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The splitting patterns of point defect energy levels in wurtzite crystals under uniaxial stress are derived for
stress applied along an arbitrary crystal direction. The nonsymmorphic wurtzite crystal has a hexagonal point
group C6v, while point defects in the crystal belong to one of either the trigonal �C3v and C3�, monoclinic
�C1h�, or triclinic �C1� symmetry classes. Trigonal defects may possess both intrinsic and orientational degen-
eracies �apart from time-reversal degeneracy�, while the monoclinic and triclinic defects possess only orienta-
tional degeneracy �again neglecting time-reversal degeneracy�. The splitting patterns of the energy levels of
defects belonging to these classes are derived for uniaxial stress along arbitrary directions and the contributions
to the various stress-split components from the different inequivalent orientations are indicated. The results of
the theoretical analyses are compared with a selection of experimental results from the literature and good
agreement is found in all cases. The general equations provided here should prove to be very valuable for the
interpretation of uniaxial stress data for all wurtzite crystals.
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I. INTRODUCTION

Semiconductors crystallizing in the wurtzite space group
such as GaN and ZnO have assumed positions of increasing
technological importance in photonics and optoelectronics in
the past decade.1–4 This increasing technological importance
has led to many studies of point and other defects in these
materials for the purpose of understanding the nature of these
defects and, particularly, their effects on doping.5–7 Compari-
sons of experimental results with theoretical predictions of
defect structures have been reported, including a limited
number of optical studies of point defects under hydrostatic
and uniaxial stress, in order to study the defect symmetry and
compare the observed shift rates and symmetries with those
predicted for computationally derived structures.8–10 In addi-
tion, important recent �and more established� results indicate
that effective routes to p-type doping in ZnO may rely pri-
marily on defect complexes rather than isolated substitu-
tional defects,11–13 and this may explain the rather checkered
history of success of p-type doping methods in ZnO. Defect
complexes by their nature tend to have lower point group
symmetry compared to substitutional dopants, and the ex-
perimental identification of the symmetry of these complex
structures and their relationship to computationally predicted
structures will be extremely important in assessing the effec-
tiveness of proposed defect complex p-type doping
methods.11–13

The uniaxial stress technique �also known as piezospec-
troscopy� is a powerful technique for optical spectroscopic
studies of defects in crystals and can enable unambiguous
identification of defect symmetries and yield values for stress
shift rates �including hydrostatic shift rates� which can be
compared to predictions from ab initio computational stud-
ies, particularly in the case of local vibrational mode spec-
troscopy. The technique is particularly powerful where the
optical spectra of defects display narrow lines because stress-
induced shifts and splittings can be clearly determined, and
thus is potentially very useful for defects in, e.g., high qual-
ity single crystals of ZnO.1

In spite of the wealth of useful information which can be
obtained using this technique, there are relatively few optical
spectroscopic studies of wurtzite crystals under uniaxial
stress compared to cubic crystals. There are a number of
reports on the variation of electrical parameters with uniaxial
stress14,15 and of the effects of biaxial and inhomogeneous
stresses on thin film properties.16,17 A number of authors
have reported the behavior of the ZnO near band-edge free
exciton luminescence and/or reflectance under uniaxial stress
applied along high symmetry directions.18,19 In parallel, de-
tailed group-theoretical analyses have appeared describing
the free exciton behavior where orientational degeneracy ef-
fects are not present.20 In one of these reports on ZnO, a
shallow bound exciton luminescence feature has also been
observed and its stress behavior reported, though not
analyzed.19 Apart from free exciton studies, however, there
have been very few reports of uniaxial stress optical studies
specifically on point defects in wurtzite crystals, where both
intrinsic and orientational degeneracies may be present, and
the reports which have appeared have been concentrated on
the effects of uniaxial stress applied along the highest sym-
metry directions in the crystal only.9,10,21–23 The analyses of
the splitting patterns obtained have concentrated on the main
features such as removal of orientational degeneracy in order
to deduce the symmetry. To date, there has been no analysis
of the relationships between the shift rates of the stress-split
components and the number of independent parameters
needed to fully describe these splittings and shift rates for
defects in wurtzite crystals, using symmetry and group-
theoretical methods, for stress along an arbitrary crystal di-
rection. For defects in other hexagonal crystals, such as sap-
phire, a partial study of these stress pattern relationships has
been reported for chromium ion pair defects but only for
stresses perpendicular to the c axis along high symmetry
directions in the basal plane.24,25

Bearing in mind the potential importance of defect sym-
metry identification to the assessment of potential p-type
doping methods and the lack of a detailed, general analysis
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of the effects of stress on point defects in wurtzite crystals
commented upon above, a general analysis of the expected
splitting patterns of energy levels of defects in wurtzite crys-
tals for uniaxial stresses applied along arbitrary crystal direc-
tions, similar to those undertaken for cubic crystals by our
group and other workers,26–29 would therefore be very useful
for convenient comparison with, and interpretation of, ex-
perimental data. A general analysis of this nature would also
be particularly timely as research attention shifts to the
growth of wurtzite semiconductor thin films with nonpolar
and mixed polarity surfaces, e.g., in order to improve device
performance,30–32 where the applied stress in uniaxial stress
studies will most likely be along directions other than the c
axis or basal plane axes, particularly in the latter case of
mixed polarity surfaces.

The purpose of this paper is therefore to provide a general
analysis, by the application of group-theoretical consider-
ations, of splitting patterns of energy levels �electronic or
local vibrational� of point defects in wurtzite crystals for
uniaxial stresses applied along arbitrary crystal directions.
The results of these analyses are compared with experimental
data from sources in the literature,10 and in all cases, good
agreement is found between the theoretical results and a va-
riety of experimental data.

The analyses contained in this paper may be used in the
first instance to ascertain the defect symmetry, from which

more detailed models which describe the �polarized� inten-
sity patterns of transitions and the stress-induced interactions
between levels can be generated and from which more de-
tailed information on the nature of the spectroscopic transi-
tions and interacting states may be obtained. Accurate deter-
mination of the defect symmetry will also enable easy
comparison with proposed defect structures generated by
computational studies of defect formation.

II. THEORETICAL OUTLINE

We use an orthonormal Cartesian coordinate system in the
wurtzite crystal for the specification of both the applied
stress direction �by giving the direction cosines or a constant
multiple thereof; �, �, and �� and the components of the
stress tensor �Sij�. The Cartesian set of axes is shown in Fig.
1�a�. We choose Z parallel to �0001� and X and Y parallel to
�10−10� and �−12−10� �Miller-Bravais notation�, respec-
tively. The relationships between the stress direction speci-
fied with respect to the Cartesian axes �in terms of �, �, and
�� and with respect to the conventional hexagonal basis us-
ing three indices �Miller notation; specified by U, V, and W�
are given below in Eq. �1�, where a and c are the lattice
constants of the wurtzite lattice parallel and perpendicular to
the basal plane, respectively. The relationship between the
three index hexagonal Miller notation and the four index
hexagonal Miller-Bravais notation �specified by u, v, t, and
w� for directions is given in standard textbooks.33

��

�

�
� = �

�3a/2 0 0

− a/2 a 0

0 0 c
��U

V

W
� . �1�

The effect of inequivalent defect orientations with respect to
the applied stress is dealt with by assuming a single fixed
defect �thus fixing the form of the stress potential in terms of
the stress tensor components� and applying the operations of
the full point group of the wurtzite structure �C6v� to the
stress direction vector to generate 12 inequivalent uniaxial
stress direction vectors. This procedure is entirely equivalent
to fixing the stress direction and generating inequivalent de-
fect orientations by applying group operators to the local
defect axes. The stress tensor components corresponding to
each of these stress directions are then used with the stress
potential of the fixed defect to calculate the shifts and/or
splitting of the energy levels. For defects with a symmetry
higher than triclinic, some of these stress directions will
yield identical results, i.e., orientational degeneracy.

For a stress applied along a direction with Cartesian di-
rection cosines �� ,� ,��, the full set of associated inequiva-
lent stress directions is given in Eq. �2� below �numbered
1–12�, and each is labeled with the group operation which
generated this direction from the original �� ,� ,�� direction.
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FIG. 1. �a� Top view �along the c axis direction� of the wurtzite
crystal. The X, Y, and Z axes referred to in the text are shown. The
inset shows the standard hexagonal basis vectors in the basal plane
and two orthogonal directions in the basal plane specified by the
Miller-Bravais notation. �b� Top view �along the c axis direction� of
the wurtzite crystal showing the family of �d

i reflection planes re-
ferred to in the text. The images were created using CrystalMaker, a
crystal and/or molecular structure program for Mac and Windows
�Ref. 48�.
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C6v =�
�,�,�

− �,− �,�
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��
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−1

4 − C3

5 − C6

6 − C6
−1

7 − �d
1

8 − �d
2

9 − �d
3

10 − �v
1

11 − �v
2

12 − �v
3

� .

�2�

The rotations �C2 ,C3 ,C3
−1 ,C6 ,C6

−1� are about the Z axis. In
the wurtzite lattice, the C2, C6, and C6

−1 operations are asso-
ciated with a displacement of c /2 along the Z direction;34

however, this does not affect the calculation of stress direc-
tions. One of the set of reflection operations �d

i shown in Fig.
1�b�, the operation labeled �d

2, corresponds to a reflection
plane coincident with the X-Z plane. The other members of
this set are at 120° intervals. The set of reflections �v

i is
located between the �d

i planes and is also associated with a
displacement of c /2 along the Z direction. Operations con-
taining the c /2 displacement cannot form part of the point
group of a point defect in the crystal, as mentioned below.

The 12 rows in the matrix C6v correspond to the 12 in-
equivalent �x ,y ,z�-type directions for a wurtzite crystal. The
stress tensor components Sij are defined by

Sij = �S�cos�S,i�cos�S, j�, i, j � X,Y,Z , �3�

where �S� is the magnitude of the applied stress and cos�S , i�
is the cosine of the angle between the direction of the stress
vector S and the ith crystal axis. The orthonormal crystal
axes X, Y, and Z are defined in component notation as

X = �1

0

0
� Y = �0

1

0
� Z = �0

0

1
� �4�

The values of the stress tensor components can be calculated
using the intermediate matrices Sj as follows �where “*” de-
notes ordinary matrix multiplication�:

SX = C6v * X ,

SY = C6v * Y ,

SZ = C6v * Z . �5�

The Sij stress tensor is calculated using the element by ele-
ment array product as defined in MATLAB® �Ref. 35� �de-
noted by “ **” below� of the Si and Sj matrices from Eq. �5�
above.

Sij = Si * * Sj, i, j � X,Y,Z . �6�

For all the point defect classes we consider �trigonal, mono-
clinic, and triclinic�, the defect axes of one defect orientation
can be aligned with the crystal axes X, Y, and Z, as indicated
below, and thus the transformation properties of the stress
tensor components can be identified from standard tables on
group theory.36 We therefore use this orientation as the fixed
defect orientation for that class of defects and consider
stresses along the 12 inequivalent directions �Eq. �2� above�.
Using the general principles outlined by Kaplyanskii26 and
Mohammed et al.,28 we note that the effect of an applied
stress on a defect can be written in terms of the stress poten-
tial. Different level shifts and/or splittings will in general
result from the 12 inequivalent directions and these provide
the full information on the splitting pattern of the ensemble
of inequivalent defects under the applied stress.

III. RESULTS

The nonsymmorphic wurtzite crystal has a hexagonal
point group C6v.34 The C2, C6,C6

−1, �v
1, �v

2, and �v
3 operations

of the C6v group are all associated with a c /2 displacement
operation parallel to the c-axis direction of the wurtzite lat-
tice, and thus no point in the lattice is left fixed under such
operations and therefore groups containing these operations
cannot be associated with point defects in the wurtzite struc-
ture �this may be contrasted with certain glide operations
such as the inversion operation in the nonsymmorphic dia-
mond lattice�. Thus, point defects in the crystal belong to one
of either the trigonal �C3v and C3�, monoclinic �C1h�, or tri-
clinic �C1� classes. Trigonal defects may possess both intrin-
sic �orbital, sometimes called electronic� and orientational
degeneracies �apart from time-reversal degeneracy�. Mono-
clinic and triclinic defects possess only orientational degen-
eracy �again neglecting time-reversal degeneracy�. The ori-
gin of coordinates of the wurtzite lattice is generally chosen
not at an atomic position, but for the lower symmetry groups
associated with point defects, we can choose the origin of
coordinates to be coincident with an atomic position, as
shown in Fig. 1�a�. In all cases, we use the notation and
conventions for the group representations given in Ref. 36.
The MATLAB® files used for the computation of the shift
rates for all defect symmetry classes can be obtained by con-
tacting the corresponding author.

A. Trigonal defects

There are two groups in the trigonal class �C3v and C3�.
The local trigonal defect axes naturally align with the lattice
axes and the data from Ref. 36 can be used directly. The
symmetry elements of the defect are then E, C3, C3

−1, �d
1, �d

2,
and �d

3 for C3v and E, C3, and C3
−1 for C3. There are two

situations to be discussed for trigonal defects: �a� nondegen-
erate states �and Kramers’ doublets� discussed in Sec. III A 1
and �b� degenerate states �not Kramers’ doublets� discussed
in Sec. III A 2.

SPLITTING OF POINT DEFECT ENERGY LEVELS IN… PHYSICAL REVIEW B 76, 184109 �2007�

184109-3



1. Trigonal defects: Nondegenerate states (and Kramers’
doublets)

For the case of nondegenerate states, only combinations
of the stress tensor which transform according to the identi-
cal �A1� irreducible representation of the point group lead to
energy shifts and the stress potential is given by Eq. �7�.26,37

The same considerations apply for both groups C3v �repre-
sentations A1 and A2� and C3 �representation A� in this case,
unlike the case for trigonal E states in Sec. III A 2.

Vtrig
nd = At1 * �Sxx + Syy + Szz� + At2 * �2Szz − Sxx − Syy� ,

�7�

where At1 and At2 are operators transforming as the identi-
cal representations of the point group. When the shift rates
for the defect are calculated for the 12 inequivalent stress
directions for an original stress with direction cosines
�� ,� ,��, it is found that no splitting is seen for any stress
direction. The shift rate �energy/wave number shift per unit
applied stress�, Rtrig, for the level in all cases is given by

Rtrig
nd =

At1 * ��2 + �2 + �2� + At2 * �2�2 − �2 − �2�
��2 + �2 + �2�

. �8�

The hydrostatic shift rate is simply given by 3*At1 �i.e., the
stress potential when Sxx=Syy =Szz=1; all other stress tensor
components are zero�. The nondegenerate states are not split
by the application of stress, and the orientational degeneracy
is not lifted for any applied stress direction. This is because

the linear combinations of stress tensor components which
transform according to the A1 identical representation of the
C3v group �and thus contribute to the stress potential in Eq.
�7�� also transform according to the A1 identical representa-
tion of the C6v group. Consequently, they are invariant under
all operations of the wurtzite point group �and indeed are
also invariant under all operations of the larger C�v group�.36

This is not the case for degenerate, E, states as shown in Sec.
III A 2 below, where the effects of orientational degeneracy
are seen.

For degenerate states related by time-reversal symmetry
�Kramers’ doublets37�, the shift rate of the doublet is also
given by Eq. �8�. This applies to representations E1/2 and
	1E3/2 �

2E3/2
 of group C3v and to representations 	1E3/2
�

2E3/2
 and 	A3/2 � A3/2
 of group C3. In all cases, the dual
considerations of time-reversal symmetry and the Hermitic-
ity of the potential operator yield constraints on the matrix
elements. We bear in mind that the standard theorem for a

matrix element 
�k�
j� ,V	k

j� between functions �k�
j� and 	k

j ,
transforming according to the k� row of the 
 j� irreducible
representation and the k row of the 
 j irreducible represen-
tation, respectively, under the action of a potential V �trans-
forming according to an irreducible representation 
V� indi-
cates that the element is zero unless 
 j�

*
�
V�
 j includes

the identical representation. The interaction matrix in the
space spanned by 	1E3/2 �

2E3/2
 in both C3v and C3, in the
space spanned by 	A3/2 � A3/2
 in C3, and in the space
spanned by the irreducible representation E1/2 of C3v is then

��
At1 * �Sxx + Syy + Szz�

+ At2 * �2Szz − Sxx − Syy�
� 0

0 � At1 * �Sxx + Syy + Szz�
+ At2 * �2Szz − Sxx − Syy�

� � , �9�

and thus the time-reversal degenerate levels shift as a pair with the same shift rate as in Eq. �8�.

2. Trigonal defects: Degenerate states

For the case of the twofold degenerate state 
1E �
2E� of a defect with C3 symmetry, it is not possible to analyze the splitting

in a general fashion using group theory as Clebsch-Gordon coefficients are not uniquely defined in the absence of reflection
planes, and the interaction matrix due to the applied potential will thus also not be uniquely defined. Hughes and Runciman
have also noted this point in their discussion of trigonal defects under uniaxial stress in cubic crystals.38 In the case of a
twofold degenerate E state of a defect with C3v symmetry, however, we can use the previously calculated stress interaction
matrix39 for such a system, shown in Eq. �10�:

VWtrig
d =��

A1 * �Sxx + Syy + Szz�
+ A2 * �2Szz − Sxx − Syy�

− B1�Syy − Sxx� − 2B2�Sxz�
� 	2B1Sxy + 2B2Syz


	2B1Sxy + 2B2Syz
 � A1 * �Sxx + Syy + Szz�
+ A2 * �2Szz − Sxx − Syy�

+ B1�Syy − Sxx� + 2B2�Sxz�
�� . �10�

The original level splits into four under the action of stress along an arbitrary direction, with both orientational and electronic
degeneracies lifted. There are two inequivalent orientations of the defect: �a� defect 1, associated with all operations of the C3v
defect point group �operations 1, 3, 4, 7, 8, and 9 in Eq. �2��, and �b� defect 2, associated with all operations of the C6v lattice
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point group not in the defect point group �operations 2, 5, 6, 10, 11, and 12 in Eq. �2��. The originally twofold degenerate
energy level at each defect splits and the splitting is different at defects 1 and 2. The shift rates for an applied stress with
direction cosines �� ,� ,�� are shown in Eq. �11� below.

Rdefect 1
d-trig =

A1 * ��2 + �2 + �2� + A2 * �2�2 − �2 − �2� ± ��B1
2��4 + �4 + 2�2�2� + B2

2�4�2�2 + 4�2�2� + B1B2�12�2�� − 4�3���
��2 + �2 + �2�

,

Rdefect 2
d-trig =

A1 * ��2 + �2 + �2� + A2 * �2�2 − �2 − �2� ± ��B1
2��4 + �4 + 2�2�2� + B2

2�4�2�2 + 4�2�2� − B1B2�12�2�� − 4�3���
��2 + �2 + �2�

.

�11�

The hydrostatic shift rate for such defects is given by 3*A1.

B. Monoclinic defects

There is a single group in the monoclinic class �C1h�. The local monoclinic defect axes align with the lattice axes and the
data from Ref. 36 can be used, simply by noting that our x axis corresponds to the y axis in Ref. 36 and our z axis to the x axis
in Ref. 36 for consistency with our choice of crystal axis labels. The symmetry elements of the defect are then E and �d

2.
Defects with monoclinic symmetry display no orbital degeneracy �beyond time-reversal degeneracy� and thus the splitting of
energy levels is entirely due to orientational degeneracy. Once again, only combinations of the stress tensor which transform
according to the identical �A1� irreducible representation of the C1h point group lead to energy shifts and the stress potential is
given by Eq. �12�.

Vmono = �Am1 * Sxx� + �Am2 * Syy� + �Am3 * Szz� + �Am4 * Sxz� . �12�

There are six inequivalent defect orientations �corresponding to the index of the C1h subgroup in the C6v group� and thus the
line splits into six components �for an applied stress with direction cosines �� ,� ,��� with the shift rates shown below in Eq.
�13�. The inequivalent stress directions from Eq. �2�, which contribute to each component, are shown as superscripts in
parentheses on the left hand side of each equation. The case of Kramers’ doublets under time-reversal symmetry is identical to
that considered in Sec. III A 2 above and the doublets shift together with shift rates given in Eq. �13� below.

Rmono
�1,8� =

�Am1 * �2� + �Am2 * �2� + �Am3 * �2� + �Am4 * ���
��2 + �2 + �2�

,

Rmono
�2,12� =

�Am1 * �2� + �Am2 * �2� + �Am3 * �2� − �Am4 * ���
��2 + �2 + �2�

,

Rmono
�3,9� = ��2�Am1

4
+

3 * Am2

4
� + �2�3 * Am1

4
+

Am2

4
� + �2�Am3� + ����3 * Am1

2
−

�3 * Am2

2
�

+ ���−
Am4

2
� + ���−

�3 * Am4

2
�����2 + �2 + �2� ,

Rmono
�4,7� = ��2�Am1

4
+

3 * Am2

4
� + �2�3 * Am1

4
+

Am2

4
� + �2�Am3� + ���−

�3 * Am1

2
+

�3 * Am2

2
�

+ ���−
Am4

2
� + ����3 * Am4

2
�����2 + �2 + �2� ,

Rmono
�5,11� = ��2�Am1

4
+

3 * Am2

4
� + �2�3 * Am1

4
+

Am2

4
� + �2�Am3� + ����3 * Am1

2
−

�3 * Am2

2
�

+ ���Am4

2
� + ����3 * Am4

2
�����2 + �2 + �2� ,
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Rmono
�6,10� = ��2�Am1

4
+

3 * Am2

4
� + �2�3 * Am1

4
+

Am2

4
� + �2�Am3� + ���−

�3 * Am1

2
+

�3 * Am2

2
�

+ ���Am4

2
� + ���−

�3 * Am4

2
�����2 + �2 + �2� . �13�

The hydrostatic shift rate for such defects is given by Am1+Am2+Am3.

C. Triclinic defects

Triclinic defects are defects showing no symmetry, i.e., only the identity operation leaves them unchanged. For this reason,
they show no natural axis directions and one may of course choose the axis direction of the defect to coincide with the lattice
axes. Defects with triclinic symmetry display no orbital degeneracy �beyond time-reversal degeneracy�. The splitting of energy
levels is entirely due to orientational degeneracy, and using the same approach detailed in previous sections, the stress potential
is given by Eq. �14�.

Vtriclinic = �Atr1 * Sxx� + �Atr2 * Syy� + �Atr3 * Szz� + �Atr4 * Sxy� + �Atr5 * Sxz� + �Atr6 * Syz� . �14�

There are 12 inequivalent defect orientations �corresponding to the order of the C6v group� and thus the line splits into 12
components �for an original stress with direction cosines �� ,� ,��� with the shift rates shown below in Eqs. �15a� and �15b�.
The inequivalent stress directions from Eq. �2�, which contribute to each component, are shown as superscripts in parentheses
on the left hand side of each equation. The case of Kramers’ doublets under time-reversal symmetry is identical to that
considered previously and the splitting pattern once again is not altered.

Rtriclinic
�1� =

�Atr1 * �2� + �Atr2 * �2� + �Atr3 * �2� + �Atr4 * ��� + �Atr5 * ��� + �Atr6 * ���
��2 + �2 + �2�

,

Rtriclinic
�2� =

�Atr1 * �2� + �Atr2 * �2� + �Atr3 * �2� + �Atr4 * ��� − �Atr5 * ��� − �Atr6 * ���
��2 + �2 + �2�

,

Rtriclinic
�3� = ��2�Atr1

4
+

3 * Atr2

4
−

�3Atr4

4
� + �2�3 * Atr1

4
+

Atr2

4
+

�3Atr4

4
� + �2�Atr3�

+ ����3 * Atr1

2
−

�3 * Atr2

2
−

Atr4

2
� + ����3Atr6

2
−

Atr5

2
� + ���−

Atr6

2
−

�3 * Atr5

2
�����2 + �2 + �2� ,

Rtriclinic
�4� = ��2�Atr1

4
+

3 * Atr2

4
+

�3Atr4

4
� + �2�3 * Atr1

4
+

Atr2

4
−

�3Atr4

4
� + �2�Atr3�

+ ���−
�3 * Atr1

2
+

�3 * Atr2

2
−

Atr4

2
� + ���−

�3Atr6

2
−

Atr5

2
� + ���−

Atr6

2
+

�3 * Atr5

2
�����2 + �2 + �2� ,

Rtriclinic
�5� = ��2�Atr1

4
+

3 * Atr2

4
−

�3Atr4

4
� + �2�3 * Atr1

4
+

Atr2

4
+

�3Atr4

4
� + �2�Atr3�

+ ����3 * Atr1

2
−

�3 * Atr2

2
−

Atr4

2
� + ���−

�3Atr6

2
+

Atr5

2
� + ���Atr6

2
+

�3 * Atr5

2
�����2 + �2 + �2� ,

Rtriclinic
�6� = ��2�Atr1

4
+

3 * Atr2

4
+

�3Atr4

4
� + �2�3 * Atr1

4
+

Atr2

4
−

�3Atr4

4
� + �2�Atr3�

+ ���−
�3 * Atr1

2
+

�3 * Atr2

2
−

Atr4

2
� + ����3Atr6

2
+

Atr5

2
� + ���Atr6

2
−

�3 * Atr5

2
�����2 + �2 + �2� ,

�15a�
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Rtriclinic
�7� = ��2�Atr1

4
+

3 * Atr2

4
−

�3Atr4

4
� + �2�3 * Atr1

4
+

Atr2

4
+

�3Atr4

4
� + �2�Atr3�

+ ���−
�3 * Atr1

2
+

�3 * Atr2

2
+

Atr4

2
� + ����3Atr6

2
−

Atr5

2
� + ���Atr6

2
+

�3 * Atr5

2
�����2 + �2 + �2� ,

Rtriclinic
�8� =

�Atr1 * �2� + �Atr2 * �2� + �Atr3 * �2� − �Atr4 * ��� + �Atr5 * ��� − �Atr6 * ���
��2 + �2 + �2�

,

Rtriclinic
�9� = ��2�Atr1

4
+

3 * Atr2

4
+

�3Atr4

4
� + �2�3 * Atr1

4
+

Atr2

4
−

�3Atr4

4
� + �2�Atr3�

+ ����3 * Atr1

2
−

�3 * Atr2

2
+

Atr4

2
� + ���−

�3Atr6

2
−

Atr5

2
� + ���Atr6

2
−

�3 * Atr5

2
�����2 + �2 + �2� ,

Rtriclinic
�10� = ��2�Atr1

4
+

3 * Atr2

4
−

�3Atr4

4
� + �2�3 * Atr1

4
+

Atr2

4
+

�3Atr4

4
� + �2�Atr3�

+ ���−
�3 * Atr1

2
+

�3 * Atr2

2
+

Atr4

2
� + ���−

�3Atr6

2
+

Atr5

2
� + ���−

Atr6

2
−

�3 * Atr5

2
�����2 + �2 + �2� ,

Rtriclinic
�11� = ��2�Atr1

4
+

3 * Atr2

4
+

�3Atr4

4
� + �2�3 * Atr1

4
+

Atr2

4
−

�3Atr4

4
� + �2�Atr3�

+ ����3 * Atr1

2
−

�3 * Atr2

2
+

Atr4

2
� + ����3Atr6

2
+

Atr5

2
� + ���−

Atr6

2
+

�3 * Atr5

2
�����2 + �2 + �2� ,

Rtriclinic
�12� =

�Atr1 * �2� + �Atr2 * �2� + �Atr3 * �2� − �Atr4 * ��� − �Atr5 * ��� + �Atr6 * ���
��2 + �2 + �2�

. �15b�

The hydrostatic shift rate for such defects is given by Atr1
+Atr2+Atr3.

IV. COMPARISON WITH EXPERIMENTAL DATA IN
LITERATURE

While a number of studies have appeared concerning the
effects of uniaxial stress on the band-edge reflectivity �free
exciton� spectra for wurtzite crystals, e.g., ZnO, as we have
outlined in Sec. I above, uniaxial stress studies of point de-
fects in wurtzite crystals are much rarer. We have referred to
a number of these in Sec. I. From this group, we select a
publication which reports uniaxial stress studies on the en-
ergy levels of local vibrational modes of three H-related de-
fects in ZnO.10 The spectroscopic absorption lines reported
in these papers correspond to the absorption of a photon by a
local defect vibrational mode causing a transition from the
defect ground state �transforming as the identical A1 repre-
sentation� to the excited state. The shift rate of the transition
will then be the difference between the shift rates of the
ground and excited states, and the analysis of Sec. III can be
used in all cases with the effect of the ground state shifts
simply leading to a different value of the effective stress

operators. We apply our analyses to the reported data and
show that in all cases, our equations can consistently fit the
data shift rates within or close to the reported accuracy
�0.5 cm−1/GPa�, and are consistent with other independent
measurements where available. In one instance, we are able
to predict the shift rate of a weak, unobserved, component. In
addition, the conclusions drawn concerning the defect sym-
metry from our analysis consistently match those in the
original paper.

A. 3326 cm−1 O-H defect10

In the case of the O-H defect reported in Ref. 10, uniaxial
stress was applied along the �0001�, �1−210�, and �10−10�
directions, i.e., our Z, Y, and X axes. The �� ,� ,�� compo-
nents for these directions are as follows:

�0001� → � = � = 0, � = 1,

�1 − 210� → � = 0, � = 1, � = 0,

�10 − 10� → � = 1, � = 0, � = 0.

The authors observe no splitting under stress along �0001�
and splitting into two components for stress along either
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�1−210� or �10−10�. We consider the various options from
Sec. III above.

�1� Trigonal nondegenerate states do not split for stress
along any direction; thus, the defect excited state cannot be a
nondegenerate trigonal state.

�2� Trigonal E states do not split for stress parallel to
�0001� and split into two components for stress along either
�1−210� or �10−10�. The shift rates from Eq. �11� above are

�0001� stress A1 + 2A2,

�1 − 210� or �10 − 10� stress A1 − A2 ± B1.

�3� Monoclinic nondegenerate states do not split for stress
parallel to �0001� and split into two components for stress
along either �1−210� or �10−10�. The shift rates from Eq.
�13� above are

�0001� stress Am3,

�1 − 210� stress �Am2

�3Am1 + Am2�/4,
�

�10 − 10� stress �Am1

�3Am2 + Am1�/4.
�

�4� Triclinic nondegenerate states do not split for stress
parallel to �0001� and split into three components for stress
along either �1−210� or �10−10�; thus, the defect excited
state cannot be a nondegenerate triclinic state.

Clearly, the only two options for the symmetry of this
defect are �2� and �3� above. Considering the data in Ref. 10
more closely, the shift rates for the stress-split components
are 0 cm−1/GPa ��0001� stress direction�, 0 and

−2.1 cm−1/GPa ��1−210� stress direction�, and 0.8 and
−1.3 cm−1/GPa ��10−10� stress direction�. The shift rates of
trigonal E states from Eq. �11� above are A1+2*A2 ��0001�
stress� and A1−A2±B1 ��1−210� or �10−10� stress�. Thus,
equal shift rates are predicted for both �1−210� and �10
−10� stress directions, contrary to the observed data. The
only suitable option is therefore �3�, i.e., that the defect is
monoclinic. This is in agreement with the assignments in the
literature, where the O-H defect is assigned to a single bond
located close to the basal plane of the ZnO crystal, and sup-
ports the assignment that the O-H defect lies in the vertical
reflection plane.10 The experimental data may be consistently
fitted within the stated accuracy in the paper by using Eq.
�13� and choosing Am2=−2.2 cm−1/GPa, Am1=
+0.73 cm−1/GPa, and Am3=0 cm−1/GPa. Because there are
four stress-split components for stress directions perpendicu-
lar to the z axis and two stress parameters, the internal con-
sistency of the fit provides strong support for the symmetry
assignment. The hydrostatic shift rate based on these param-
eters, �Am1+Am2+Am3�=−1.47 cm−1/GPa, is in good
agreement with the independent experimental result of
Jokela and McCluskey.8 The observed and predicted shift
rates are summarized in Table I.

B. 3577.3 cm−1 O-H defect10

Uniaxial stress was applied along the same directions as
described above in Sec. IV A. The authors observe no split-
ting for stress along any direction and the shift rates are
−2.5 cm−1/GPa ��0001� stress direction� and +1.1 cm−1/GPa
�stress direction perpendicular to �0001��. These data are
consistent only with the defect having trigonal symmetry and
no orbital degeneracy, i.e., option �1� in Sec. IV A above.

TABLE I. Summary of experimentally observed data �from Ref. 10� and fitted stress parameters �using
Eqs. �8� and �13��. The observed and predicted shift rates of the stress-split components are also tabulated.

Defect
transition
�cm−1�a

Fitted stress
parametersb

�cm−1/GPa�

Shift rates in �cm−1/GPa� �experimental error �±0.5 cm−1/GPa�

�0001�
stress

�Expt.�a

�0001�
stress
�Fit�

�1-210�
stress

�Expt.�a

�1-210�
stress
�Fit�

�10-10�
stress

�Expt.�a

�10-10�
stress
�Fit�

3326 Am1= +0.73 0 0 −2.1 −2.2 −1.3 −1.47

Monoclinic Am2=−2.2 0 0 0.8 0.73

Am3=0

3577.3 At1=−0.1 −2.5 −2.5 1.1 1.1 1.1 1.1

Trigonal At2=−1.2

3312.2 Am1= +5 −5.5 −5.5 −1.8 −1.8 −0.6 −0.1

Monoclinic Am1=−1.8 3.3 3.3 5.8 5

Am3=−5.5

3349.6 Am1= +2.5 2.5 2.5 −7.5 −7.5 −5.8 −5

Monoclinic Am2=−7.5 0.8 0 Unseen 2.5

Am3= +2.5

aReference 10.
bEquations �8� and �13�.
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This is again consistent with the assignment of Lavrov and
Weber.10 The data can be consistently �though trivially� fitted
within the experimental accuracy quoted using Eq. �8� with
At1=−0.1 cm−1/GPa and At2=−1.2 cm−1/GPa. The hydro-
static shift rate is given by 3*At1=−0.3 cm−1/GPa, again in
agreement with the literature. The observed and predicted
shift rates are summarized in Table I.

C. 3312.2 cm−1 VZn-H2 defect10

Uniaxial stress was again applied along the same direc-
tions as described above in Sec. IV A. The authors observe
no splitting under stress along �0001� and splitting into two
components for stress along either �1−210� or �10−10�. The
shift rates for the stress-split components are −5.5 cm−1/GPa
��0001� stress direction�, −1.8 and 3.3 cm−1/GPa ��1−210�
stress direction�, and −0.6 and 5.8 cm−1/GPa ��10−10�
stress direction�. For the same reasons as in Sec. IV A, we
discount the possibility of a trigonal E state. The only suit-
able option therefore is that the defect is again monoclinic, in
agreement with the assignments in the literature. The data
can again be consistently fitted by using Eq. �13� and choos-
ing Am2=−1.8 cm−1/GPa, Am1= +5 cm−1/GPa, and Am3
=−5.5 cm−1/GPa. Once again, the internal consistency of the
fit provides strong support for the symmetry assignment. The
hydrostatic shift rate based on these parameters is �Am1
+Am2+Am3�=−2.2 cm−1/GPa, in agreement with the esti-
mate by Lavrov and Weber.10 The observed and predicted
shift rates are summarized in Table I.

D. 3349.6 cm−1 VZn-H2 defect10

Using the same experimental conditions as for the
other sections, the authors observe no splitting under stress
along �0001� and either splitting into two components
for stress along �1−210� or only a single component for
stress along �10−10� �though this is attributed to the
expected weakness of the component, below the experimen-
tal detection limit�. The shift rates for the stress-split
components are 2.5 cm−1/GPa ��0001� stress direction�, −7.5
and 0.8 cm−1/GPa ��1−210� stress direction�, and
−5.8 cm−1/GPa ��10−10� stress direction�. Because the
3349.6 cm−1 transition is associated with the same defect
complex as the 3312.2 cm−1 transition, clearly, the transition
is at a monoclinic defect. The data can be consistently fitted
within the experimental error by using Eq. �13� and choosing
Am2=−7.5 cm−1/GPa, Am1= +2.5 cm−1/GPa, and Am3
=2.5 cm−1/GPa.

The fit is internally consistent because the parameters
Am2 and Am1 can be found from the data for �1−210� stress
and they correctly predict the shift rate of the only observed
feature for �10−10� stress. However, our equations also yield
the shift rate of the unseen component for �10−10� stress,
shown in Table I. The hydrostatic shift rate based on these
parameters is �Am1+Am2+Am3�=−2.5 cm−1/GPa, in agree-
ment with the estimate by Lavrov and Weber.10

In all cases above, it is seen that the analysis in Sec. III
can be used to immediately determine the appropriate sym-
metry class of the defect under study, using the number of

stress-split components and general features of the shift rate
equations as a guide, and our conclusions are in full agree-
ment with the original report. Fits of the experimental shift
rates to the computed shift rates for the appropriate symme-
try class yield values for the stress operators which can be
used to compute the hydrostatic shift rates for the defect. Our
fitted values for the stress operators yield values for the hy-
drostatic shift rate in agreement with both the original report
by Lavrov and Weber10 and also with an independent mea-
surement of this quantity in the case of one defect discussed
above. In one case, our equations have enabled us to predict
the shift rate of an experimentally unseen component.

V. DISCUSSION

The analysis of Sec. III above yields the splitting patterns
and stress shift rates of the energy levels of all possible sym-
metry classes of point defects in the wurtzite lattice, for
stress applied along an arbitrary direction. A number of fur-
ther points merit a fuller discussion.

The effects of piezoelectrically induced fields �which may
occur in conjunction with stresses in the technologically im-
portant wurtzite crystals� on the defect energy levels are not
considered in our analyses. Comparisons with results in the
literature for local defect vibrational modes in ZnO show that
our analysis fits the observed data well and piezoelectrically
induced fields do not appear to be of importance for such
levels. In the case of ZnO, in general, the residual n-type
conductivity of nominally undoped material in combination
with the quasistatic nature of the application and the removal
of stress combine to short out any macroscopic piezoelectric
effects.40 In support of this, we note that in the case of elec-
tronic transitions such as free and bound excitons in ZnO,
reflectance spectra in the literature show no evidence of elec-
tric field induced nonlinear shifts, broadening or quenching
under �0001� stress even up to stresses of the order of
0.4 GPa �see, e.g., Ref. 19�. The expected piezoelectrically
induced field in ZnO at such stresses will be �1000 kV/cm
based on a simple calculation using well established param-
eters for ZnO �piezoelectric coefficient, d33=12.4
�10−12 C/N �Ref. 41��. The exciton ionization field in ZnO
is �300 kV/cm �Ref. 42� and a highly nonlinear energy shift
is expected at such high fields in addition to a significant
degree of exciton broadening and quenching.43 The absence
of such effects supports the view that macroscopic piezoelec-
tric effects are quenched in most ZnO crystals �unless delib-
erately compensated�. In other wurtzite materials or highly
compensated ZnO samples,40 the effect of piezoelectrically
induced fields on defect energy levels may have to be ac-
counted for in addition to the effects of stress detailed in Sec.
III.

There are two further aspects relevant to uniaxial stress
studies of defects which remain to be discussed, namely, po-
larized intensity information for transitions between levels
and the effects of stress-induced interactions between differ-
ent energy levels of the defect.

In most cases experimental measurements involve the
study of transitions between energy levels, e.g., between
electronic/vibronic energy levels in photoluminescence or
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absorption studies. The relative intensities and polarized in-
tensities of the stress-split components of such transitions are
also determined by symmetry considerations, and this infor-
mation is often used in uniaxial stress studies on defects in
cubic lattices to supplement the splitting pattern information
in order to identify the details of the transition, e.g., the
electric dipole direction.44 Although polarized intensity infor-
mation is used to supplement the splitting pattern informa-
tion for defects in cubic crystals for stresses along high sym-
metry directions, the situation is considerably more
complicated in the case of wurtzite crystals. Firstly, wurtzite
crystals are uniaxial even in the absence of applied stress and
become biaxial for applied stress along any direction other
than the z axis. This means that the �polarized� intensities
will vary depending on the viewing direction and there is no
unique �polarized� intensity pattern for any stress direction.
This situation is similar to that encountered for stresses par-
allel to 
110� in the cubic lattice.26 Additionally, while the
viewing direction in most experiments is normal to the stress
direction, there is a remaining degree of freedom associated
with rotation of the viewing direction about the uniaxial
stress direction and no natural choices suggest themselves
for the case of stress along an arbitrary direction. The tabu-
lation of all results for all possible transitions and viewing
directions, based solely on symmetry considerations, is ex-
tremely complex and will not be attempted in this work. This
task is in any case generally more suited to a case by case
analysis because �a� the results will be dependent on the
specific experimental geometry and �b� the details of the di-
pole orientation at a defect are strongly influenced by the
microscopic defect geometry, while symmetry considerations
provide only broad constraints. An example which illustrates
the latter point is the two transitions at the VZn-H2 mono-
clinic defect �3312.2 and 3349.6 cm−1 �Ref. 10�� considered
in Secs. IV C and IV D above. In both cases, the detailed
analysis shown in Refs. 10 and 45 indicates that the dipole is
directed along one of the VZn-H-O bond directions in the
defect �one parallel to the wurtzite c axis and the other close
to perpendicular to the c axis, both in the X-Z plane�, while
the relevant symmetry considerations indicate only that the X
and Z components of the dipole are nonzero and the Y com-
ponent vanishes, and give no further information on the rela-
tive magnitudes of the two nonzero components.10,36,45

A general analysis of the polarized intensities of the
stress-split components is provided by Kaplyanskii for aniso-
tropic �lower symmetry� defects in cubic crystals26 where
one of the principal axes of the uniaxially stressed crystal
must be parallel to the stress direction in the cases considered
due to symmetry considerations. However, this approach is,
in general, not appropriate for wurtzite crystals subjected to
uniaxial stress along an arbitrary direction because there is
no symmetry requirement for the alignment of the principal
axes of the biaxial crystal with the applied stress direction.

We also note in passing that a number of practical effects
also tend to reduce the effectiveness of measurements of po-
larized intensities, particularly for emission spectroscopies.
These effects include multiple depolarizing internal reflec-

tions for emission spectroscopies �particularly important for
high refractive index materials with large critical angles for
total internal reflection such as ZnO and GaN �Ref. 46�� and
the rather large collection solid angles generally used in tech-
niques such as photoluminescence, which tend to average
over a range of viewing directions and hence over a range of
�polarized� intensities.

Finally, the splitting patterns we have calculated have as-
sumed the absence of interactions with higher-lying excited
states, and thus the shifts and splittings are linear with ap-
plied stress. Clearly, for large applied stresses, some interac-
tion is to be expected with other energy levels of the defect
and the splitting patterns may become nonlinear and possibly
show anticrossing behavior.47 However, in the regime of low
to intermediate stresses, the splitting patterns derived in Sec.
III will describe the behavior of the defect with reasonable
accuracy, and the number of stress-split components and the
relationship between the measured shift rates should enable
an accurate determination of the defect symmetry �particu-
larly if information is available for uniaxial stress along more
than one direction or along a low symmetry direction�.

The results in Sec. III above therefore enable a determi-
nation of the defect symmetry even if interactions are present
and �polarized� intensity information is not considered. This
basic defect symmetry information may then be used as a
first approximation from which a more detailed model may
be generated, knowing the viewing direction and the behav-
ior at high levels of uniaxial stress. Refinement of the more
detailed model will enable the nature of the transition �e.g.,
electric dipole direction� and the nature of the interacting
excited states to be ascertained.

VI. CONCLUSIONS

We have given a general analysis, by the application of
group-theoretical considerations, of the splitting patterns of
all types of energy levels for all symmetry classes of point
defects in wurtzite crystals under uniaxial stresses applied
along arbitrary crystal directions. We have compared the re-
sults of our analyses with data from the literature and have
shown that good agreement is found in all the cases consid-
ered.

We believe that the analyses given in this paper will be
useful in the determination of the symmetry of point defects
in wurtzite lattices generally and will provide information
which may be used as a reliable starting point for more de-
tailed models incorporating information on transition inten-
sities and stress-induced interaction between levels. Determi-
nation of defect symmetries will also enable easy
comparison with theoretical, ab initio, studies of proposed
defect structures.
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