A3�

lim
→�

�
0

�

dxx2e−x/J2�x� = + 3, �A4�

lim
→�

�
0

�

dxx2e−x2/2
J0�x� = − 1, �A5�

lim
→�

�
0

�

dxx2e−x2/2
J2�x� = + 3. �A6�

The ellipses in the first equation denote the nonuniversal
pieces of the integral. They cause either exponential decay or
faster algebraic decays in the continuum limit.
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