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We investigate the statistical properties of local Lyapunov exponents which characterize magnon localization
in the one-dimensional Heisenberg-Mattis spin glass �HMSG� at zero temperature by means of a connection to
a suitable version of the Fokker-Planck �FP� equation. We consider the local Lyapunov exponents �LLEs�, in
particular, the case of instantaneous LLE. We establish a connection between the transfer-matrix recursion
relation for the problem and an FP equation governing the evolution of the probability distribution of the
instantaneous LLE. The closed-form �stationary� solutions to the FP equation are in excellent accord with
numerical simulations for both the unmagnetized and magnetized versions of the HMSG. Scaling properties for
nonstationary conditions are derived from the FP equation in a special limit �in which diffusive effects tend to
vanish�, and also shown to provide a close description to the corresponding numerical-simulation data.
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I. INTRODUCTION

The analytic treatment of quenched disordered systems in
condensed-matter physics invokes many concepts from sta-
tistical theory. Among these, we shall be concerned in this
paper with the connection between the probability distribu-
tion of Lyapunov characteristic exponents for the �equilib-
rium� problem of low-lying magnetic excitations in spin
glasses, and the Fokker-Planck �FP� equation,1 which is a
key element in the description of nonequilibrium stochastic
processes.

Links between an FP equation and stationary distributions
of physical quantities in a transfer-matrix �TM� description
have been established, usually in the context of calculating
the probability distribution functions �PDFs� of electronic
conductance in one-dimensional �1D� or quasi-1D noninter-
acting electronic systems with disorder �Anderson
localization�.2–9 Specifically, one considers the distribution of
the TM itself �or, equivalently, its transmission eigenvalues�
between the left and right extremes of a wire of length L
�1 lattice spacings. The FP equation is set up to account for
the infinitesimal changes in the TM, caused by a small length
variation �L. The quantities whose PDF is calculated are,
therefore, aggregate in the sense that they explicitly incorpo-
rate all contributions for the TM, say, from x=0 to L, i.e.,
they represent global Lyapunov exponents. This is in con-
trast with the approach we take here; as shown below, we
shall concentrate on the PDF of local Lyapunov exponents,
which appear not to have been as thoroughly exploited as
their global counterparts �at least in the condensed-matter
context of localization and similar problems�.

As a model system to apply the ideas developed here,
we consider spin waves �magnons� in a simplified spin
glass model, the so-called Heisenberg-Mattis spin glass
�HMSG�.10 In one dimension, the dynamics of HMSGs turns
out to exhibit many nontrivial features,11–18 including dy-
namic exponents,15,16,18 different from the standard hydrody-
namic predictions.19

In one dimension, all eigenstates are localized for any
amount of disorder, though as energy �→0, the localization

length ���� diverges continuously. This, in turn, suggests the
applicability of scaling concepts in the low-frequency, long-
wavelength limit.

Operationally, one can obtain ���� in one-dimensional
systems by using a TM approach and extract the smallest
Lyapunov exponent �whose inverse corresponds to the larg-
est localization length� which arises from repeated iteration
of the TM. This has been done for HMSG chains,20–22 and
can be extended to HMSG in d=2 and 3.18

Lyapunov exponents are well defined quantities in the
sense that for N�1 iterations of the TM, the width of the
distribution of their corresponding estimates shrinks to zero23

�as N−1/2 in many cases of interest, as a consequence of the
central limit theorem�. However, it has been shown24–28 that
the so-called local Lyapunov exponents �LLE� �to be defined
more accurately below� exhibit nontrivial distributions
whose width remains finite even as N becomes fairly large
�compared, e.g., with the localization length�. Furthermore,
LLEs may provide a wealth of information specific to the
dynamics of the associated physical system, which does not
manifest itself in the aggregated, �-function-like behavior of
their global counterparts.

In this paper, we investigate the statistical properties of
local Lyapunov exponents in the 1D HMSG at zero tempera-
ture by means of a connection to a suitable version of the FP
equation.

In Sec. II, we recall pertinent aspects of the HMSG, spe-
cializing to one dimension. In Sec. III, we first consider the
aggregate effects which characterize the �global� Lyapunov
exponents for the system under study; then we investigate
LLE, in particular the case of instantaneous LLE. We estab-
lish a connection between the TM-iterated recursion relation
for the problem and a suitable FP equation governing the
evolution of the probability distribution of the instantaneous
LLE. We show that the closed-form �stationary� solutions to
the FP equation are in excellent accord with numerical simu-
lations for both the unmagnetized and magnetized versions
of the 1D HMSG. Scaling properties for nonstationary con-
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ditions are derived from the FP equation in a special limit �in
which diffusive effects tend to vanish� and also shown to
provide a close description to the corresponding numerical-
simulation data. Finally, in Sec. IV, concluding remarks are
made.

II. HEISENBERG-MATTIS SPIN GLASSES: SCALING IN
ONE DIMENSION

We consider Heisenberg spins on sites of a hypercubic
lattice, with nearest-neighbor couplings

H = − �
�i,j�

JijSi · S j . �1�

The bonds are randomly taken from a quenched, binary
probability distribution,

P�Jij� = p��Jij − J0� + �1 − p���Jij + J0� . �2�

Here, we shall mainly consider p=1/2 �unmagnetized spin
glass�.

The Mattis model ascribes disorder to sites rather than
bonds �Jij→J0�i� j�, so that the Hamiltonian reads

HM = − J0�
�i,j�

�i� jSi · S j , �3�

where �i= +1,−1 with probability p, �1− p�. Then, p=1/2 is
the Mattis spin glass, while p�1/2 corresponds to a magne-
tized Mattis model. This way, the overall energy is mini-
mized by making Si

z=�iS, which constitutes a �classical�
ground state of the Hamiltonian �Eq. �3��. Consideration of
the spin-wave equations of motion �see, e.g., Refs. 15, 16,
and 18� gives, with �=1,

i�idui/dt = �
j

J0�ui − uj� . �4�

where the ui are Mattis-transformed local �on-site� spin-wave
amplitudes, and the sum is over sites j which are nearest
neighbors of i. For the eigenmodes with frequency � �in
units of the exchange constant J0�, Eq. �4� leads to

��iui = �
j

�ui − uj� . �5�

The relationship of frequency to wave number k �in the con-
text of localization, this corresponds to �−1� at low energies
is characterized by the dynamic exponent z,

� � kz. �6�

For p=1/2 in one dimension, it was predicted
analytically15,16 and verified by numerical calculations20–22

that z=3/2. Still in one dimension, but at general p, Eq. �5�
becomes

�2 − �i��ui = ui−1 + ui+1. �7�

A TM approach29,30 can be formulated, giving15,16,20,21

�ui+1

ui
	 = �2 − �i� − 1

1 0
	� ui

ui−1
	 
 Ti���� ui

ui−1
	 . �8�

The procedure for calculating Lyapunov exponents in this
case is the same as that used for Anderson localization

problems.29 Indeed, in both cases the TM is symplectic, and
one can use Oseledec’s theorem and dynamic filtration23 to
extract the smallest Lyapunov exponent, whose inverse is the
largest localization length.

III. LYAPUNOV EXPONENTS

A. Aggregate effects: The N\� limit

The Lyapunov exponent emerging from iteration of Eq.
�8� is given by

���� = lim
N→	

1

N
ln���

i=1

N

Ti���	v0�� , �9�

where

v0� 
 �u1

u0
	

is an arbitrary initial vector of unit modulus.
The LLE, ��N ,��, is defined24–28 as the finite-N version

of Eq. �9�. For the sake of completeness, before going further
we exhibit the evolution of the statistics of ��N ,�� �hereafter
referred to as �N for short� against increasing N. We consider
the TM given in Eq. �8�, with p=1/2 and �=0.015 �fixed�,
for which case the existing numerical results18,20,21 give �
�57 lattice spacings, i.e., ��0.0175.

In Fig. 1, one sees that the PDF, P��N�, of �N takes on an
approximately Gaussian shape only for N
�. Figure 2�a�
provides a quantitative check on the increasing narrowness
of the PDF for N�� and on the convergence process ��N�
→�. One can infer the accuracy of the single-sample esti-
mate corresponding to N=107 �denoted by an arrow pointing
to the vertical axis in Fig. 2�a�� by extrapolating the N de-
pendence of the width �N of the PDF against N�51 200
�shown in the main diagram�. The result is �=0.017 52�4�:
hence, the associated error bar would be invisible on the
scale of the figure.

The simplest quantitative indicator of whether the PDF
actually turns Gaussian with increasing N �in the process of

FIG. 1. �Color online� Normalized histograms of occurrence of
LLE �N for p=1/2 �spin glass� and for several values of N. For
each histogram, Ns=105 samples were taken. Here, �=0.015.
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becoming a � function, characteristic of the self-averaging
property just demonstrated� is its skewness,31 SN
����N

− ��N�� /�N�3�. One must bear in mind that because the num-
ber of samples Ns is finite �incomplete sampling�, SN itself
will have a distribution. While this is true also for ��N� and
�N, the effects on SN are much more prominent since it is the
ratio of two quantities which, in the present case, both vanish
as N ,Ns→	. Indeed, we have checked that for the data
shown in Fig. 2�a�, corresponding to Ns=105, estimates of
��N� and �N from distinct sequences of pseudorandom num-
bers usually differ only by a few parts in 104. On the other
hand, it is known31 that for an incompletely sampled Gauss-
ian distribution, the width of its own skewness distribution is
approximately �6/Ns ��0.0078 here�. Since our own large-N
PDFs are, to zeroth order, Gaussian, we shall use this value
as a lower bound to the uncertainty of our estimates for SN.
The results are displayed in Fig. 2�b�. Given the trend exhib-
ited by the calculated SN for the three largest values of N
used �especially in contrast with the smaller-N region�, it
appears safe to conclude that the skewness is in fact ap-
proaching zero, within the pertinent error bars. Thus, the
overall evidence is compatible with a limiting Gaussian form
for the PDF of the LLEs as N→	.

B. Local effects and the Fokker-Planck equation

We now turn to the opposite limit, which is our main
concern here. Instead of considering the aggregate effect of
contributions to �N, we shall analyze the PDFs of such con-
tributions separately.

The case N=1 of Eq. �9� is often denoted as “instanta-
neous” LLE.28 Here, we shall use the term in the following
way. The instantaneous LLE at i=M, to be denoted by s�M�,

is the local contribution to the LLE, given at i=M, of the
multiplying process denoted in Eq. �9�. One then has

�N =
1

N
�
M=1

N

s�M� . �10�

For a one-dimensional mapping, the instantaneous LLE, as
defined above, would be simply the local stretch factor.28 In
the present case, where even in one dimension the TM is 2
2, it is known that the eigenvectors �Lyapunov basis� of a
product of random matrices are only local properties, as op-
posed to the corresponding eigenvalues �i.e., the Lyapunov
spectrum� which are global ones.23 Thus, one has a rotation
of the local Lyapunov basis as the TM is repeatedly iterated.
As the TM is symplectic, in one dimension this means that
the �two� local eigenvalues are inverse of each other, so s�M�
can be extracted by suitable analysis of the growth factor
associated with a given member of the Lyapunov basis.

The connection with the FP equation proceeds as follows.
One gets, by taking the continuum limit of Eq. �7�,

�����u��� =
�2u���

��2 , �11�

where � stands for position along the axis. One sees that u���
is the result of accumulated contributions from the instanta-
neous Lyapunov exponent s����, 0�����,

u��� = exp��
0

�

s����d��	 . �12�

Therefore, the right-hand side of Eq. �11� turns into

�2u���
��2 = �s2��� +

�s���
��

	u��� . �13�

Equation �11� then yields the following equation for the sto-
chastic variable s���:

s2��� +
�s���
��

= ����� . �14�

In general case, � is a binary-distributed variable with mean
M1=2p−1 and variance M2=4p�1− p�. The FP equation
corresponding to the evolution of the probability distribution
of s is, with � naturally assuming the role of timelike
variable,1

�P�s,��
��

=
�

�s
��s2 + �M1�P�s,��� +

1

2

�2

�s2 �M2�2P�s,��� .

�15�

C. Unmagnetized Heisenberg-Mattis spin glass

In this section, we take the special case of an unmagne-
tized HMSG �p=1/2�. Equation �15� then becomes

�P�s,��
��

=
�

�s
�s2P�s,��� +

1

2

�2

�s2 ��2P�s,��� . �16�

Assuming stationarity, P�s ,��→P�s� �which corresponds to
the regime �
��, the equation to solve is

FIG. 2. �Color online� Estimates from the statistics of LLE �N

data for N=2k100, k=1, . . . ,9, against N−1/2. For each N, Ns

=105 samples were taken. Here, p=1/2 and �=0.015. �a� Mean
values ��N� and rms deviations �N. Arrow on vertical axis indicates
estimate from a single sample, with N=107. Full lines are, respec-
tively, quadratic ���N�� and linear ��N� fits of data; the latter taking
only N�800 into account. �b� Skewness SN. Error bars correspond
to incompletely sampled Gaussian distributions with Ns=105 �see
text�.
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�

�s
�s2P�s�� +

1

2

�2

�s2 ��2P�s�� = 0. �17�

Thus, one gets

P�s� = C̃ exp�− 2s3/3�2��
−	

s

exp�2y3/3�2�dy . �18�

It is immediate to see that the 3/2 power, referred to in
connection with Eq. �6�, arises in the scaling variable. Fur-
thermore, it is clear from the derivation of the present results
that they apply only in the scaling regime, i.e., �→0, small
s, �
�.

With �−	
	 dy�−	

y dx exp�x3−y3�
C0�4.8, the normaliza-
tion of Eq. �18� implies

C̃ = C̃��� =
1

�3�2/2�1/3C0
. �19�

The numerical verification of the ideas just presented be-
gins by checking the behavior of the PDFs for s�N� against
varying N. Selected data are shown in Fig. 3. One can see
that for the ranges of N considered in the figure, the overall
shape of the PDFs remains roughly constant, though a slight
narrowing and shifting of the central peak take place as N
increases. This is in contrast with the LLEs exhibited in Fig.
1, for which variation of N in the same range was accompa-
nied by a pronounced change in shape and width of the re-
spective PDFs. For 1�N�13 �not shown in the figure�, the
PDF for s�N� starts nearly flat at N=1 and gradually devel-
ops both the central peak and the small “wings” at the ends
�whose relevance in Fig. 3 is overemphasized by the loga-
rithmic scale on the vertical axis�. The very good superposi-
tion of the N=50 and 200 data in the figure indicates the
predicted trend toward a fixed, N-independent form, which
corresponds to stationarity of the FP equation �see Eq. �17��.
This has been confirmed by examination of numerical PDFs
for 100�N�600. Recalling that the localization length for

�=0.015, as is the case of Fig. 3, is ��57 lattice spacings,
we see that the condition for an N-independent PDF is in-
deed N
�.

We now test whether the form given in Eq. �18� describes
our numerical data. Figure 4 shows that the agreement is
excellent in the region −0.5�s�0.5, which is where scaling
is expected to hold. Note that there are no adjustable param-
eters in the fit, all scale factors being provided by normaliza-
tion and scaling considerations.

In Fig. 5, we test for consistency of scaling among nu-
merical data for different energies �, as suggested by Eq.
�18�. Again, the agreement with predictions is excellent, pro-
vided that the conditions upon which Eq. �18� was derived
are obeyed.

FIG. 3. �Color online� Normalized histograms of occurrence of
instantaneous LLE s�N� for several values of N. For each histo-
gram, Ns=106 samples were taken. Here, p=1/2 and �=0.015.

FIG. 4. �Color online� Squares: normalized histogram of occur-
rence of instantaneous LLE s from Ns=106 samples for N=200, p
=1/2, and �=0.015. Continuous line is the analytical form, Eq.
�18�, normalized and with appropriate scaling of variables �see also
Eq. �19��.

FIG. 5. �Color online� Scaling plots of normalized histograms of
occurrence of instantaneous LLE, as suggested by Eq. �18� for as-
sorted energies. In all cases, p=1/2, Ns=106 samples, and N=200
�so the condition N
���� is always obeyed�.
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D. Magnetized Heisenberg-Mattis spin glass „pÅ 1
2
…

For the magnetized case p�1/2, we return to the general
form of the FP equation �Eq. �15��, whose stationary solution
is given by

P�s� = C̃� exp�− f�s���
−	

s

exp�f�y��dy , �20�

where

f�y� = f�y,�,p� =
1

�2M2
�2y3

3
+ 2�M1y	 . �21�

In analogy with Sec. III C, we first check whether Eq. �20�
gives a faithful description of simulational data for given p
and �. In Fig. 6, the calculated data for p=0.8 and �
=0.015 are shown together with the analytical result from
Eq. �20� for the same values of p and �. Apart from an
overall normalization factor which affects only the vertical
scale, there are no adjustable parameters. Again, the agree-
ment is very good.

In order to emphasize the degree to which the shape and
range of the PDFs are affected by variations in the physical
parameters, Fig. 6 also shows the PDF for the unmagnetized
case at the same energy �=0.015. As p increases from 1/2,
the general trend is toward the reduction of the skewness
�which is �−0.32 at p=1/2, −0.02 at p=0.80, and �in abso-
lute value� �0.01 at p=0.95�. The peak of the distribution,
which is about one standard deviation away from the origin
at p=1/2, approaches s=0 as p approaches unity. This pro-
cess is accompanied by a broadening of the PDF.

We now proceed to framing the preceding observations
within a crossover description. One sees that because f�y�
in Eq. �21� is a polynomial in y for p�1/2, it is not
possible to develop scaling arguments �over the whole range
of the variable s� similar to those invoked for p=1/2,
and graphically depicted in Fig. 5. Nevertheless, analysis

of Eq. �21� shows that the crossover away from unbiased
�p=1/2� behavior is governed by the dimensionless ratio
z
��M1�1/2 / ��2M2�1/3 ����p−1/2� /�1/3�1/2 away from
p→1�. This way, s scales with �2/3 for z�1 and with
� / �p−1/2� for z�1. Analysis of the asymptotic behavior
of P�s�, as given by Eqs. �20� and �21�, shows that, with z
defined as above and v
s�−2/3, one has for the tails of the
distribution,

R�v� �
C

v2 + z2 v � 1, �22�

where R�v�
�2/3P�s� and �for z�1� the normalization con-
stant C�z.

Numerical checks of Eq. �22� against simulational data
must be carried out for suitable ranges of p, �, and s �equiva-
lently, z and v� such that �i� asymptotic behavior has already
set in �i.e., large s and v� and �ii� one is still within the
scaling regime �which implies small s�. Thus, one expects
Eq. �22� to hold only within windows of varying width,
which may or may not be easy to identify against statistical
noise.

In Fig. 7, we show that it is indeed possible to find inter-
vals of v along which a plot of �v2+z2�R�v� is rather flat, as
suggested by Eq. �22�. While the evidence is somewhat
smeared for the upper set of data �corresponding to p=0.95
and �=0.015, i.e., z1�3.32�, it is clear for the lower one �for
which p=0.80 and �=0.0075, i.e., z2�2.03�. Furthermore,
the ratio of the averages of �v2+z2�R�v� �each denoted by a
horizontal line in the figure� along the respective flat sections
�these latter defined with an inevitable degree of arbitrari-
ness� is �1.4�1�. This compares reasonably well with the
predicted value z1 /z2=1.64 �see Eq. �22� and the comments
immediately below it�. Given that the latter result is expected
to hold for z�1, one may infer that the small discrepancy
found is due to z1 and z2 not being large enough.

FIG. 6. �Color online� Hexagons: normalized histogram of oc-
currence of instantaneous LLE s from Ns=106 samples for �
=0.015 and p=0.80 �here, we used N=600, as the localization
length is ��498�. Continuous line is the analytical form �Eq. �20��
normalized. The dashed line is the analytical result for p=1/2 from
Eq. �18�.

FIG. 7. �Color online� Symbols are data from normalized histo-
grams of occurrence of instantaneous LLE s from Ns=106 samples,
plotted as suggested by Eq. �22� �see text for definitions of z, v, and
R�v��. Hexagons: p=0.8 and �=0.0075 �z�2.03�: and squares: p
=0.95 and �=0.015 �z�3.32�. Horizontal lines mark the central
estimates of averages of �v2+z2�R�v�, respectively, along −9�v
�−3 �lower� and −8�v�−4 �upper�.
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Finally, we remark that the pure-ferromagnet limit is
somewhat subtle, because in order to reach the stationary
regime of the FP equation where the N-independent PDF
forms hold, the condition N
� must be obeyed. However,
as p→1 and for the low energies where scaling is valid, �
diverges as one approaches the pure-system magnon band
�located at 0���2 in the current units�. For example, at
p=0.95 and �=0.015, one gets ��2500.

E. Nonstationary regime for pÅ 1
2

Still for the magnetized case p�1/2, one can learn more
by considering selected aspects of the nonstationary regime.
Going back to Eq. �15�, one sees that in the limit p−1/2
��1/3, i.e., z�1, the diffusive term becomes small and this
regime is associated with just streaming in leading order. The
nonstationary equation to be solved is thus

�P�s,��
��

=
�

�s
��s2 + �M1�P�s,��� . �23�

With �
���p−1/2��1/2, t̃
��, ỹ
s /�, and defining
Q�t̃ , ỹ� such that Q�t̃ , ỹ�dỹ= P�s ,��ds, Eq. �23� turns into

�Q

�t̃
=

�

�ỹ
�ỹ2 + 1�Q , �24�

whose general solution is

Q�t̃, ỹ� =
1

1 + ỹ2 f�t̃ + tan−1 ỹ� . �25�

In order to have the condition p−1/2��1/3 fulfilled to a
good extent, so that the scaling behavior predicted by Eq.
�25� could be unequivocally demonstrated, we used p=0.6
and �=10−6. For such a choice, the localization length is �

4104. This allowed us to take values of N equal to sev-
eral hundred lattice spacings, which are both much larger
than unity �so discrete-lattice effects are negligible� and still
much shorter than � �thus guaranteeing nonstationarity by a
broad margin�. Figure 8 shows the region close to the central

peaks of the PDFs �where scaling is expected to hold� for
N=150, 250, 500, and 750. In Fig. 9, the same data are
shown in a scaling plot, as suggested by Eq. �25�. Note that
the number of samples Ns is 1 order of magnitude larger
than, e.g., that used in earlier sections of this work. This was
necessary, in view of the relatively wide scatter of the PDFs:
typically, they displayed almost flat tails running out to s

0.07, so the relevant data as far as scaling is concerned
were a small subset of the total gathered �compare the hori-
zontal scale in Fig. 8�. Even so, one can see, close to the
bottom of the scaling curve in Fig. 9, that a non-negligible
degree of fluctuation-induced spread still remains. Neverthe-
less, the overall agreement with the scaling predictions of
Eq. �25� is remarkable.

IV. DISCUSSION AND CONCLUSIONS

We have investigated scaling properties of the PDFs of
Lyapunov exponents for the one-dimensional Heisenberg-
Mattis spin glass.

In Sec. III A, we showed that for a given energy � �small
enough, such that the localization length ���� is sufficiently
large for scaling concepts to apply�, the PDF of the LLE
��N ,�� takes on a shape which, for N
����, is increasingly
close to a Gaussian. In the limit N→	, the PDFs turn into �
functions, in conformity with the central limit theorem. Thus,
such aggregate effects reflect only general statistical proper-
ties of fluctuations in systems with many �almost� indepen-
dent degrees of freedom. The connection with the underlying
physical problem is traced exclusively through the depen-
dence of the numerical value of the �asymptotic� Lyapunov
exponent with energy �and ferromagnetic bond concentra-
tion; though this latter aspect was not exploited here, it has
been investigated before20–22�.

On the other hand, the PDFs for the instantaneous
Lyapunov exponents, as defined via Eq. �10�, display the
following properties of interest, exhibited in Secs.
III B–III D: �i� for N
���� they approach a fixed, nontrivial
shape with nonvanishing width, �ii� such specific shape can
be predicted through a connection with the stationary state of

FIG. 8. �Color online� Central sections of normalized histo-
grams of occurrence of instantaneous LLE s from Ns=107 samples
for �=10−6, p=0.60, and N as indicated.

FIG. 9. �Color online� Scaling plot of data displayed in Fig. 8, as
suggested by Eq. �25�.
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an FP equation, and �iii� the shape is a “fingerprint” shared
by all the systems in the universality class in which the sta-
tistical properties of the system lie. Furthermore, the FP
equation providing the link can be set up directly from, and
closely reflects, the physical features of the system under
investigation �see especially Eqs. �11�–�16��.

The applicability of a description via an FP equation goes
beyond the stationary state, as shown in Sec. III E. There, it
is shown that the scaling of nonstationary PDFs in a specific
regime �in which diffusion effects are expected to be negli-
gible� closely follows predictions drawn from the corre-
sponding form of the FP equation.

In the present work, we have demonstrated that an FP
approach can be successively applied to both stationary and
nonstationary properties of the PDF of instantaneous
Lyapunov exponents for Heisenberg-Mattis spin glasses.

As a final remark, we believe that the scaling properties of
the PDF of Lyapunov exponents described here are identical
to those pertinent to the zero-temperature random-bond �±1�
classical Heisenberg chain. This comes via the identification
of the scaling properties of the low-energy excitations of the
HSMG chain with those of the classical Heisenberg model in

one dimension15,16,20,21 plus the general applicability of the
FP equation in the continuum.1

It is expected that treatments along these lines can be
devised, with similar degree of success, for other physical
systems in whose description Lyapunov exponents play a
prominent role.
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