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Exciton-polaron formation in one-dimensional lattice models with short- or long-range carrier-phonon in-
teraction is studied by quantum Monte Carlo simulations. Depending on the relative sign of electron and
hole-phonon coupling, the exciton-polaron size increases or decreases with increasing interaction strength.
Quantum phonon fluctuations determine the �exciton-� polaron size and yield translation-invariant states at all
finite couplings.
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I. INTRODUCTION

The binding of electron-hole �E-H� excitations into exci-
tons �Xs�, governing the optical properties of most nonme-
tallic materials,1 plays a major role in, e.g., organics,2 nano-
structure devices,3 quantum light sources,4 Bose-Einstein
condensation,5 and DNA.6

The coupling of Xs to phonons is widely relevant,7,8 and
gives rise to exciton-polaron �X-P� formation, corresponding
to quasiparticles consisting of an E-H pair and a virtual pho-
non cloud. Apart from the essential role of phonons in relax-
ation processes after optical excitation, lattice coupling alters
the X radius which determines, e.g., the oscillator strength in
optics and the overlap of X wave functions required for
Bose-Einstein condensation. Very recently, a direct observa-
tion of an exciton-polaron in photoluminescence spectra of
quantum dots has been reported.9

Examples where X-Ps of intermediate size are clearly im-
plicated in current experiments include transition metal ox-
ides, such as insulating manganites10 and nickelates,11,12

though the situation in cuprates is controversial.11,13 Another
important class of materials is conjugated polymers �e.g.,
Ref. 14�. In these systems, the well-known approximations
of small Frenkel or large Wannier-Mott Xs are unjustified,
requiring nonperturbative theories which include relative
E-H motion.14

Polaron formation is a complex, nonlinear, many-body
problem which cannot be completely described by renormal-
ization of effective masses.15 In particular, the quantum na-
ture of phonons—leading to retarded �self-�interaction—has
to be taken into account. Since polaron physics is governed
by lattice dynamics on the unit-cell scale, the discrete nature
of the crystal cannot be neglected.16

The resulting problem of an interacting E-H pair with
coupling to quantum phonons represents a long-standing
open question in condensed matter physics. Whereas some
exact results are available without phonons,17,18 standard
methods such as perturbation theory and variational or adia-
batic approximations19–23 are often of uncertain reliability.
Furthermore, computational approaches are very demanding,
and we are not aware of any exact results for quantum
phonons.

Here we present unbiased numerical results for the quan-
tum lattice X-P within a simple E-H model, obtained by

means of quantum Monte Carlo �QMC� simulations. This
method, well established in the field of polaron physics,
treats all couplings on the same footing and is not restricted
to a specific X size or parameter region. Our model study of
several different Hamiltonians yields important results for
the effects of carrier-phonon interaction on X properties.

II. MODEL

Extending previous work,17,24,25 we consider a simple
model in one dimension �1D� defined by the Hamiltonian

H = − te�
�i,j�

ei
†ej − th�

�i,j�
hi

†hj − �
ij

uijn̂i,en̂j,h +
�0

2 �
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�x̂i
2 + p̂i
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with long-range Coulomb attraction

uij = �U0, i = j ,

U1/�i − j� , i � j ,
� �2�

where U0�U1�0 �i.e., attractive interaction�, and long-
range carrier-phonon interaction

f j,i =
1

��j − i�2 + 1�3/2 . �3�

Here ei
† �hi

†� creates an E �H� at site i, and x̂i �p̂i� denotes the
displacement �momentum� of a harmonic oscillator at site i.
The fermionic density operators are defined as n̂i,e=ei

†ei and
n̂i,h=hi

†hi. The model parameters are the nearest-neighbor E
�H� hopping integral te �th�, the energy of Einstein phonons
�0 ��=1�, the E �H� phonon couplings �e ��h�, as well as the
local �extended� Coulomb interaction U0 �U1�.

We consider a single E-H pair—a situation which can
be studied experimentally3—and neglect X creation/
recombination as well as dynamic screening of the Coulomb
interaction due to other carriers or lattice polarization. Spin
degrees of freedom are not taken into account, and we as-
sume a tight-binding band structure with s symmetry for both
E and H, neglecting the existence of a band gap �which here
only leads to a shift of energies�. Of course this model is too
simple to make a direct comparison with materials. Never-
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theless, it does describe the physics of a Coulomb-bound,
itinerant E-H pair whose constituents couple individually to
quantum phonons and—in the absence of coupling to the
lattice—captures the familiar crossover from a small to a
large exciton with increasing bandwidth �see Sec. IV�.18

The exact form of the carrier-phonon coupling is subject
to X size, screening, and material properties.8 We restrict our
analysis to Holstein- and Fröhlich-type interactions well
known and understood from polaron physics, and amenable
to efficient numerical treatment. Important aspects arise from
the fact that the coupling of E and H to the lattice can either
be of cooperative or compensating nature. The goal here is to
obtain a qualitative understanding of the influence of the type
and range of the lattice coupling, as well as the nonadiaba-
ticity of the lattice.

Equation �1� allows for different signs of �e and �h. The
coefficients f j,i correspond to a lattice version of the Fröhlich
interaction with longitudinal optical phonons,26 but yield a
Holstein coupling to transverse optical phonons for f j,i=�i,j.
Since E and H couple to the same phonon mode, we consider
the symmetric mass case te= th= t, and �h=��e=�� with �
=± and ��0. We refer to the model with local, respectively,
long-range carrier-lattice coupling as the Holstein-X model
�HXM�, respectively, Fröhlich-X model �FXM�. These mod-
els capture the interplay of Coulomb attraction, particle mo-
tion, and coupling to the lattice.

We introduce the dimensionless parameter �
=2	P�� j f j,0

2 � /W, where 	P=�2 /2�0 is the polaron binding
energy in the atomic limit and W=4t is the bare single-
particle bandwidth. The time scales of E /H and quantum
lattice dynamics are set by the adiabaticity ratio 
=�0 / t. The
units of energy and length are taken to be U0 and the lattice
constant, respectively.

III. METHOD

The world-line QMC method adapted here can handle
long-range interactions—notoriously difficult for many other
numerical approaches—higher dimensions, and general fer-
mion and phonon dispersion relations.27,28

From the partition function with discretized inverse tem-
perature �=1/ �kBT� and Trotter parameter �
=� /L, the fer-
mionic trace can be evaluated using real-space basis states
	r


�
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h
, which define world-line configurations on an
N�L space-time grid. The path integral over the phonons is
done analytically, yielding the fermionic partition function
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Here carrier-phonon coupling gives the memory function
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We calculate the X “radius” �see Ref. 17�

R = ��
i,j

�i − j�2n̂i,en̂j,h�1/2
, �7�

the kinetic energy

Ekin = − t��
�i,j�

ei
†ej + hi

†hj� , �8�

and the binding energies

EB,U = EX�t,U0,U1,�� − 2Ee�t,�� �9�

and

EB,� = EX�t,U0,U1,�� − EX�t,U0,U1,0� , �10�

where EX �Ee� denotes the X �E� energy. We further study the
E-H correlation function

Ceh�r� = �
i

�n̂i,en̂i+r,h� , �11�

and the E-phonon correlation function

Ceph�r� = �
i

�n̂i,ex̂i+r� . �12�

Computer time ��� /�
�2 �Ref. 27� sets a practical lower
limit on simulation temperatures. The Trotter error �which
can be removed by scaling to �
=0, see Ref. 29� and statis-
tical errors limit the accuracy of our QMC results to typically
1%, and we use periodic clusters with N=32. More sophis-
ticated QMC approaches to polaron problems, free of Trotter
errors and finite-size effects,30–32 have been developed.
Whereas the continuous-time method has recently been ap-
plied to a similar model,33 an extension of the diagrammatic
MC method18,34 to the exciton-polaron problem is not yet
available. Since all three methods are useful only for one or
two carriers coupled to phonons and hence not applicable to
more realistic systems, we have chosen the simplest ap-
proach currently available.

IV. RESULTS

To set the stage for the following discussion of lattice
effects, and to demonstrate that the model defined by Eq. �1�
describes the basic exciton physics, we begin with the case
�=0, i.e., no coupling to the lattice. Figure 1 shows exact
diagonalization �ED� and QMC results for the X size versus
bandwidth. The zero-temperature ED data for N=31 is well
converged with respect to system size. With increasing W,
there is a crossover from a small, strongly bound Frenkel-X
with R�0 �i.e., E and H at the same site� to a larger
Wannier-Mott-like X with R�1. Note that the X is always
bound in 1D.17 Our parameters do not include the exten-
sively studied Wannier-Mott limit, but instead cover experi-
mentally relevant intermediate radii.18 The crossover point
�W /U0�2� separates regions with opposite dependence of R
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on U1.17 The QMC results are overall in good agreement
with T=0 ED data, with finite-temperature effects being
most noticeable for U1=0.

In the sequel, we restrict ourselves to the wide-band case
W /U0=3.2, highlighted in Fig. 1, for which R��=0��1. As
this work is concerned with phonon effects, we focus on the
dependence on � and 
, and only consider U1 /U0=0.75 and
�U0=15.

Discussing carrier-quantum-phonon interaction, it is cru-
cial to distinguish between �=+ and �, as well as between
the adiabatic �slow lattice, 
�1� and the nonadiabatic �fast
lattice, 
�1� regimes, taking 
=0.4, respectively, 
=4. We
begin with the HXM in the adiabatic regime and �=+.

Figure 2�a� shows R as a function of �. With increasing
coupling, there is a gradual crossover to a small X-P due to
the increasingly strong phonon-mediated attractive interac-
tion between E and H. The E- and H-polarons tend to maxi-
mize both the Coulomb and the lattice energy by forming a
state with small R, but compete with the kinetic energy of the
system which decreases with increasing � �Fig. 3�. Similar to
the bipolaron problem with U=0, E- and H-polarons form a
�phonon� bound state at any ��0 in 1D. Most notably, there
is no discontinuity at a critical �, a common misconception
due to earlier variational treatments, as quantum lattice fluc-
tuations give rise to a translational invariant Bloch-like X-P
state.

The crossover is also reflected in a reduced X mobility,
and in a more negative X binding energy �Fig. 4�a�
. With the
present method, dynamic quantities such as the effective ex-
citon mass cannot be accurately calculated. An alternative
observable which to some degree �see, e.g., Ref. 35� mea-
sures the mobility is the kinetic energy shown in Fig. 3. In
addition, the E-H and E-phonon correlation functions in Fig.
5�a�, always positive for �=+, fall off quickly with r, indi-
cating that the X-P is a quasiparticle consisting of a tightly
bound E-H pair with a strongly localized surrounding lattice
distortion. Such a state is similar to the Frenkel limit consid-
ered in Ref. 36.

The nonadiabatic regime 
�1 mainly differs by a weaker
dependence on � �the important coupling parameter is

	P /�0, see below�. The results for the FXM exhibit qualita-
tively the same tendencies, but the long-range interaction
generally leads to larger E- and H-polarons and a larger X-P.

Turning to the case �=−, we briefly discuss the different
polaron ground states in the Holstein and the Fröhlich model.
The Holstein model in 1D exhibits a crossover from a large
polaron to a small polaron �with a predominantly on-site
lattice distortion� with increasing �. For 
�1, the latter oc-
curs near ��1, whereas for 
�1 the condition is 	P /�0
�1 ��=2 for 
=4�.36 In contrast, the Fröhlich polaron re-
mains large �spatially extended lattice polarization� even for
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strong coupling.26 While for �=+ the bipolaron effect domi-
nates, these differences have a major impact for �=− where
the Coulomb-bound E- and H-polarons remain separated
with R�1.

In Fig. 2, strikingly different to �=+, R initially increases
with increasing �, i.e., the X-P is larger for stronger cou-
pling. In the HXM �Fig. 2�a�
, R takes on a maximum at �
�0.7 and approaches R=1 for ��1, whereas in the FXM R
increases monotonically and saturates at large R in the
strong-coupling regime �Fig. 2�b�
. Accordingly, the kinetic
energy in Fig. 3 is much larger compared to �=+, but is
eventually reduced for large � in the HXM. The binding
energy EB,U→0 with increasing coupling in both models
�Fig. 4�, whereas EB,� �see insets�—related to X-P effects—
remains clearly negative.

The �initial� increase of the radius with increasing � for
the �HXM� FXM �Fig. 2� is due to the fact that the X-P loses
lattice energy if the compensating displacement clouds sur-
rounding E and H overlap. Therefore, the E- and H-polarons
optimize R to achieve maximum Coulomb energy and mini-
mum phonon-cloud overlap. The resulting average distance
R depends on the size of the individual �E and H� polarons.
For the HXM, polarons are large for ��1, leading to large
values of R in Fig. 2�a�, and become small for ��1, causing
the decrease of R→1 in the strong-coupling regime. In the
FXM, polarons remain large for all �, leading to large values
of R even for strong coupling �Fig. 2�b�
. The larger radius in
the nonadiabatic HXM in Fig. 2�a� as compared to 
�1 is
due to the much larger polaron kinetic energy.35 A discon-
tinuous dissociation of the X-P with increasing � has been

discussed in a continuum model with acoustic phonons and
�=−.21

From the �=− results for the E-H correlation function in
Fig. 5 we see that the E-H separation is small in the HXM,
whereas the pair is spread out in the FXM. For the HXM
with 
=0.4, we find a charge-transfer X-P with E and H
mainly on neighboring sites. Note that for �=−, Coulomb
and carrier-phonon interaction have swapped roles as com-
pared to bipolaron formation where the lattice coupling cre-
ates an attractive interaction that competes with Coulomb
repulsion.37 Turning to the E-phonon correlation functions in
Fig. 5, we have Ceph�0 for small r, but Ceph�0 at larger
distances as a result of the opposite distortions created by the
hole. Again, the extent of the distortions is much larger for
the FXM.

Real materials will require more detailed modeling, but
we note that charge-transfer Xs in oxides will be better mod-
eled by �=− �for breathing modes�, whereas the character-
istic case for a direct X in a neutral semiconductor would be
�=+.

V. CONCLUSIONS

In summary, we have studied the exciton-polaron problem
with quantum phonons by Monte Carlo simulations. Our
simple models encompass short- and long-range carrier-
phonon interaction of either the same or opposite sign for
electron and hole. There are no sharp transitions with in-
creasing carrier-phonon coupling, and for couplings of oppo-
site sign the exciton radius increases with increasing cou-
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pling as a result of polaron-polaron repulsion. To capture this
effect �depending on polaron size which is affected by nona-
diabaticity� relative electron-hole motion and quantum pho-
non fluctuations must be taken into account. Our findings are
expected to be important in materials with relatively small
excitons such as organics and transition metal oxides, al-
though more realistic models will have to be studied for
direct comparison.

The present study motivates future work in a number of
different directions, including more general models with re-
spect to band structure, phonon dispersion, spin dependence,
disorder, or dimensionality, and many-X-P as well as

X-polariton problems. To this end, the development of more
elaborate numerical approaches is highly desirable, permit-
ting investigations of spectral properties routinely studied
experimentally or even time-resolved studies of X
formation.3,38
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