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We consider the three-dimensional ±J model defined on a simple cubic lattice and study its behavior close
to the multicritical Nishimori point, where the paramagnetic-ferromagnetic, the paramagnetic-glassy, and the
ferromagnetic-glassy transition lines meet in the T-p phase diagram �p characterizes the disorder distribution
and gives the fraction of ferromagnetic bonds�. For this purpose, we perform Monte Carlo simulations on cubic
lattices of size L�32 and a finite-size-scaling analysis of the numerical results. The magnetic-glassy multi-
critical point is found at p*=0.768 20�4�, along the Nishimori line given by 2p−1=tanh�J /T�. We determine
the renormalization-group dimensions of the operators that control the renormalization-group flow close to the
multicritical point, y1=1.02�5�, y2=0.61�2�, and the susceptibility exponent �=−0.114�3�. The temperature
and crossover exponents are �=1/y2=1.64�5� and �=y1 /y2=1.67�10�, respectively. We also investigate the
model-A dynamics, obtaining the dynamic critical exponent z=5.0�5�.
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I. INTRODUCTION

The ±J Ising model provides an interesting theoretical
laboratory to study the effects of quenched random disorder
and frustration in Ising systems. It is defined by the lattice
Hamiltonian

H = − �
�xy�

Jxy�x�y , �1�

where �x= ±1, the sum is over the nearest-neighbor sites of a
simple cubic lattice, and the exchange interactions Jxy are
uncorrelated quenched random variables, taking values ±J
with probability distribution

P�Jxy� = p��Jxy − J� + �1 − p���Jxy + J� . �2�

In the following we set J=1 without loss of generality. For
p=1 we recover the standard ferromagnetic Ising model,
while for p=1/2 we obtain the bimodal Ising spin-glass
model. The ±J Ising model is a simplified model1 for disor-
dered spin systems showing glassy behavior in some region
of their phase diagram, such as Fe1−xMnxTiO3 and
Eu1−xBaxMnO3; see, e.g., Refs. 2–4. The random nature of
the short-ranged interactions is mimicked by nearest-
neighbor random bonds.

The T-p phase diagram of the three-dimensional ±J Ising
model is sketched in Fig. 1 for 1� p�1/2 �it is symmetric
for p→1− p�. The high-temperature phase is paramagnetic
for any p. The nature of the low-temperature phase depends
on the value of p: it is ferromagnetic for small values of
1− p, while it is glassy with vanishing magnetization for suf-
ficiently large values of 1− p. The paramagnetic and low-
temperature ferromagnetic and glassy phases are separated
by different transition lines, which meet at a magnetic-glassy
multicritical point �MGP� located at p*, T*, and usually
called the Nishimori point.

The paramagnetic-ferromagnetic �PF� transition line starts
from the Ising transition at p=1 and extends up to the MGP
at p= p*. For p=1 the transition belongs to the Ising univer-

sality class, while for any 1	 p	 p* it belongs to the ran-
domly dilute Ising �RDIs� universality class,5,6 characterized
by the magnetic critical exponents7,8 � f =0.683�2� and
� f =0.036�1�. The Ising transition at p=1 is a multicritical
point and, close to it, for 0
1− p�1, one observes a
multicritical behavior6,9,10 with crossover exponent �=�Is,
where11 �Is=0.1096�5� is the Ising specific-heat exponent.
The paramagnetic-glassy �PG� transition line starts from the
MGP and extends up to p=1/2. A reasonable hypothesis is
that the critical behavior is independent of p along the PG
line, i.e., that a nonzero average value �Jxy� of the bond
variables is irrelevant at the glass transition, as found in
mean-field models.12 Assuming this scenario, for any
1− p*
 p
 p* the PG transition belongs to the same univer-
sality class as that of the bimodal Ising spin-glass model at
p=1/2. Its critical behavior has been widely investigated
�see, e.g., Refs. 13 and 14 and references therein�, and it
is characterized by the overlap exponents �g�2.4 and
�g�−0.4.

As argued in Refs. 15–17, the MGP is located along the
so-called Nishimori line18,19 �N line� defined by the relation

v 	 tanh  = 2p − 1, �3�

where 	1/T, which allows us to define a Nishimori tem-
perature
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FIG. 1. �Color online� Phase diagram of the three-dimensional
±J Ising model in the T-p plane. The phase diagram is symmetric
for p→1− p.
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N�p� =
1

TN�p�
=

1

2
ln

p

1 − p
�4�

for each value of p. The ±J Ising model along the N line
presents several interesting properties. The internal energy
has been computed exactly along the N line:18

EN�p� =
1

V
��H�TN�p�� = 6p − 3, �5�

where the angular and square brackets refer, respectively, to
the thermal average and the quenched average over the bond
couplings 
Jxy�. Along the N line several other remarkable
relations hold, such as18

��AX�� = ��AX�2� , �6�

where AX is an arbitrary product of spin variables �x, and
also16

G2i+1�x� = G2i+2�x�, i = 1,2,… , �7�

where Gk�x�	���0�x�k�. As a consequence of Eq. �7�, the
magnetic correlation function G1�x� and the overlap correla-
tion function G2�x� are equal along the N line. The N line
separates the regions where magnetic and glassy fluctuations
dominate. Arguments based on local gauge invariance15–17

show that the MGP must be located along the N line, so that
T*=TN�p*�. At the MGP, magnetic and glassy fluctuations
become critical simultaneously.

At fixed p an important inequality holds:14,18

����i� j�T�� � ����i� j�TN�p��� , �8�

where the subscripts indicate the temperature of the thermal
average. This relation shows that ferromagnetism can exist
only in the region p	 p* and that the system is maximally
magnetized along the N line. Reference 20 �see also Refs. 19
and 21� also reports an argument that indicates that the
ferromagnetic-glassy �FG� transition line coincides with the
line p= p*, from T=T* to T=0. This conjecture is contra-
dicted by recent results for the two-dimensional ±J
model22–24 and for the three-dimensional random-plaquette
gauge model,22 which is the dual of the ±J model. Violations
are in any case quite small. We mention that a mixed low-
temperature phase,25 in which ferromagnetism and glass or-
der coexist, is found in mean-field models12 such as the
infinite-range Sherrington-Kirkpatrick model.26 Its presence
has been confirmed in the ±J Ising model defined on Bethe
lattices.27 However, there is no evidence of this mixed phase
in the ±J Ising model on a cubic lattice28 and in related
models.29 Nevertheless, the existence of such a mixed phase
is still an open problem, as discussed in Ref. 27.

In this paper we consider the ±J model and perform
Monte Carlo �MC� simulations along the N line close to the
MGP. By performing a finite-size-scaling �FSS� analysis, we
locate the multicritical point along the N line, finding
p*=0.768 20�4�. We determine the renormalization-group
�RG� dimensions y1 and y2 of the relevant operators that
control the RG flow close to the MGP and the exponent �
that gives the critical behavior of the magnetic and of the
overlap susceptibility. We obtain y1=1.02�5�, y2=0.61�2�,

and �=−0.114�3�. The temperature and crossover exponents
are �=1/y2=1.64�5� and �=y2 /y1=1.67�10� respectively.
We also use our numerical results to estimate the dynamic
critical exponent z that characterizes the model-A dynamics30

at the MGP, i.e., a relaxational dynamics without conserved
order parameters. We obtain z=5.0�5�. Our results signifi-
cantly improve those obtained in previous work.31–36

The paper is organized as follows. In Sec. II we summa-
rize the theoretical results we need in our numerical analysis.
In Sec. III we report our numerical results. We estimate the
position of the MGP and the critical exponents y1, y2, and �
in Sec. III A, while in Sec. III B we give an estimate of the
exponent z for the Metropolis dynamics we use, which is a
specific example of a relaxational dynamics without order
parameters �the so-called model-A dynamics�. In Sec. IV we
summarize our results. In the Appendix we report some
notation.

II. SUMMARY OF THEORETICAL RESULTS

In the absence of external fields, the critical behavior at
the MGP is characterized by two relevant RG operators. The
singular part of the free energy averaged over disorder in a
volume of size L can be written as

Fsing�T,p,L� = L−df�u1Ly1,u2Ly2,
uiL
yi��, i � 3, �9�

where y1	y2	0, yi
0 for i�3, ui are the corresponding
scaling fields, and u1=u2=0 at the MGP. In the infinite-
volume limit and neglecting subleading corrections, we have

Fsing�T,p� = �u2�d/y2f±�u1�u2�−��, � = y1/y2 	 1, �10�

where the functions f±�x� apply to the parameter regions in
which ±u2	0. Close to the MGP, all transition lines corre-
spond to constant values of the product u1�u2�−� and thus,
since �	1, they are tangent to the line u1=0.

The scaling fields ui are analytic functions of the model
parameters T and p. Using symmetry arguments, Refs. 16
and 17 showed that one scaling axis is along the N line, i.e.,
that the N line is tangent to either the line u1=0 or u2=0.
Since the N line cannot be tangent to the transition lines at
the MGP and these lines are tangent to u1=0, the first possi-
bility is excluded. Thus, close to the MGP the N line corre-
sponds to u2=0. Thus, we identify16,17

u2 = v − 2p + 1. �11�

As for the scaling axis u1=0, �	6−d expansion calculations
predict it17 to be parallel to the T axis. The extension of this
result to d=3 suggests

u1 = p − p*. �12�

Note that, if Eq. �12� holds, only the scaling field u2 depends
on the temperature T. We may then identify �=1/y2 as the
critical exponent associated with the temperature, and rewrite
Eq. �10� as

Fsing�T,p� = �t�d�f±�g�t�−�� , �13�

where t	�T−T*� /T*, g	 p− p*, and � is the crossover ex-
ponent.
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These results give rise to the following predictions for the
FSS behavior around T*, p*. Let us consider a RG-invariant
quantity R, such as R�	� /L, U4, U22, which are defined in
the Appendix, and its derivative R� with respect to 	1/T.
In general, in the FSS limit R obeys the scaling law

R = R�u1Ly1,u2Ly2,
uiL
yi��, i � 3. �14�

Neglecting the scaling corrections, that is, terms vanishing in
the limit L→�, close to the MGP we expect

R = R* + b11u1Ly1 + b21u2Ly2 + ¯ , �15�

which is valid as long as u1Ly1 is small. Along the N line, the
scaling field u2 vanishes, so that we can write

RN = R* + b11u1Ly1 + ¯ , �16�

where the subscript N indicates that R is restricted to the N
line. Let us now consider the derivative of R with respect to
. Differentiating Eq. �15�, we obtain

R� = b11u1�L
y1 + b21u2�L

y2 + ¯ . �17�

If Eq. �12� holds, then u1�=0, so that

R� = b21u2�L
y2 + ¯ . �18�

This result gives us a method to verify the conjecture of Ref.
17: once y1 has been determined from the scaling behavior of
a RG-invariant ratio close to the MGP, it is enough to check
the scaling behavior of R�. If R� scales as Lx with x
y1, the
conjecture is confirmed and x provides an estimate of y2.

Finally, we consider the magnetic susceptibility. Along the
N line it behaves as

�N = eL2−��1 + e1u1Ly1 + ¯ � . �19�

Note that there is only one � exponent which characterizes
the critical behavior of both the magnetic and overlap corre-
lation functions,16 since they are equal along the N line �see
Eq. �7��.

III. RESULTS

In the following we present a FSS analysis of
high-statistics MC data along the N line close to the
MGP. We performed MC simulations for lattice sizes
L=8,12,16,24,32, taking periodic boundary conditions. We
used a standard Metropolis algorithm and multispin coding
�details can be found in Ref. 6�. Most of the simulations
correspond to values of p in the range 0.7680� p�0.7685,
i.e., very close to the MGP, which, as we show below, is
located at p*=0.768 20�4�: typically, we considered six val-
ues of p in this range for each value of L. To obtain small
statistical errors, we generated a large number of samples:
2�105 for L�16, 105 for L=24, and 4�104 for L=32.
Because of the long equilibration times, for each sample we
performed a large number of Metropolis sweeps; for L=16,
24, and 32, the number of sweeps is 106, 8�106, and
5�107, respectively. To guarantee equilibration, typically
30% of the data were discarded �but, for L=32, we discarded
50% of the data�. All MC data are available on request. Be-
low we report the results of the analyses: in Sec. III A we

consider the static exponents, while in Sec. III B we focus on
the dynamics.

A. Static exponents

MC estimates of the RG-invariant quantities R�, U4, and
Ud along the N line are shown in Fig. 2. There is clearly a
crossing point at p�0.7682, which provides a first rough
estimate of the location of the MGP point. In order to esti-
mate precisely p*, T*, and y1, we fit the renormalized cou-
plings R close to the MGP to

R = R* + a� − *�Ly1, �20�

keeping R*, *, and y1 as free parameters. Note that this
functional form relies on the property that u2=0 along the N
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FIG. 2. �Color online� MC data of R�	� /L, U4, and Ud vs p.
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line. Otherwise, an additional term of the form �−*�Ly2

should be added. We also neglect scaling corrections that
behave as cLy3 with y3
0. Indeed, since we have data in
only a limited range of values of L, we are not able to in-
clude reliably a correction of this type.

Fits that involve R� and U22 have an acceptable �2 even if
we include all data with L�8: there is no evidence of scaling
corrections. On the other hand, in fits of U4 or Ud the data
with L=8 must be discarded to obtain a good �2. To obtain
more accurate estimates, we have performed combined fits in
which several RG-invariant quantities are fitted together. The
results are reported in Table I. The dependence on the ob-
servables used in the fit is reasonably small and allows us to
estimate

* = 0.5991�1� , �21�

y1 = 1.02�5� . �22�

The errors take into account the variation of the estimates
with the different observables used in the fits �note that sta-
tistical errors are much smaller�. Since scaling corrections
are expected to differ in the different observables, this should
allow us to take indirectly into account the scaling correc-
tions. We have then T*=1/*=1.6692�3�, and, by using
Eq. �3�,

p* = 0.768 20�4� . �23�

In Table I we also report estimates of the critical value of the
RG renormalized couplings. Note that U22

* �0.318, which is
significantly higher than the corresponding result for the
RDIs universality class, U22

* =0.1479�6�.7 This indicates37

that the violations of self-averaging are much stronger at the
MGP than along the PF transition line, as of course should be
expected.

We consider now the derivative R� of the RG-invariant
quantities with respect to . They have been determined by
considering the connected correlations of R and of the
Hamiltonian. At the critical point, R� is expected to behave
as Lx for large L, where x=y2, if the argument of Ref. 17
holds; otherwise, one should have x=y1. In order to deter-
mine x, we fit ln R� to

ln R� = a + x ln L + b� − *�Ly1, �24�

keeping y1 fixed to y1=1.02�5�. To avoid fixing c we per-
form combined fits in which one derivative R1� and one RG
coupling R2 are fitted together. The results are reported in
Table II. The �2 of the fit is always good except when we use
Lmin=8 and U4�. If we do not consider the corresponding
results, all estimates of x are close to 0.61. Analyses of R�� are

apparently stable with Lmin, while those of U4� show a slight
upward trend. A reasonable final estimate is x=0.61�2�,
which takes into account all results with their error bars. This
result is significantly different from y1 and thus confirms the
argument of Ref. 17. Since x
y1, x should be identified with
y2. Therefore, we obtain the estimates

y2 = 0.61�2�, � =
1

y2
= 1.64�5� . �25�

The crossover exponent is therefore

� =
y1

y2
= 1.67�10� . �26�

The same analysis used to estimate y2 can be employed to
determine �. Instead of �, we consider the ratio Z	� /�2,
which has smaller statistical errors. Since ZL−� for
L→� at the critical point, we fit the MC data to

ln Z = a − � ln L + b� − *�Ly1.

As before, we fix y1 and perform combined fits of ln Z with
a RG-invariant coupling, considering only data satisfying
L�Lmin. Fits of Z and R� give �=−0.1155�6� and
−0.1154�9� for Lmin=8,12; if we use U22 instead of R�, we
obtain �=−0.1134�7� and −0.1131�9� for Lmin=8,12. The
Lmin dependence is small and results change only slightly
with the observable. We take as our final estimate

TABLE I. Results of combined fits. The first fit uses all data with L�8, the last two fits only those with
L�12. DOF is the number of degrees of freedom of the fit.

�2 /DOF * y1 U22
* R�

*

U22, R� 0.88 0.59910�2� 1.02�5� 0.3180�3� 0.5648�3�
U22, R�, Ud 1.43 0.59902�2� 1.02�4� 0.3189�3� 0.5640�4� Ud

*=1.2137�3�
U22, R�, U4 0.62 0.59914�2� 1.01�5� 0.3178�3� 0.5656�4� U4

*=1.5302�6�

TABLE II. Estimates of x. We report results obtained by analyz-
ing simultaneously two different quantities and including only data
satisfying L�Lmin. DOF is the number of degrees of freedom of
the fit.

Lmin �2 /DOF * x

R�, R�� 8 0.92 0.59905�3� 0.600�2�
12 0.70 0.59912�3� 0.609�4�
16 0.64 0.59910�4� 0.604�7�

U22, R�� 8 0.69 0.59929�6� 0.602�2�
12 0.55 0.59936�7� 0.611�4�
16 0.46 0.59934�10� 0.607�7�

R�, U4� 8 2.06 0.59907�3� 0.579�3�
12 0.71 0.59912�3� 0.611�5�
16 0.60 0.59910�4� 0.619�9�

U22, U4� 8 1.60 0.59937�6� 0.569�3�
12 0.55 0.59936�6� 0.601�6�
16 0.43 0.59934�10� 0.607�10�
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� = − 0.114�3� . �27�

Our FSS results significantly improve earlier results. Refer-
ence 33 reports the computation and analysis of the 34th-
order high-temperature �HT� series of some susceptibilities

�m,n =
1

V
�
ij

��sisj�m�n �28�

along the N line, obtaining p*=0.7656�20�, y1=1.18�11�, �
	y1 /y2=1.85�14�, �=−0.10�2�. These estimates are sub-
stantially consistent with ours. As a further check, we reana-
lize the 34th-order HT series reported in Ref. 33, by biasing
the value of the critical point with the MC estimate �21�.
Using biased first-order integral approximants �see, e.g.,
Ref. 11 for details�, we obtain �2−�� /y1=2.08�7� from the
series of �11, �1−2�� /y1=1.25�17� from the series of �22,
3 /y1=3.03�14� from the series of the ratio �11

2 /�22, and
�2−�−y2� /y1=2.70�9� from v��21/�v, from which we can
derive the estimates y1=0.99�5�, �	y1 /y2=1.6�3�, and
�=−0.1�1�, which are in good agreement with our FSS
results.

Other results can be found in Refs. 31, 32, and 35; they
are apparently less precise and not consistent with ours
within the reported errors. For example, we mention the re-
cent estimates p*=0.7673�3� obtained by off-equilibrium
MC simulations36 and p*�0.622 obtained by a RG study.35

Note that estimate �23� and the conjecture38 of Refs. 39 and
40 allow us to find the location of the multicritical point that
occurs in the three-dimensional random-plaquette gauge
model. We obtain pgauge

* =0.9650�1�, which is in agreement
with, though much more precise than, the result of Ref. 41,
pgauge

* =0.967�4�.

B. Model-A dynamic exponent z

Finally, we present some results on the dynamic behavior
of the Metropolis algorithm, which represents a particular
implementation of a relaxational dynamics without con-
served order parameters �model-A dynamics�.30 Note that at
the MGP there is only one dynamic exponent z characteriz-
ing the relaxation of both the magnetic and the glassy critical
modes, since their autocorrelation functions are strictly equal
along the N line.36 In Fig. 3 we show estimates of the expo-
nential autocorrelation time � at the MGP as extracted from
the connected autocorrelation function of the magnetic sus-
ceptibility

G��t1 − t2� 	 ����t1���t2��c� . �29�

For large L and T=T*, � is expected to scale as Lz, where z is
the dynamic critical exponent. A linear fit of the MC results
to ln �=a+b ln L gives the estimate z=5.0�5�, which is sig-
nificantly larger than the value at the PF transition line
z=2.35�2�.42 Instead this estimate is close to the value of z
obtained for the bimodal Ising spin-glass model, z=5.7�2�.43

We also determine the exponent � which describes the
nonequilibrium relaxation of the magnetization at Tc from a
starting configuration in which all spins are parallel.36 As-
ymptotically, for t→�, one expects

M�t�  t−�, � =
1 + �

2z
; �30�

see, e.g., Ref. 36 and references therein. Our results lead to
the estimate �=0.09�1�, which is perfectly consistent with
the estimate36 �=0.090�3� obtained in off-equilibrium MC
simulations.

IV. CONCLUSIONS

In this paper we have considered the critical behavior
close to the MGP that is present in the phase diagram of the
±J model. Our main results are the following.

�i� We have obtained an accurate estimate of the location
of the MGP: p*=0.768 20�4�, *=0.5991�1�. It is worth ob-
serving that our estimate of p* is very close to the result28

pc=0.778�5� for the location of the FG transition at T=0 and
satisfies the rigorous inequality pc� p* which follows from
Eq. �8�. Our results show therefore that, even if the
conjecture20,21 that the FG transition line does not depend on
the temperature is not true, deviations are quite small.

�ii� We have verified the conjecture of Ref. 17: the scaling
field u1 associated with the RG operator with the largest RG
dimension does not depend on the temperature.

�iii� We have determined the critical exponents
y1=1.02�5�, y2=0.61�2�, �	1/y2=1.64�5�, �
	y1 /y2=1.67�10�, and �=−0.114�3�.

�iv� We have determined the dynamic critical exponent z
associated with the model-A dynamics, obtaining z=5.0�5�.

Our results are significantly more precise than those ob-
tained in previous work.31–36 They can be used to explain
experiments on materials containing both ferromagnetic and
antiferromagnetic ions. An example is FexMn1−xTiO3, which
shows Ising behavior for x=1 and 0, a PG transition for
0.38�x�0.58, and a PF transition for 0
x�0.38 and
0.58�x
1.44,45 The MGP should be located at x�0.38 and
at x�0.58. Close to these values our results apply.
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APPENDIX: NOTATIONS

Setting

Gk�x� 	 ���0�x�k� , �A1�

where the angular and square brackets indicate, respectively,
the thermal average and the quenched average over Jxy, the
magnetic and overlap correlation functions are given, respec-
tively, by G1�x� and G2�x�. Along the N line �cf. Eq. �3��,
G1�x�=G2�x�.

We define the magnetic susceptibility �	�xG1�x� and the
correlation length �,

�2 	
G̃1�0� − G̃1�qmin�

q̂min
2 G̃1�qmin�

, �A2�

where qmin	�2� /L ,0 ,0�, q̂	2 sin q /2, and G̃1�q� is the
Fourier transform of G1�x�. We also consider quantities that
are invariant under RG transformations in the critical limit.
In addition to the ratio

R� 	 �/L , �A3�

we consider the quartic cumulants U4, U22, and Ud defined
by

U4 	
��4�
��2�2 , �A4�

U22 	
��2

2� − ��2�2

��2�2 ,

Ud 	 U4 − U22,

where

�k 	 ���
x

�x�k� . �A5�

Analogous quantities R�
o, U4

o, U22
o , and Ud

o can be defined by
using the overlap variable qx	�x

�1��x
�2�, where the super-

scripts indicate two independent configurations for given dis-
order. Using Eq. �6�, one can easily check that along the N
line R�=R�

o and U4=U4
o. This implies that also their fixed-

point values are the same at the MGP.
Finally, we consider the derivatives

R�� 	
dR�

d
, U4� 	

dU4

d
, �A6�

which can be computed by measuring appropriate expecta-
tion values at fixed  and p.
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