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The nature of polyamorphism and amorphous-to-amorphous transitions is investigated by means of an
exactly solvable model with quenched disorder, the spherical s+ p multispin interaction model. The analysis is
carried out in the framework of replica symmetry breaking theory and leads to the identification of low-
temperature glass phases of different kinds. Besides the usual one-step solution, known to reproduce all basic
properties of structural glasses, also a physically consistent two-step solution arises. More complicated phases
are found as well, as temperature is further decreased, expressing a complex variety of metastable-state
structures for amorphous systems.
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I. INTRODUCTION

In recent years increasing evidence has been collected for
the existence of amorphous to amorphous transitions �AATs�,
in various glass-forming substances such as, e.g., vitreous
germania and silica, where the coordination changes abruptly
under pressure shifts.1 One refers to this phenomenon as
“polyamorphism.”1,2 Like the liquid-glass transition also the
AAT is not a thermodynamic phase transition, but it amounts
to a qualitative change in the relaxation dynamics, apparently
expressing a recombination of the glass structure. Other
kinds of AATs are known to occur, e.g., in porous silicon,3 in
undercooled water,4,5 in copolymer micellar systems,6 and in
polycarbonate and polystyrene glassy polymers.7

A number of theoretical models have been introduced to
describe systems undergoing AATs, such as, e.g., a model of
hard-core repulsive colloidal particles subject to a short-
range attractive potential.8–10 Another instance is the spheri-
cal p-spin model on a lattice gas of Ref. 11. In this paper
we consider a model with multibody quenched disordered
interactions where various AATs occur as well: the spherical
�s+ p�-spin model.

Our analytic investigation is performed by applying Pari-
si’s replica symmetry breaking �RSB� theory.12 In the frame-
work of the theoretical description of glasses and, more gen-
erally, of disordered systems, RSB theory provides, in a
broad variety of instances, a rather deep and complex mean-
field insight. RSB solutions so far encountered, representing
physically stable phases, are either one-step RSB �mean-field
glass� or implement a continuous hierarchy of breakings
�mean-field spin glass�. One-step RSB �1RSB� solutions are,
e.g., found in the Ising p-spin13,14 and Potts15 models with
quenched disorder in a low-temperature interval16 or in
the spherical p-spin model below the static critical
temperature,17 else in optimization problems mapped onto
dilute spin-glass systems such as the XOR-SAT �where it cor-
rectly describes the whole UNSAT phase�,18 or the K-SAT, with
K�2,19 in a certain interval of connectivity values next to
the SAT-UNSAT transition.20 The continuous, or full RSB
�FRSB� solution describes, instead, the low-temperature
phase of the mean-field version of the Ising spin glass—i.e.,
the Sherrington-Kirkpatrick model.21 Low-temperature

phases with a continuous hierarchy of states are known to
exist also for other disordered models with discrete variables,
such as the above-mentioned Ising p-spin and Potts models,
even though these might display a further discontinuous RSB
step.22 A purely FRSB phase has been, eventually, found in a
model with continuous variables, constituted by a two-body
and a p-body interaction term: the spherical �2+ p�-spin
model.24,25

In the present work we consider the spherical �s+ p�-spin
model with both s and p�2, addressing physically consis-
tent RSB solutions qualitatively different from those men-
tioned above �also different from the s=2 model case�. The
Hamiltonian of the model is

H = �
i1�¯�is

Ji1,. . .,is
�s� �i1

¯ �is
+ �

i1�¯�ip

Ji1,. . .,ip
�p� �i1

¯ �ip
,

�1�

where Ji1,. . .,it

�t� �t=s , p� are uncorrelated, zero-mean, Gaussian
variables of variance

�Ji1. . .it
�t� �2 =

Jt
2t!

2Nt−1 , i1 � ¯ � it, �2�

and �i are N continuous variables obeying the spherical con-
straint �i�i

2=N. Equation �1� is clearly symmetric in s and p.
We will always consider p�s. The properties of the model
strongly depend on the value of s and p: for s=2, p=3 the
model reduces to the spherical p-spin model in a field17 with
a low-temperature 1RSB phase, while for s=2, p�4 the
model posses an additional FRSB low-temperature phase24,26

and a 1-FRSB phase.25 For s , p�2 the phases displayed are
the paramagnet and the 1RSB spin glass, as far as the differ-
ence p−s is not too large.25 Recently, Krakoviack observed
that for large p−s more than a simple paramagnet-1RSB
transition is likely to occur.27

The dynamic equations of the s+ p model can be formally
rewritten as mode coupling theory �MCT� equations in the
schematic approximations �see, e.g., Refs. 28–31�, and de-
fining the auxiliary thermodynamic parameters �t= t�2Jt

2 /2,
a mapping can be established with the binomial schematic
theories Fs−1,p−1 with a scalar kernel �see, e.g., Ref. 32�. In
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particular, the F13 theory studied by Götze and Sjögren29 is
dynamically equivalent to a 2+4 spherical spin model.33

II. LARGE p−s SPHERICAL „s+p…-SPIN MODEL

Analyzing the model for s�2 and large p−s, we observe
a very rich phase diagram even though no purely continuous
FRSB phase, as obtained in the �2+ p�-spin model,24,25 is
encountered in the present case. We now concentrate on the
static scenario.

The static free energy functional reads, for a generic num-
ber R of RSBs, as25

− �� =
1

2
�1 + ln 2	� + lim

n→0

1

n
G�q� , �3�

2G�q� = �
ab

1,n

g�qab� + ln det q , �4�

where

g�q� =
�s

s
qs +

�p

p
qp �5�

and q= �qab� is the Parisi overlap matrix taking values 0
=q0�q1� ¯ �qR�qR+1=1. In the absence of an external
field, q0=0. For any R, G�q� can be written as

2

n
G�q� = �

0

1

dqx�q�
�q� + �
0

qR dq

��q�
+ ln�1 − qR� , �6�

where

x�q� = p0 + �
r=0

R

�pr+1 − pr���q − qr� �7�

is the cumulative probability density of the overlaps,


�q� =
dg�q�

dq
�8�

and

��q� = �
q

1

dq�x�q�� . �9�

Stationarity of � with respect to qr and pr leads, respectively,
to the self-consistency equations

F�qr� = 0, r = 0, . . . ,R , �10�

�
qr−1

qr

dqF�q� = 0, r = 1, . . . ,R , �11�

where

F�qr� 	 
�qr� − �
0

qr dq

��q�2 . �12�

Equation �11� implies that F�q� has at least one root in each
interval �qr−1 ,qr�, which, by the way, is not a solution of the
whole set of self-consistency equations.

III. HOW MANY RSBs?

Which kind of solutions are physically consistent for the
model at large p−s? Following Refs. 17 and 25, we observe
that Eqs. �10� and �11� guarantee that between any pair
�qr−1 ,qr� there must be at least two extremes of F �we recall
that here q0=0�. Denoting the extremes by q*, the condition
F��q*�=0 leads to the equation

��q�� 	 �
q�

1

x�q�dq =
1



��q��
, �13�

where


��q� =
d
�q�

dq
= �s − 1��sq

s−2 + �p − 1��pqp−2. �14�

Since x�q� is a nondecreasing function of q, ��q� has a nega-
tive convexity. The convexity of the function �
��q��−1/2 de-
pends, instead, on s and p, as well as on the parameters �s
and �p. If p−s is not too large, it displays a positive convex-
ity in the whole ��p ,�s� plane, whereas, as p is larger than
some critical value that depends on s, the curve can, actually,
change convexity in a certain region of the ��p ,�s� plane.

The right-hand side of Eq. �13� is plotted in Fig. 1 in two
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FIG. 1. Right-hand side of Eq. �13� for �s=12 and �p=30. The
s+ p=3+4 curve �dotted line� can have no more than two intersec-
tions with ��q�, implying at most a 1RSB solution. This shape is
independent of the particular values of the �’s �see Eq. �15� and
discussion thereafter�. For s=3 and p=16 �solid curve� there is,
instead, evidence for the existence of a maximum of four intersec-
tions with the concave ��q� �because of the double change of con-
vexity�, yielding a 2RSB solution. This does not occur in the entire
plane but only in a subregion. In the q interval of negative convex-
ity of �
��q��−1/2, ��q� can also overlap the curve in a continuous
interval, yielding, furthermore, continuous RSB solutions.
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qualitatively different model cases with p�s�2. For nearby
values of s and p �dashed curve, s=3, p=4� the shape of
�
��q��−1/2 implies that at most a 1RSB solution can take
place. When p−s grows, however, the qualitative behavior
changes �solid curve, s=3, p=16� and the 1RSB is no longer
the only solution admissible: solutions with more RSBs may
occur in order to stabilize the system. From Fig. 1 one can
readily see that for certain values of �s and �p, and large
p−s, Eq. �13� can have four solutions; i.e., F�q� can display
four extremes, allowing for the existence of a 2RSB phase.
The critical values of p for fixed s�2, above which this kind
of phase can show up, are those at which the �
��q��−1/2

function acquires a negative convexity at some given q value
between 0 and 1—i.e., the values for which

�p2 + p + s2 + s − 3sp�2 − ps�p − 2��s − 2� = 0, �15�

e.g., �s , p�= �3,8�, �4,7+2
6�, �5,9+3
5�. As s increases,
the relative critical p becomes very large.34 Notice that Eq.
�15� does not depend on the parameters �. For p�s� less than
the root of the equation, �
��q��−1/2 has always a positive
convexity �see the 3+4 curve in Fig. 1�, while for larger
values of p its convexity can be negative for some range of
values of the �’s.

Equations �10� and �11� also admit continuous RSB solu-
tions �qr−qr−1→0�. They reduce to the same identity in this
case, as well as F��q�=0 �Eq. �13��. The latter sets a con-
straint on the interval of q values over which a FRSB ansatz
can be constructed because Eq. �13� can only hold as far as
�
��q��−1/2 has the same �negative� convexity as ��q�. A con-
tinuous RSB structure in a certain interval of q values does
not rule out, however, the possibility of discrete RSBs in
other intervals. Indeed, “mixed” solutions are found as well,
whose overlap function q�x� the inverse of x�q� display both
discontinuous steps and a continuous part.

IV. PHASE DIAGRAM

We now inspect the explicit case where s=3 and p=16,
which is enough to catch the properties that make the model
special, without loss of generality. The complete phase dia-
gram is plotted in the MCT-like variables �3 and �16 in Fig.
2, where we only report the static transition lines. We stress,
however, that all static transitions have a dynamic counter-
part, as we will discuss in a later section. In each phase, the
shape of the overlap function q�x� is sketched. Going clock-
wise, in the central part we identify a paramagnetic �PM�
phase, a 1RSB glassy phase �I�, a 2RSB glassy phase, and a
second 1RSB phase �II�. Even though the structure of the
states organization is qualitatively similar, the two 1RSB
phases differ in the value of the self-overlap q1 �or Edwards-
Anderson parameter35� and the position p1 of the RSB step
along the x axis. In the top part of the phase diagram things
get even more diversified, and we find the additional mixed
continuous-discontinuous “F-1RSB” �shaped as in the top-
left inset of Fig. 2� �Ref. 36� and “1-F-1RSB” phases.

In Fig. 3 a detail of the phase diagram is plotted around
the quadricritical point where four transition lines meet. We
use in this case the natural thermodynamic parameters T and

Jp �in units of Js� rather than the MCT parameters �s and �p.
The dynamic transition curves are also plotted �dashed lines�
in this case. We notice that decreasing the temperature the
dynamic transition always takes place before the static one.

Starting in the 1RSBI phase for low values of the ratio
Jp /Js, if we increase Jp keeping the temperature fixed, at
some point A �see Fig. 4� a 2RSB phase arises with the same
free energy of the 1RSBI. As Jp is further increased, the
2RSB phase displays a higher free energy than the 1RSBI
one �bottom inset of Fig. 4�. Since we are considering repli-
cated objects in the limit of the number of replicas going to
zero, this implies that the 2RSB phase is the stable one,
whereas the 1RSB phase becomes metastable. In Fig. 4 we
show the detail of the 1RSBI-2RSB-1RSBII isothermal tran-
sitions in Jp /Js. In the inset we show the free energies
��T /Js ,Jp /Js� relative to each phase. It is clear that, were the
2RSB phase not there, a coexistence region would occur, as

q

x

q

x

q

x

q

x

q

x

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70

µ
3

µ16

PM

1RSBI

2RSB

1RSBII

F-1RSB 1-F-1RSB

FIG. 2. Static ��p ,�s� phase diagram of the spherical 3+16 spin
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FIG. 3. Detail of the T-J16 phase diagram around the static
�solid line� and dynamic �dashed line� quadricritical points. Tem-
perature and J16 are in units of J3. Starting from any phase in the
diagram lowering the temperature the system first undergoes the
dynamic transition and then the statics.
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well as a related first-order 1RSBI-1RSBII phase transition
�point C�. The rising of the 2RSB phase covering the whole
interested region, however, prevents the occurrence of a first-
order phase transition.

In terms of state reorganization, or order parameter func-
tional shape, the way the system undergoes the 1RSBI-2RSB
and 2RSB-1RSBII transitions is not the same, as is reported
in Fig. 5. The first transition is a straightforward generaliza-
tion of the p-spin-model PM-1RSB transition �also taking
place in the present model; see Figs. 2 and 3�: the second
step appears, indeed, at x=1 as the highest one. This means
that new states arise inside the states of the 1RSB phase,
while the latter acquire the status of clusters of states. We
will refer to this kind of transition as state fragmentation.37

Across the second kind of transition, instead, going from the
1RSBII to the 2RSB phase, an intermediate step of q�x� ap-
pears at p1. This corresponds to grouping the states into clus-

ters whose relative overlap is equal to the value of the inter-
mediate step—between p2 and p1 in the right-hand-side �rhs�
overlap picture in Fig. 5—i.e., the system undergoes a sort of
state clustering transition. Precursory symptoms of these
transitions were observed in a glassy model on Bethe lattice
in Ref. 37 where the 1RSB solution of the model proved
unstable in the close packing limit and two kinds of instabil-
ity were considered, leading to the onset of a phase described
by a more refined RSB ansatz. Here we have an explicit
realization of that conjecture.

A. Formal characterization of phases and transitions

In order to describe the various phases and their relative
transitions, one has to solve the saddle point equations �10�
and �11�. In introducing the RSB solutions describing the
frozen phases of the spherical s+ p model for large p−s, we
start from the most complicated one that we have found: the
1-F-1RSB phase. From the equations describing this one,
indeed, the self-consistency equations of all other phases can
be straightforwardly derived, as well as the phase transition
lines.

In general, we will denote by q1 the value of the first step
in the overlap function q�x� and by p1 its position on the x
axis. The last step will be identified by q�1�—i.e., the value
of q�x� in x=1—and the relative step position by m. If a
continuous part is present, we call its highest overlap value
qc, reached at xc=x�qc�. The initial point on the x axis of the
continuous part is x1=x�q1�. In Fig. 6 a pictorial plot of the
1-F-1RSB q�x� is shown, to help fix the notation.

The self-consistency equations �cf. Eq. �10�� are ex-
pressed, for this solution, by


„q�1�… − 
�qc� =
q�1� − qc

�„q�1�…��qc�
, �16�


�q� − 
�q1� = �
q1

q dq

�2�q�
, q1  q  qc, �17�


�q1� =
q1

��0���q1�
, �18�

where ��q� is given in Eq. �9� and in the above cases �no
external field, q0=0� it takes the expressions

��q�1�� = 1 − q�1� , �19�
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��qc� = 1 − q�1� + m�q�1� − qc� , �20�

��q1� = 1 − q�1� + m�q�1� − qc� + �
q1

qc

dqx�q� , �21�

��0� = 1 − q�1� + m�q�1� − qc� + �
q1

qc

dqx�q� + p1q1.

�22�

Using the function

z�y� = − 2y
1 − y + ln y

�1 − y�2 �23�

introduced by Crisanti and Sommers �CS� in Ref. 17, the
self-consistency equation for the RSB points p1 and m �cf.
Eq. �11�� become

z„y�1�… = 2
g„q�1�… − g�qc� − �q�1� − qc�
�qc�

�q�1� − qc��
„q�1�… − 
�qc��
, �24�

z�y1� = 2
g�q1�

q1
�q1�
, �25�

with

y1 =
��q1�
��0�

, y�1� =
�„q�1�…
��qc�

. �26�

From this phase the system can undergo two transitions:
toward a F-1RSB phase, on the left-hand side in the ��16,�3�
plane, and toward a 2RSB phase, on the right hand-side �see
Fig. 2�. Transforming into the 2RSB phase, qc→q1 and the
continuous part disappears. The saddle point equations left to
yield the solution are Eqs. �16� and �24�, with qc=q1, to-
gether with Eqs. �18� and �25�. We might say that we are
facing a state departing—i.e., the opposite of the state clus-
tering mentioned in the previous section and on the rhs of
Fig. 5. This, now, takes place on a continuous set of ultra-
metric levels, eliminating the whole intermediate structure of
clusters of clusters, and eventually leaves a three-level orga-
nization. On the left-hand side, instead, the F-1RSB/1-F-
1RSB transition occurs as q�1�=qc and Eqs. �16� and �24�
become trivial identities. Coming from the F-1RSB side,
states break down into smaller states, themselves becoming
clusters of these newborn states. This is a fragmentation tran-
sition �cf. lhs of Fig. 5� and Ref. 37.

We now continue scanning the phase diagram of Fig. 2
counterclockwise. Decreasing the variances of the random
coupling distribution at constant temperature, or else increas-
ing the temperature at fixed interaction variances, the system
in the F-1RSB phase ends up in a 1RSB frozen phase. At the
transition qc→q1 and the continuous part is suppressed.38

The whole ultrametric continuous structure inside the largest
clusters merges into simple states.

Lowering �3 �i.e., increasing the temperature or decreas-
ing J3� the system reaches the paramagnetic phase at which
q1 jumps to 0 discontinuously, because p1 overcomes 1, and
only one state remains. Increasing �16, the paramagnet goes

back to a frozen—multistate—glassy phase, the 1RSBII, as a
step q1 appears at x= p1=1. These last two are transitions of
the kind occurring in the spherical p-spin model in which the
Edwards-Anderson order parameter discontinuously jumps
from zero to q1. They are also termed random first order
transitions.39

From the 1RSBII phase the system goes into a 2RSB
phase in a state clustering transition, as already mentioned
above and shown in Fig. 5 �right-hand side�. Eventually,
from the 2RSB the system can transform into the 1RSBI
phase �left-hand side of Fig. 5� or into our starting phase, the
1-F-1RSB phase.

V. DYNAMIC TRANSITIONS

For what concerns the dynamic glass transitions �dashed
lines in Fig. 3�, they can be obtained looking at the dynami-
cal solutions as formulated in Ref. 33, where the equilibrium
dynamics of the system in the different regions of the param-
eters space was analyzed and the solution for a generic num-
ber of different relaxation times was provided. In the
dynamic-static analogy initially proposed by Sompolinsky,40

each of the relaxation time bifurcations corresponds to a
RSB. The dynamic solution equivalent to the static 1-F-
1RSB phase is described by Eqs. �16�–�18� plus the so-called
marginal conditions


�„q�1�… =
1

�2
„q�1�…

, �27�


��q1� =
1

�2�q1�
. �28�

The dynamical solution leads, moreover, to the further iden-
tity

x�q1� = p1. �29�

We notice that the solution is not overdetermined since, be-
cause of the presence of the continuous part in q�x�, Eq. �28�
is not independent from Eq. �17�.

The dynamic phase diagram is plotted in Fig. 7 where the
static lines are also reported �dotted curves� for a direct com-
parison with the diagram of Fig. 2. As one can see, each
static solution representing an equilibrium phase has its dy-
namic counterpart. The only difference is that the transition
line between the F-1RSB and 1-F-1RSB phases can be both
continuous �b� and discontinuous �a�, whereas in the static
case it was only continuous. The transition lines are, then,
obtained from the dynamic solutions. In Table I we report, in
the current notation for the overlap and the RSB parameter
values, the description of all phases involved and the relative
transitions.

Alternatively, one can determine the dynamic transitions
starting from the analysis of the behavior of the static func-
tions. The discriminating quantity is not the free energy, in
this case, but the total complexity of the states41,42 that is the
average over the quenched disorder of the logarithm of the
number of metastable states. Indeed, to see which phase is
relevant at a given phase diagram point, one has to select the
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one with the higher total complexity. Loci where the com-
plexities of the different phases equal each other are, thus,
the transition lines reported in Fig. 7. The complexity can be
obtained, e.g., as the Legendre transform of the free energy
� �cf. Eq. �3�� with respect to the parameter m—i.e., the last
breaking point—corresponding to the state level in the ultra-
metric tree �see Fig. 5�.

We eventually notice that, in Fig. 7, in one case the dy-
namic line coincides with the static one, at the F-1RSB/1-F-
1RSB transition. This is typical of phase transitions where
the q�x� ends with a continuous part �q�1�=qc� on one side
and with a discontinuous step on the other side of the tran-
sition line �that at x=m in our notation�. If the step is on top
of a continuous part and goes to zero smoothly—that is,
continuously—at the transition �as in the present case� or if a
continuous part smoothly develops on top of the step �as is

conjectured to occur in other models; see, e.g., Ref. 15�, this
implies that the complexity of the system goes to zero as
well43 and the dynamics does not get stuck at some excited
state, thus reaching the thermodynamic static solution. The
same is known to happen, e.g., in the 2+ p-spin version of
the model25,33 at the 1RSB-1-FRSB transition and in the
Ising p-spin model23,46 at the 1RSB-FRSB transition.

VI. CONCLUSION

In conclusion, developing the analysis of the �s+ p�-spin
spherical model with s , p�2 and large p−s, we find a very
rich phase diagram with various candidate �mean-field�
glassy phases, besides the usual 1RSB one. In a dynamic
parallel, a RSB step is connected to a time-scale bifurcation
of processes taking place in the glass former.33,40 In the case
of one- and two-step RSB’s, we have, thus, phases with two
or three kinds of processes active on separated time scales.

In solid glass formation, the main bifurcation is the one
between the relaxation time of � processes, carrying struc-
tural relaxation and falling out of equilibrium at the glass
transition �i.e., operatively speaking, when the viscosity of
the glass former reaches the value of 1013 Poise�, and the
relaxation times of all faster �and equilibrated� � processes.
The difference among the existing � processes is, usually,
neglected in theoretical modeling, even though their relax-
ation times can differ for several orders of magnitude. The
2RSB phase might, then, describe systems where slow �
�such as, e.g., Johari-Goldstein processes47� and fast � �e.g.,
collisions� processes are well separated. This is, indeed, what
happens in many glasses where, at a temperature a few de-
grees below the glass transition temperature, Johari-
Goldstein-like � relaxation occurs on time scales up to the
order of a millisecond. This is much less than the � relax-
ation time �ca. 103 s� but about nine or ten orders of magni-
tude larger than the typical times of short-range collision of
the molecules in the viscous liquid phase �the so-called cage
rattling�.
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FIG. 7. Dynamic and static �dotted line� transition lines in the
��16,�3� plane. The dynamic lines are all plotted as solid curves but
for �a� �dashed line�, which denotes the discontinuous part of the
1RSBI-F-1RSB transition. By �b� we indicate the continuous part of
this transition where statics and dynamics coincide.

TABLE I. Dynamic transitions table. Looking at Fig. 7, the phases are ordered starting from the 1-F-
1RSB one and spiraling counterclockwise around the quadricritical point. Notice that p2 and q2 in the 2RSB
solution and p1 and q1 in the 1RSB solutions are equivalent notations to m and q�1�, respectively.

Solution 1-F-1RSB F-1RSB RSBI PM 1RSBII 2RSB

1-F-1RSB m=1 �a� qc=q1

�p1 ,q1 ,xc ,qc ,m ,q�1�� q�1�=qc �b�
F-1RSB m=1 �a� q�1�=q1

�p1 ,q1 ,m ,q�1�� q�1�=qc �b�
1RSBI q�1�=q1 p1=1 p2=1

�p1 ,q1�
PM p1=1 p1=1

�q�x�=0∀x�
1RSBII p1=1 p2= p1

�p1 ,q1�
2RSB qc=q1 p2=1 p2= p1

�p1 ,q1 , p2 ,q2�
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In the framework of disordered systems theories, more-
over, the existence of a thermodynamically consistent 2RSB
phase opens the way to the study of the complexity contri-
butions at the level of clusters of states, apart from the stan-
dard complexity of states, allowing for a probe of structures
of metastable states in amorphous systems different from the
known ones and including patterns that were conjectured be-
fore but never explicitly computed.15,18

Incidentally, we mention that adding more multibody in-
teraction terms to the Hamiltonian, Eq. �1�,

H = �
�=1

R

�
i1�¯�ip�

Ji1,. . .,ip�

�p�� �i1
¯ �ip�

, �30�

one is able, in principle, to build a model presenting phases
that are stable within a Parisi ansatz including any wanted
number R of RSB’s. Indeed, what matters is the shape of the
function �
��q��−1/2, the right-hand side of Eq. �13�. More
precisely, there is the possibility of finding, for certain, far
apart, values of the numbers p� of interacting spins, and in
given regions of the external parameters space, a function

�
��q��−1/2 whose convexity in the interval 0�q�1 changes
sign a certain number of times. As we have seen, one change
of convexity allows for the existence of a 2RSB phase. Two
changes would signal the existence of a 3RSB phase and so
forth.48

Eventually, the equivalence of the dynamic equations of
spherical spin-glass models, in the PM phase, with the MC
equations of schematic theories,49 makes the s+ p model also
an interesting instance of an off-equilibrium generalization
of the MCT predictions below the MC transition, where the
equivalence breaks down, since MCT assumes equilibrium
�one Gibbs state�. This would be relevant, above all, to deal
with amorphous-to-amorphous transitions, in which both the
interested phases are already frozen and, thus, equilibrium
properties, such as, e.g., the fluctuation-dissipation theorem,
cannot be taken for granted.
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