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We obtain the phase diagram in the parameter space �J� /J ,�� and an accurate estimate of the critical line
separating the different phases. We show several measurements of the magnetization, dimerization, nearest
neighbor correlation, and density of energy in the different zones of the phase diagram, as well as a measure-
ment of the string order parameter proposed as the nonvanishing phase order parameter characterizing Haldane
phases. All these results will be compared in the limit J� /J�1 with the behavior of the S=1 bond alternated
Heisenberg chain �BAHC�. The analysis of our data supports the existence of a dimer phase separated by a
critical line from a Haldane one, which has exactly the same nature as the Haldane phase in the S=1 BAHC.
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I. INTRODUCTION

Quantum systems when placed in low dimensional lat-
tices typically exhibit strongly correlated effects driving
them toward regimes with no classical analog. Many proper-
ties of these regimes or quantum phases1 depend in turn on
the properties of their ground state and low-lying energy
excitations.2

A problem of particular interest in the field of strongly
correlated systems is the emergence of critical phases in a
system where the generic behavior as coupling constants are
varied is to be a gapped system, although those gapped
phases may be of different nature. In this paper, we address
this problem by selecting a system of quantum spins that
allows us to perform a detailed study of critical and noncriti-
cal phases on equal footing, i.e., without any bias toward an
a priori preferred phase. For reasons explained in Sec. II, the
quantum spins are arranged in a two-leg ladder lattice3 with
antiferromagnetic Heisenberg couplings along the legs while
rung couplings are ferromagnetic. In addition, we also intro-
duce an explicit dimerization coupling in the Hamiltonian
along the leg directions, which can be varied from zero to
strong values. This coupling plays a major role in order to
create the aforementioned critical phases out of a system
with only gapped phases.

This particular type of two-leg ladder system has a num-
ber of open problems such as the precise location of critical
phases in the phase diagram of the coupling constants and
the nature of the gapped phases it exhibits. Our study is
complete enough so as to be able to solve for these problems
in a very precise manner.

The understanding of these purely quantum effects is usu-
ally a hard problem. Perturbative and variational methods in
quasi-one-dimensional systems such as chains and ladders
are not well suited to uncover the physics in the whole range
of coupling constants involved in the description of the in-
teractions in the system. On the contrary, the density matrix
renormalization group �DMRG� method4–8 allows us to iden-
tify the critical phases clearly and without any bias. This is
so because the method is nonperturbative and allows a con-
trollable management of errors.

Our studies have practical interest since there exist certain
chemical compounds such as PNNNO and PIMNO9 that ex-
hibit a ladder structure with ferromagnetic couplings along
the rungs. On the other hand, experiments on ladder materi-
als have revealed a very complex behavior, such as an
interplay between a spin-gapped normal state and
superconductivity.10 Moreover, a new field of study for these
complex effects has been opened by the simulation of
strongly correlated systems in optical lattices,11 in particular,
quantum spin chains and ladders.12

This paper is organized as follows. In Sec. II, we intro-
duce the model Hamiltonian �Eq. �1�� describing a two-leg
ladder lattice of spins S= 1

2 with columnar bond-alternating
antiferromagnetic couplings in the horizontal direction and
ferromagnetic couplings in the vertical direction �see Fig. 1�.
We can identify some particular behaviors in appropriate
weak and strong coupling limits but not for generic values of
the couplings. In Sec. III, we point out the rich physical
effects posed by open boundary conditions in these two-leg
ladders with finite length, although it also implies an a priori
analysis in order to find out which low-lying states contribute
to the gap of the system in the thermodynamic limit. This can
be done with the DMRG method by targeting several states
and measuring their magnetization properties in the bulk and
at the ends. Then, we compute numerically the gap �Fig. 2�
and we establish the existence of a critical line in the quan-
tum phase diagram of the model. A numerical fit of this

FIG. 1. Pictorial representation of the quantum Hamiltonian
�Eq. �1��. The geometry of the lattice is a two-leg ladder. Each solid
dot is a spin S= 1

2 . In the horizontal direction �legs�, we picture the
bond alternation with strong links J�1+�� and weak links J�1−��.
In the vertical direction �rungs�, the system is arranged in the form
of a columnar dimerization: strong links are parallel to one another
and similarly for weak links in the lattice.
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critical curve is also given. In Sec. IV, we determine the
structure of the phase diagram by identifying the type of
gapped phases occurring at each side of the critical line
found in the previous section. They correspond to Haldane
and dimer phases. They are identified by measuring the
string order parameter and the dimerization parameter with
the DMRG method. We complete our study of these phases
measuring different observables. Section V is devoted to
conclusions.

II. MODEL

Competing ferromagnetic versus antiferromagnetic spin
interactions may give rise to critical phases if they are ap-
propriately arranged in certain quasi-one-dimensional lat-
tices. One emblematic example of this phenomenon is a lat-
tice of quantum spins with the shape of a two-leg ladder such
that there are antiferromagnetic couplings along the legs and
ferromagnetic interactions along the rungs connecting both
legs. In addition, the antiferromagnetic couplings are bond
alternating in a columnar fashion. Dimerization interactions
in the Hamiltonian are also known as staggered interactions.
This configuration is shown in Fig. 1. More precisely, this
configuration of Heisenberg-like interactions is associated
with the following quantum Hamiltonian:

H = J �
�=1,2

�
i=1

L−1

�1 − �− 1�i��Si��� · Si+1��� + J��
i=1

L

Si�1� · Si�2� ,

�1�

where Si��� are quantum spin S= 1
2 operators located at site i

of the leg � and J�0, J��0, �� �−1,1� are the antiferro-
magnetic, ferromagnetic, and staggering couplings, respec-
tively, as mentioned above.

Notice that several known regimes can be reached by tun-
ing the coupling constants toward particular values. In the
weak coupling limit, making �J� /J � �1, we end up with a
system consisting of two effectively decoupled S=1 /2 bond
alternated Heisenberg chain �BAHC�, which are known to be

gapped for every value of the dimerization parameter �,13

except for the point �=0. In the strong coupling limit, mak-
ing �J� /J � �1,J��0, the system can be effectively described
by an S=1 spin chain with bond alternation, which is pre-
dicted to be gapped for all values of � except for a critical
point at a nonzero value �c.

14 These predictions are based on
an approximate mapping onto the O�3� � model15 at topo-
logical angle �=2�S�1−��. This yields a critical value of
�c= 1

2 when �=� and similarly another symmetric critical
value at �c=− 1

2 . Thus, we shall always concentrate in the
region �	0, due to the symmetry �↔−� in the Hamiltonian
�Eq. �1��. This nonlinear sigma model �NL�M� prediction
misses the correct location of the critical point due to the
approximations involved in that mapping. The exact location
of this point has been widely studied16 and results slightly
varied depending on the approach; however, modern studies
place it at �c=0.259,17,18 also compatible with Fig. 5 �lower�,
which gives �c=0.2590±0.0001 for a chain of 500 sites.
These studies also conclude that the region �� � ��c corre-
sponds to a Haldane phase, while for �� � ��c, we move to a
dimer phase. The emergence of a dimerized S=1 spin chain
in the strong coupling limit can be explained by noting that
as the rung coupling is ferromagnetic and strong J�
�0, �J� � �J, the two spins S= 1

2 in each rung find energeti-
cally favorable to form a spin triplet.

For generic values of the coupling constants in the Hamil-
tonian �Eq. �1��, this model has been the subject of a series
of conjectures based on exact diagonalization numerical
studies19 in the absence of dimerization �=0 and analytical
studies using bosonization and NL�M mapping20 in the pres-
ence of dimerization ��0. Those numerical methods only
allowed to reach ladder lengths typical of L=6 or so, which
prevents from reaching any definitive conclusion on the bulk
properties of the system in the thermodynamic limit. As for
the analytical studies, they conjectured the existence of a
possible critical region, but due to the nature of the methods,
it is not possible to give its location in terms of the original
coupling constants in the model Hamiltonian �Eq. �1��.

III. CRITICAL REGION

According to the previous section, we have shown that
there are strong indications for the existence of a critical
curve in two limiting regimes, namely, strong and weak cou-
plings of model �1�. In this regard, one of the main issues in
this model is whether it exhibits a critical line in the quantum
phase diagram of J� /J vs � or not. In this section, we address
this problem using the finite DMRG algorithm and find that
a critical line indeed exists in the region 0���1 quantita-
tively different from that predicted by the NL�M.

The performance of the finite DMRG algorithm is char-
acterized by the following parameters: the number of states
m retained in the truncation process of the RG method, the
weight of the discarded states wm which is a measure of the
DMRG error, the number of sweeps ns or iterations of the
method after the initial warm-up process, and the tolerance 

of the target state energy which controls the average number
of iterations that will need the diagonalization algorithm
�Lanczos in our case� to compute the target state. We shall
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FIG. 2. Gap �21 computed on an L=2�140 ladder for different
values of the parameter J� /J. Each minimum in the gap belongs to
the critical line.
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provide values of these parameters in our numerical compu-
tations below.

Before applying the finite-size DMRG method, two im-
portant remarks are in order.

�i� As we shall always work with a fixed value of L, the
length of the lattice, the gap ��J� /J ,�� is always finite and
only in the thermodynamic limit L→
 it may vanish for
certain values of J� /J and �, which define the critical line we
are searching for. Thus, the signature of a gap in ��J� /J ,��
for fixed J� /J and varying � will show up as a minimum in
the dimerization strength parameter �. Upon increasing the
value of L, we shall obtain more robust estimations of the
critical value �c�J� /J� from the minima �min�L�. In Fig. 3
�Up�, we show several curves of the gap corresponding to
different sizes of the system. We can observe, as explained
before, that the gap is nonvanishing at the minimum but it
gets lower as we let L increase and it will eventually vanish
in the thermodynamic limit.

�ii� The physics of this two-leg ladder �Eq. �1�� is richer
when the lattice has open boundary conditions. Moreover,

the numerical performance of the DMRG method is also bet-
ter under these conditions. However, open boundary condi-
tions introduce additional degeneracies of the ground state
compared to periodic boundary conditions, which force us to
be careful in order to identify the gap ��J� /J ,�� we are after.

In particular, using open boundary conditions we have
found that the ground state always has z-spin projection
Stot

z =0, and the first excited state lies within the sector with
total z-spin angular momentum Stot

z =1. Moreover, in the
Haldane phase, both states converge to the same state as we
increase the size of the system and so the ground state below
the critical point is nearly degenerate while it is not above it,
in the dimer phase. Henceforth, a finite gap in the Haldane
phase only appears in the thermodynamic limit if we con-
sider the next excited state above the first one, which has
total z-spin projection Stot

z =2. The question now is whether to
compute the gap as the difference of energy from the second
excited state to the ground state or to the first excited state.
For our purposes and considering the reasons explained next,
we will use the gap �21ªE0�Stot

z =2�−E0�Stot
z =1�.

The reason for considering the gap �21 can be justified as
follows: in the complete dimerized limit �=1, it is clear that
the difference in energy between two arbitrary consecutive
levels is the same and corresponds exactly to the energy
needed to promote one singlet bond to a triplet. Therefore, in
this regime, �21 shall be equivalent to �10, which is, in fact,
the proper gap of the spectrum since as we said before, in the
dimer region, the ground state is not degenerated. The argu-
ment for the other limit �=0 makes use of the properties of
Haldane phases, where it is known to appear as a nonbulk
excitation21 due to the existence of virtual spins at the end of
the chain. Our measures suggest that the first excited state
with Stot

z =1, in fact, consists on a nonbulk excitation local-
ized in the ends contributing Snb

z =1 and the bulk itself with
the same nature than the ground state contributing Sb

z =0 to
the total magnetization. As regards the second excited state
with Stot

z =2, it also has the same nonbulk excitation contrib-
uting again Snb

z =1, but now the bulk is also excited and con-
tributes to the total magnetization Sb

z =1. According to this
picture, the gap �10 corresponding to periodic boundary con-
ditions has the same nature than the gap �21 with open
boundary conditions since we are subtracting in the latter
case the energy corresponding to the nonbulk excitations
present in both states. In Fig. 3 �Down� the relation of the
several possible gaps of the system is explicitly shown. From
that figure, we can clearly observe the equivalence �21
��20 in the Haldane phase and �21��10 in the dimer one.
Moreover, �20�2�10 above the critical point and it is not
henceforth a good quantity to measure the crossover between
both phases, while �21 actually measures the correct gap in
both phases.

In Fig. 4 we show rigorous comparisons of the magneti-
zation and density of energy in the first and second excited
states well into the Haldane phase with �=0. Computations
have been done on an L=2�96 ladder at the point �J� /J
=−2.5,�=0�. On the up part of the figure, we plot the mean
magnetization �Si

z	 in the states with Stot
z =1 and Stot

z =2, com-
puted in one leg of the ladder, since due to the symmetry of
the Hamiltonian, the magnetization is the same in both legs.
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FIG. 3. Up: computation performed with an arbitrary value
�J� /J�=20. The effect of considering finite sizes makes the mini-
mum of the gap not to be strictly zero; however, as we take larger
sizes of the system, the tendency is to lower it to zero as expected.
Down: computations on an L=2�96 ladder with an arbitrary value
�J� /J�=1.250. In the phase below the critical point, �21��20, while
the phase above the critical point holds �21��10. Thereby, the gap
�21 interpolates then correctly both behaviors.
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As a check of the accuracy of our computations, we observed
that the results in both legs are the same up to the fifth or
sixth decimal digit. In the inset of that figure, we show the
cumulative sum of the magnetization over the whole length
of the ladder and the states with Stot

z =1 and Stot
z =2. The order

of the sites in the x axis corresponds in this case to the path
used to traverse the ladder in a DMRG sweep. In the down
part of this figure, we plot the difference of energy density of
the excited states with Stot

z =1 and Stot
z =2: �S�,iS��,i�	Sz=2

− �S�,iS��,i�	Sz=1. The difference has been divided into three
contributions: the contribution labelled with even stands for
links involving sites in the same leg and the even sublattice
���=� , i=2k , i�=2k+1�, odd involves links joining sites in
the same leg and the odd sublattice ���=� , i=2k−1, i�=2k�,
and perpendicular denotes links among legs ��=1,��=2, i

=k , i�=k�. The cumulative sum of the difference of the vari-
ous contributions, measured in the right axis scale, is also
shown. Interestingly enough, we can observe the magnetiza-
tion pattern at the ends being almost identical in the states
with Stot

z =1 and Stot
z =2. The contribution to the z-axis projec-

tion of the spin coming from the ends is equal to 1 in both
cases. Notice also that the difference of the density of energy
between these states is close to zero at the ends, while it
becomes clearly noticeable in the bulk. All these facts
strongly support the picture exposed above of a nonbulk trip-
let excitation with the same nature in both states, which
leaves the bulk of the chain with a neat value of the projec-
tion equal to Sb

z =0 or Sb
z =1 and gives a strong hint on the

equivalence of �10 with periodic boundary conditions and
�21 for open systems.

After this previous analysis to identify the states needed
to target the gap of the system, we present in Fig. 2 some
values of the gap �21 for a ladder consisting of L=2�140
sites, at different regions of the parameter space. Computa-
tions have been performed retaining m=300 states of the
density matrix and the grid used to explore the phase dia-
gram is �� �0,0.4�, and −J� /J= 
0.00,0.20,0.40,0.60,
1.25,2.50,3.00,3.50,4.00,4.50,5.00,6.00,7.00,10.00,
15.00,20.00�. The existence of a set of minima in the func-
tion �21�� ,J� /J� is clear in this graph, although they shall
become more distinguishable as we move to higher values of
�J� /J�.

As an instance of the accuracy of our results, we point out
that a systematic examination of the error in each of the
truncations of our DMRG computations reveals that the
highest values in the whole process are of the order of wm
�10−8, and mostly they are of order wm�10−10. To obtain a
suitable accuracy in the results, we have set the number of
sweeps ns=2 and the tolerance to 10−9. To compute the criti-
cal value �c�J� /J� that minimizes the gap with enough pre-
cision, it becomes necessary to use large amount of data. In
this regard, we have used interpolated values resulting from
the DMRG computations.

Now, we can detect the presence of a critical line in the
quantum phase diagram separating gapped phases. In Fig. 5,
we plot the critical region consisting of the coordinates for
each minimum in Fig. 2. In earlier studies,16 we placed the
critical point of the S=1 BAHC at �c=0.259. The curve
shown in Fig. 5 shows a vertical asymptote that is still a bit
off from this limiting value corresponding to the region
�J� /J��1, but this is simply because we have chosen a value
of J� /J=−20, which is still not big enough and also due to
finite-size effects on the two-leg ladder. In the lower plots of
Fig. 5, we address these possibilities by comparing our lad-
der in the strong ferromagnetic limit with a pure S=1 BAHC
with different sizes. Two parameters are important in this
discussion, namely, the value �c�J� /J� that minimizes the
gap and the value of the gap itself at this point �21��c�. As
we can observe in Fig. 2, the value of �21��c� does not
strongly depend on the particular choice of the coupling con-
stant ratio J� /J while it is definitely influenced by the size of
the system. In Fig. 5 �lower�, it is shown that the shift of �c
computed for two S=1 BAHCs with different sizes, but both
still large enough, is less noticeable than the difference in
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their value of �21��c�. The similarity of this magnitude in the
case of the ladder and the corresponding BAHC is clear, as
well as the shift in the value of �c. All these make us con-
clude that in order to attain a better convergence with the S
=1 BAHC and a better estimate of the critical asymptote
�c=0.259, we shall increase the strength of the ferromagnetic
coupling rather than the size of the system.

Since we have large enough data from the analysis of the
critical line, we can also make a numerical estimation of the
criticality curve. In Fig. 6, we present a fit of the critical
curve in the region close to �c�0.259. We choose as trial
function for this fitting an inverse power law with some co-
efficients and exponents that are fixed by our numerics,
namely,

J�/J =
C

�0.259 − ��k . �2�

The fit yields the following estimations for the values
of the parameters C and k that best fit the data:
C=−0.16±0.01 and k=1.25±0.01; for simplicity, the fixed
value of �c=0.259 is taken.

IV. HALDANE AND DIMER PHASES

Once we have established the existence of a critical line in
the quantum phase diagram of model �1�, it is natural to
wonder about the two gapped phases that this line separates,
more specifically, whether they are different or not and their
identification as quantum phases in the framework of
strongly correlated systems.

The possible nature of those phases can be guessed from
the strong ferromagnetic limit �J� /J��1 of the ladder, effec-

0.0

0.2

0.4

0.0 0.1 0.2 0.3 0.4 0.5 0.6

|S
O

P
|

dimer strength γ

J’/J = 0.00
J’/J = -20.00

0.00

0.20

0.40

0.0 0.1 0.2 0.3 0.4

S=1 BAHC, L=350
S=1 BAHC, L= 90

FIG. 7. String order parameter computed for a ladder consisting
of L=2�96 sites and �J� /J�= 
0,0.2,0.4,0.6,1 ,1.25,2.5,3 ,3.5,
4 ,4.5,5 ,6 ,7 ,10,15,20�. The SOP has been computed forming the
triplets with adjacent S=1 /2 spins located in different legs. The
value of this parameter is nonvanishing in the Haldane phase and
null in the dimer one. Inset: SOP computed for an S=1 BAHC. As
�J� /J� increases, we can observe how the ladder converges to the
BAHC.

-20

-16

-12

-8

-4

0

0.240.200.160.120.080.040.00

J
’/

J

dimer strength γ

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4

g
a

p
∆ 2

1

dimer strength γ

L=140 S=1 BAHC
L=500 S=1 BAHC
L=2x140, J’/J=-20

FIG. 5. Top: critical region of a ladder of size L=2�140. The
points of the critical line correspond to the coordinates that mini-
mize �21�� ,J� /J�. The solid line is only a guide for the eyes. Bot-
tom: the value of the minimum gap for the ladder with L=2�140
sites is very similar to the corresponding S=1 BAHC with L=140
but the value of �c that minimizes this gap is still a bit shifted,
which constitutes a signal that J� /J=−20 is still a low value to
accurately mimic the limit BAHC behavior. The computations for
the L=500 BAHCs were performed storing m=450 eigenvectors of
the density matrix.

-22

-18

-14

-10

-6

-2

0.160 0.176 0.192 0.208 0.224 0.240

J
’/

J

dimer strength γ

DMRG values

f(x)=C*(0.259-x)
k
, C=-0.16, k=-1.25

FIG. 6. The region of the critical line in the limit �J� /J��1 fits
very well to a potential function of the form J� /J=C�0.259−�c�k,
with C=−0.16±0.01 and k=−1.25±0.01.

DENSITY-MATRIX RENORMALIZATION GROUP STUDY OF… PHYSICAL REVIEW B 76, 184428 �2007�

184428-5



tively leading to the S=1 BAHC. The phases of this chain
are known to be the massive Haldane phase, separated by a
critical point from the massive dimer phase. To test the na-
ture of each phase, we will make use of the order parameter
in expression �3�. Indeed, the Haldane phase is known to
exhibit a particular hidden order that can be detected by a
nonvanishing value of the order parameter, while the dimer
one corresponds to a different configuration in which the
order parameter is null.22,23 The definition of this operator,
denoted originally as the string order parameter �SOP�, for a
spin-1 chain is as follows:

Ostr = lim
�i−j�→



Si
z �
k=i+1

j−1

ei�Sk
z
Sj

z� . �3�

This operator acting on our ground state measures how far
it is from a spin liquid Néel state consisting of a sequence of
S=1 spins such that every spin with projection Si

z= ±1 is
followed by Si+k

z = �1 and Si+k�
z =0 for every 0�k��k.

When we deal with S=1 /2 particles, to compute the SOP, we
have to define the pairs of particles which are most likely to

couple to give a triplet and compute the SOP along the path
connecting them. In our case, the existence of a ferromag-
netic coupling clearly suggests that the triplets will result via
this coupling. It is also worth recalling that the SOP is a
parameter suited to work with translational invariant sys-
tems. In order to correctly estimate the SOP in open systems,

FIG. 8. A picture of the path used to compute the string order
parameter in the two-leg ladder with columnar bond alternation.
The ellipses mean that the sites within them are forming a triplet.
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of L=2�96 sites. Since we are explicitly introducing some stag-
gering in the Hamiltonian �Eq. �1��, the dimerization parameter is
nonvanishing even in the Haldane phase. However, the shape of the
graphs seem to have an inflexion at the critical point. The graph
corresponding to the S=1 BAHC has been scaled down by a factor
1 /2 due to the effective coupling constant of the ladder, which is
known to be half the constant corresponding to the BAHC.
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we must restrict the computation to a region shorter than the
whole length of the chain where end effects are negligible
and only bulk physics is relevant. In Fig. 7, we show the
SOP computed traversing the path shown in Fig. 8. We can
observe a nonvanishing SOP below the critical point while it

decays to zero above it. The inset shows the SOP computed
for a S=1 BAHC. The resemblance between both systems as
we make the ferromagnetic coupling J� stronger is apparent,
as expected. For comparison, to check that the sizes used in
our computations are large enough to accurately describe the

0.07950.07950.07950.0795

0.08050.08050.08050.0805

0.08150.08150.08150.0815

0.08250.08250.08250.0825

0.08350.08350.08350.0835

969696961111

C
o

rr
e
la

ti
o

n
C

o
rr

e
la

ti
o

n
C

o
rr

e
la

ti
o

n
C

o
rr

e
la

ti
o

n

position in the chainposition in the chainposition in the chainposition in the chain

γ=0.00γ=0.00γ=0.00γ=0.00

γ=0.36γ=0.36γ=0.36γ=0.36

γ=0.40γ=0.40γ=0.40γ=0.40

8.30x108.30x108.30x108.30x10-2-2-2-27.95x107.95x107.95x107.95x10-2-2-2-2

position in the chainposition in the chainposition in the chainposition in the chain

d
im

e
r

s
tr

e
n

g
th

d
im

e
r

s
tr

e
n

g
th

d
im

e
r

s
tr

e
n

g
th

d
im

e
r

s
tr

e
n

g
th

γγγγ

969696961111

0.000.000.000.00

0.100.100.100.10

0.200.200.200.20

0.300.300.300.30

0.400.400.400.40

FIG. 11. �Color online� Correlation �Si
z�1�Si

z�2�	 in the first lying excited state in the sector with Stot
z =1 of an L=2�96 ladder and

J� /J=−20.

0.07600.07600.07600.0760

0.07800.07800.07800.0780

0.08000.08000.08000.0800

0.08200.08200.08200.0820

0.08400.08400.08400.0840

969696961111

C
o

rr
e

la
ti

o
n

C
o

rr
e

la
ti

o
n

C
o

rr
e

la
ti

o
n

C
o

rr
e

la
ti

o
n

position in the chainposition in the chainposition in the chainposition in the chain

γ=0.00γ=0.00γ=0.00γ=0.00

γ=0.36γ=0.36γ=0.36γ=0.36

γ=0.40γ=0.40γ=0.40γ=0.40

8.30x108.30x108.30x108.30x10-2-2-2-27.60x107.60x107.60x107.60x10-2-2-2-2

position in the chainposition in the chainposition in the chainposition in the chain

d
im

e
r

s
tr

e
n

g
th

d
im

e
r

s
tr

e
n

g
th

d
im

e
r

s
tr

e
n

g
th

d
im

e
r

s
tr

e
n

g
th

γγγγ

969696961111

0.000.000.000.00

0.100.100.100.10

0.200.200.200.20

0.300.300.300.30

0.400.400.400.40

FIG. 12. �Color online� Correlation �Si
z�1�Si

z�2�	 in the first lying excited state in the sector with Stot
z =2 of a ladder consisting of L=2

�96 sites and J� /J=−20.

DENSITY-MATRIX RENORMALIZATION GROUP STUDY OF… PHYSICAL REVIEW B 76, 184428 �2007�

184428-7



thermodynamic limit, we draw our attention to the values of
the SOP computed for �J� /J=−20, �=0� equal to 0.367 and
�J� /J=−20, �=0.4� of the order of 10−6. The corresponding
values of an S=1 BAHC in the thermodynamic limit are
0.374 and zero. The fact that the string order parameter can
be computed up to very high precision using relatively small
systems has been widely checked in different systems, see
for example Ref. 24.

From the considerations above and noting that the phases
of the strong coupling limit ��J� /J��1� are continuously
connected with the rest of the parameter space, we can con-
clude therefore that the phase below the critical line in the
numerical phase diagram of Fig. 2 is a gapped Haldane
phase, while it is a gapped dimer phase in the region from �
belonging to the critical line to �=1.

On the other hand, the structure of a dimer phase is such
that the full translational invariance symmetry of the system
is broken by one unit cell of the lattice. We want to investi-
gate the variation of the dimerization inside the ladder as we
explicitly increase the dimerization parameter �. On this pur-
pose, we will use the parameter

Di ª �
�=1,2

�Si−1��� · Si���	 − �Si��� · Si+1���	 . �4�

The subindex i is necessary since open systems are intrin-
sically not translationally invariant. In Fig. 9 the dimeriza-
tion parameter measured in the middle of the ladder is plot-
ted. In this model, since the staggering is explicitly
introduced in the Hamiltonian, the parameter defined above
only vanishes at �=0 and cannot be considered an order
parameter to distinguish apart both phases as happens in
other models like Majumdar-Ghosh. Nonetheless, our plots
clearly exhibit different behaviors related to the convexity of
the parameter at each phase. This observation indicates that
an accurate estimation of the point of inflexion in the dimer-
ization parameter could be used as a measure of the critical
point between both phases.

We have also performed some measurements in the ladder
to give more hints to understand the nature of both phases.
Figures 10–12 show the correlation �Si�1�Si�2�	 between
sites in the perpendicular rungs. The pattern of the correla-
tion can be understood by noticing that the correlation be-
tween two isolated S=1 /2 spins coupled to give a singlet is
�S1S2	 /3=−1 /4, while it equals 1 /12 if the spins form a
triplet. From these values, we observe that the perpendicular
rungs in the ground state form triplets and the distribution is
uniform all along the ladder. In the excited states, however,
the triplet strength of some rungs is weakened, signaling the
presence of magnonlike excitations, also apparent in Fig. 13.
The nature of the nonbulk excitation present in the Haldane
phase is not magnonlike and that explains the different num-
ber of kinks in the Haldane and dimer phases in Figs. 11 and
12.

V. CONCLUSIONS

We have determined the existence of a critical line in the
quantum phase diagram of a two-leg ladder with columnar
dimerization and ferromagnetic vs antiferromagnetic cou-

plings. In this study, we use the finite-size system DMRG
method, which allows us to give the location of that critical
curve. Moreover, we have clearly identified the two phases
separated by the critical line to be a Haldane phase and a
dimer phase. This identification is carried out by measuring
the string order parameter and the dimerization order param-
eter in the whole range of values of the coupling constant
ratio J� /J and dimerization parameter �.

As a by-product, we have introduced a systematic analy-
sis of the spins at the borders of the open two-leg ladder
lattice. Our model is based on S= 1

2 spins, then these end-
chain spins exhibit physical effects of their own. They are
real spins unlike the virtual spins appearing in integer spin
chains or ladders. Their physics is specially interesting when
the system size is finite, and even during the process of
reaching the thermodynamic limit they produce nontrivial
finite-size effects along the way. These facts make the tech-
nical analysis of the opening or closing of a gap in the low-
lying spectrum of a two-leg ladder with open boundary con-
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FIG. 13. �Color online� Magnetization curves in an L=2�96
ladder and J� /J=−20 for the lowest lying states in the sectors Stot

z
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z =2 �bottom�. The curves are separated in the dif-

ferent sublattices consisting of the sites occupying odd or even po-
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ends for �=0.0 well into the Haldane phase, while it vanishes in the
dimer phase with �=0.4.
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ditions difficult. We have solved these difficulties by
analyzing the ground state and low-lying energy excitations
with respect to their bulk and boundary properties such as
local magnetization and the like. With this information, it is
possible to identify which states contribute to the gap in
thermodynamic limit. These low-lying states have a definite
total spin Sz and they can be targeted with the DMRG
method. In this fashion, we have been able to identify the
gapped or gapless behavior of the model within the frame-
work of the DMRG with open boundary conditions.
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