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We investigate the equilibrium properties of bcc-liquid interfaces modeled with a continuum phase-field
crystal �PFC� approach �K. R. Elder and M. Grant, Phys. Rev. E 70, 051605 �2004��. A multiscale analysis of
the PFC model is carried out which exploits the fact that the amplitudes of crystal density waves decay slowly
into the liquid in the physically relevant limit where the freezing transition is weakly first order. This analysis
yields a set of coupled equations for these amplitudes that is similar to the set of equations derived from
Ginzburg-Landau �GL� theory �K.-A. Wu et al., Phys. Rev. B 73, 094101 �2006��. The two sets only differ in
the details of higher order nonlinear couplings between different density waves, which is determined by the
form of the nonlinearity assumed in the PFC model and by the ansatz that all polygons with the same number
of sides have equal weight in GL theory. Despite these differences, for parameters �liquid structure factor and
solid density wave amplitude� of Fe determined from molecular dynamics �MD� simulations, the PFC and GL
amplitude equations yield very similar predictions for the overall magnitude and anisotropy of the interfacial
free-energy and density wave profiles. These predictions are compared with MD simulations as well as nu-
merical solutions of the PFC model.
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I. INTRODUCTION

The phase-field method is by now well-developed to
simulate the continuum scale evolution of interfaces outside
of equilibrium with application to solidification1 and other
materials science problems.2,3 The method rests on a coarse-
graining procedure that smears out the discrete atomic nature
of the interface. Hence, the phenomenological form of the
free-energy functional used to construct a conventional
phase-field model generally needs to be tailored to reproduce
quantitatively atomistically determined interfacial properties.

An important property in a crystal growth context is the
anisotropy of the excess free-energy of the crystal-melt in-
terface that is a key parameter controlling dendritic
evolution.4–10 This anisotropy is traditionally incorporated
phenomenologically into the phase-field model by letting the
free-energy density depend on the direction normal to the
interface, itself expressed in terms of the gradient of the
phase-field.11–13 Computationally efficient implementations
of these models have been successfully applied to simulate
dendritic evolution in materials with both atomically
rough7,8,10 and faceted14 interfaces. The conventional phase-
field approach, however, falls short in problems where crys-
talline defects have a profound influence on morphological
evolution. For example, solidification twins can dramatically
alter both eutectic15,16 and dendritic17 microstructures, and
crystalline defects ultimately control grain coalescence and
microstructural evolution during and after the late stages of
solidification.18

Over the last few years, the phase-field crystal �PFC�
method has emerged as an attractive computational approach
to tackle this class of problems where atomic and continuum
scales are tightly coupled.19–23 This method is rooted in phe-
nomenological continuum theories used to study equilibrium
and nonequilibrium patterns with “crystal-like” ordering in
diverse contexts. The models most closely related to the PFC
model in their mathematical formulation have appeared in

studies of phase separation in block copolymers24 and
Rayleigh-Bénard convection.25,26

Since the free-energy of the PFC model is a functional of
the density of the material, the model can also be cast21 in
the framework of classical density functional theory of
freezing.27–33 PFC simulations have the main advantage of
resolving the atomic-scale density wave structure of a poly-
crystalline material and of describing the defect-mediated
evolution of this structure on time scales orders of magnitude
longer than molecular dynamics �MD� simulations.19–23

While the PFC method has been shown to describe quali-
tatively a wide range of phenomena,19–23 its predictive capa-
bility in a crystal growth context remains largely unexplored.
We investigate in this paper to what degree the PFC model
can reproduce quantitatively some key equilibrium proper-
ties of the crystal-melt interface, in particular, the magnitude
and anisotropy of the interfacial free-energy �. Well-devel-
oped atomistic methods to calculate these properties34–39

have been applied to both face-centered-cubic �fcc� �Refs.
38–42� and body-centered-cubic �bcc� systems.41–44

Our study is based on the PFC model that is a reformula-
tion of the Swift-Hohenberg equation25 with conserved dy-
namics introduced by Elder et al.19,20 This model favors bcc
crystal ordering in three dimensions. Our analysis of this
model is closely related to previous studies of melting car-
ried out in the framework of Ginzburg-Landau �GL� theory.
The GL theory originally developed for bcc-liquid interfaces
by Shih et al.45 predates the PFC model and was recently
revisited44 in the light of recent results from MD simulations.
This re-examination showed that GL theory yields predic-
tions of � and its anisotropy in reasonably good agreement
with MD simulations for Fe, and the same MD results are
used here to benchmark PFC model predictions.

GL theory is derived from classical density functional
theory that expresses the free-energy of the system as a func-
tional of its density distribution n�r��, as in the PFC model.
Furthermore, it makes the strong assumption that n�r�� can be
expanded as a sum
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n�r�� = n0�1 + �
i

ui�r��eiK� i·r� + ¯ � , �1�

of density waves corresponding to the principal reciprocal

lattice vectors �where the index i spans the set of 12 �K� 110	
vectors of the reciprocal fcc lattice for bcc ordering�. The
amplitudes ui�r�� of these density waves are the order param-
eters used to construct the GL free-energy. These amplitudes
decay in the liquid at a rate that depends generally on the

angle between K� i and the directional normal to the solid-
liquid interface, which makes � anisotropic. The fact that the
anisotropy predicted by GL theory is in reasonably good
agreement with MD simulations suggests that this directional
dependence is a main determinant of anisotropy.44

Since the crystal density field of the PFC model is also
dominated by the principal reciprocal lattice vectors, we ex-
pect this model to yield similar predictions of bcc-liquid in-
terfacial properties as GL theory. Of course, the two theories
are not identical since the contribution of higher order recip-

rocal lattice vectors of magnitude larger than 
K� 110
, corre-
sponding to “¯” in Eq. �1� is small but nonvanishing in the
PFC model. Furthermore, the strength of the nonlinear cou-
pling between different density waves is determined by the
form of the free-energy functional in the PFC model, while it
is determined in GL theory by using the simplifying assump-
tion that all closed polygons composed of principal recipro-
cal lattice vectors with the same number of sides have equal
weight.44,45 Despite these differences, we find here that the
PFC model and GL theory yield very similar predictions of
bcc-liquid interfacial properties that are in reasonably good
quantitative agreement with MD simulations.

To relate formally the PFC model and GL theory, we
carry out a weakly-nonlinear multiscale analysis of the PFC
model. This type of analysis, pioneered in the context of
Rayleigh-Bénard convection,46 has provided a fundamental
understanding of the universal behavior of nonequilibrium
patterns close to the onset of instability.26 It has also been
revived recently in the framework of the renormalization
group to derive computationally efficient implementations of
the PFC model.47,48 In the pattern formation context where
this analysis was first developed, the distance from the onset
of instability can be characterized generally by a small pa-
rameter �, e.g., in Rayleigh-Bénard convection ���R
−Rc� /Rc where R is the Rayleigh number and Rc is its critical
value corresponding to the onset of instability. Furthermore,
close to onset ���1�, spatially periodic patterns are gener-
ally slowly modulated in space. Considering the simplest
case of a one-dimensional pattern for illustrative purposes, it
is natural to write the field variables characterizing such a
pattern in a form �A�Z�eiq0z+c.c., where Z��1/2z is a slow
space variable, q0 is the wavenumber of the perfectly ordered
pattern, and c.c. denotes the complex conjugate. The stan-
dard amplitude-equation approach consists of using a multi-
scale expansion to obtain an equation for the complex am-
plitude A�Z� starting from the underlying equations
governing the evolution of the pattern. The complex ampli-
tude A�Z��u�Z�ei��Z� carries information about both the lo-
cal real amplitude u�Z� of the pattern and its local spatial

periodicity, or wavenumber q�Z�q0+�1/2�Z�. Similarly, a
dependence of the amplitude on a slow time variable �omit-
ted from the present discussion� can also be introduced to
describe the slow temporal evolution of the pattern.

For solid-liquid equilibrium, the pattern of interest is the
three-dimensional crystal density field that is spatially modu-
lated along the coordinate z normal to the solid-liquid inter-
face. However, there is no direct analog of a small parameter
� that can be made arbitrarily small by tuning some control
parameter, such as the externally imposed temperature gradi-
ent in the example of Rayleigh-Bénard convection. In con-
trast, � is uniquely determined by liquid structure factor
properties when relating the PFC model to classical DFT.
Thus � has a fixed value for a given material. For systems
with low entropy of melting and atomically rough interfaces,
however, � turns out to be small enough ��0.1 for Fe� for a
multiscale analysis to be just about justified quantitatively.
This smallness originates physically from the fact that den-
sity waves decay slowly in the liquid over several atomic
layer spacings. This makes �, which is proportional to the
square of the ratio of the layer spacing and the interface
width, much smaller than unity. For faceted interfaces, how-
ever, density waves decay abruptly in the liquid and this
expansion would break down.

This paper is organized as follows. In Sec. II, we briefly
summarize the equations of the PFC model and construct the
phase-diagram corresponding to bcc-liquid coexistence. In
Sec. III, we derive the amplitude equations that describe the
equilibrium profiles of density waves in the interface region
from the aforementioned multiscale expansion. The phases
� of the complex amplitudes turn out to be constant in the
interface region at dominant order in this expansion, such
that the density field can be described by Eq. �1� with real
order parameters that are the ui�r��’s. This allows us to define
the free-energy as a functional of these order parameters and
to compare in Sec. IV the PFC amplitude equations to GL
theory.44 This comparison is used to fix uniquely the param-
eters of the bare PFC model in terms of liquid structure fac-
tor properties and the solid density wave amplitude derived
from MD simulations. Differences in the nonlinear coupling
between density waves in the PFC amplitude equations and
GL theory are also highlighted in this section. In Sec. V, we
compare quantitatively the predictions of � for different
crystal faces obtained using �i� the direct numerical solution
of the PFC model, �ii� the amplitude equations derived from
the PFC model, �iii� GL theory,44 and �iv� MD simulations.
Finally, concluding remarks are given in Sec. V.

II. PHASE-FIELD CRYSTAL MODEL

A. Basic equations and scaling

We consider the simplest PFC model defined by the free-
energy functional19,20

F =� dr���

2
�a + ��q0

2 + �2�2�� + g
�4

4
� , �2�

which is a transposition to crystalline solids of the Swift-
Hohenberg model of pattern formation.25 The conserved or-
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der parameter � is a dimensionless measure of the crystal
density field measured from some constant reference value.
The relationship of � to the physical density will be specified
in the next section. The wavenumber q0 sets the magnitude


K� i
 of the principal reciprocal lattice vectors that correspond
to the first peak of the liquid structure factor S�K� at melting,
and hence sets the scale of the ordered crystalline pattern
�q0

−1. The parameters a and � determine the shape of the
polynomial approximation of the liquid structure factor S�K�
in the PFC model. They were fixed in previous studies �Refs.
20 and 21� by matching the peak value of S�K� and S�0�,
which is related to the liquid phase compressibility, to values
of the real structure factor. As shown in the next section, the
parameters a and � are determined here instead by matching
the peak value of S�K� and its width �determined by the
second derivative of the direct correlation function at q0� to
the values determined by classical density function theory.
This turns out to be important for modeling solid-liquid in-
terfacial properties since the decay rate of density waves in
the liquid is directly related to this width. The parameter g, in
turn, is uniquely fixed by the amplitude of density waves in
the solid.

To render the calculations less cumbersome, it is useful to
rewrite the free-energy functional in dimensionless form by
defining the parameter

� = −
a

�q0
4 �3�

and making the substitutions

q0r� → r� , �4�

� g

�q0
4� → � , �5�

g

�2q0
5F → F , �6�

where all the transformed quantities to the right of the arrows
are dimensionless and

F =� dr���

2
�− � + ��2 + 1�2�� +

1

4
�4� . �7�

In this study, we restrict our attention to equilibrium proper-
ties of the crystal melt interface. The condition that the
chemical potential must be spatially uniform in equilibrium
yields the equation

	E =

F

�

= − �� + ��2 + 1�2� + �3, �8�

which is the starting point of the present study. Although the
dimensionless formulation of the PFC model is more conve-
nient to carry out calculations, we shall later transform the
results back into dimensional form in order to make contact
with GL theory and determine the phase-field parameters that
appear in Eq. �2�.

B. Phase diagram

To construct the phase diagram, we calculate separately
the free-energy density �free-energy per unit volume� as a

function of the mean density �̄ in solid, denoted by fs��̄�,
and liquid f l��̄� using Eq. �7�. We then use the standard
common tangent construction, which is equivalent to equat-
ing the chemical potentials and grand potentials of the two

phases, to obtain the equilibrium values of �̄ in the solid ��̄s�
and liquid ��̄l�.

Since the density is constant in the liquid, f l is obtained
directly from Eq. �7�

f l = − �� − 1�
�̄2

2
+

�̄4

4
. �9�

Furthermore, since � turns out to be a small parameter for
spatially diffuse atomically rough interfaces, the solid free-
energy density can be well approximated by only considering
the contribution of the principal reciprocal lattice vectors.
Accordingly, the crystal density field can be written in the
form analogous to Eq. �1�

��r��  �̄ + �
i

Aie
iKi

� ·r�  �̄ + 4As�cos qx cos qy

+ cos qx cos qz + cos qy cos qz� , �10�

where we have used the fact that all density waves have the
same amplitude �
Ai
=As� and all principal reciprocal lattice
vectors of the bcc structure have the same magnitude

�
K� 110
= 
K� 1−10
= ¯ =�2q�. The parameters As and q are
solved by substituting Eq. �10� into Eq. �7� and minimizing
the resulting free-energy with respect to As and q, which
yields

As = −
2

15
�̄ +

1

15
�5� − 11�̄2 �11�

and q=1/�2, together with the expression for the solid free-
energy density �for q=1/�2�

fs = − �� − 1�
�̄2

2
+

�̄4

4
− 6�As

2 + 18�̄2As
2 + 48�̄As

3 + 135As
4.

�12�

Applying the common tangent construction, which is de-
tailed below in the small � limit, yields the bcc-liquid coex-
istence region in the phase diagram of Fig. 1. Also shown are
the other two-dimensional crystal structures �hexagonal and
stripe phases� determined in previous studies using the same
approximation where the crystal density field is a sum of
density waves corresponding to the set of principal recipro-
cal lattice vectors.19,20

III. DERIVATION OF THE AMPLITUDE EQUATIONS

A. Small � analysis of the phase diagram

For small �, we can seek a perturbative solution of the
crystal density field � in powers of �1/2 as suggested by the
scaling of various terms in Eq. �8�
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��r�� = �0�r���1/2 + �1�r��� + �2�r���3/2 + ¯ �13�

and expand accordingly the average densities

�s = �s0�1/2 + �s1� + �s2�3/2 + ¯ �14�

and

�l = �l0�1/2 + �l1� + �l2�3/2 + ¯ �15�

in the solid and liquid, respectively. Substituting these rela-
tions into the expressions for fs and f l, using the conditions
of equality of the chemical potentials of the two phases

fs���̄s�= f l���̄l�=	E and equality of the grand potentials

fs��̄s�−	E�̄s= f l��̄l�−	E�̄l, and collecting powers of �, we
obtain

�s0 = �l0 � �c = −� 45

103
�16�

and

�s1 = �l1 = 0. �17�

This shows that, in the small � limit, the PFC model exhibits
a weak first-order freezing transition where the size of the

solid-liquid coexistence region ��̄=�s−�l��s2−�l2��3/2 is
much smaller than the mean value of the density ��1/2.
These scalings imply that the mean density difference be-
tween the two phases only gives a small higher order correc-
tion to the density wave profiles through the interface and �
in the small � limit.

B. Multiscale expansion

Using Eqs. �14� and �15� to evaluate the small � limit of

the chemical potential 	E= f l���̄l�= fs���̄s�, the equilibrium
equation of the density field �8� becomes

− �� + ��2 + 1�2� + �3 = �c�
1/2 + ��l2 − �c + �c

3��3/2 + ¯ .

�18�

The derivation of the amplitude equation exploits the sepa-
ration of scale between the width of the spatially diffuse
interface and the interatomic layer spacing in the small �

limit. This separation of scale allows us to assume that the
envelope of density waves depends on a slow spatial variable

Z��1/2z �i.e., �0�r��=�c+�Ai
0�Z�eiKi

� ·r�, and so on for higher
order terms�, where z denotes the coordinate along the direc-
tion normal to the solid-liquid interface. The multiscale ex-
pansion rests on treating the slow variable Z and the fast
variable z as independent variables. Thus the spatial deriva-
tive along z transforms with the chain rule �z→�z+�1/2�Z,
and the differential operator L2���2+1�2 in Eq. �18� be-
comes

L2 → L2 + 4�1/2L�z�Z + 2��L + 2�z
2��Z

2 , �19�

where the differential operator L on the right-hand-side only
acts on the fast spatial variable z.

Next, we substitute the small � expansion of the density
field �13� into the equilibrium equation �18� with the above
transformation of the linear operator. Collecting terms with
the same power �, we find at the order �1/2

L2�0 = �c, �20�

which has the solution

�0 = �
i

Ai
0�Z�eiKi

� ·r� + �c, �21�

where 
K� i
=1 in our scaled units. At order �, we obtain

L2�1 = 0, �22�

which has the solution

�1 = �
i

Ai
1�Z�eiKi

� ·r�, �23�

and collecting the terms at order �3/2 yields

L2�2 + �4�z
2�Z

2 − 1��0 + �0
3 = �l2 − �c + �c

3. �24�

The amplitude equations are obtained from the condition for
the existence of a solution of the above equation without
needing to compute �2 explicitly. Since L2�2 gives a vanish-
ing contribution for all density waves associated with the set

�K� i	 of twelve principal reciprocal lattice vectors of magni-

tude unity �i.e., L2eiK� ·r�= �−
K
2+1�2eiK� ·r�=0 if 
K� 
2=1�, all re-

maining terms �eiK� i·r� must balance each other in order for a
solution of Eq. �24� to exist �i.e., secular terms must cancel
out each other�. For example, the condition that the coeffi-

cients of eiK� 011·r� balance each other yields

�4�K̂011 · n̂�2�Z
2 + 3�c

2 − 1�A011
0 + �3
A011

0 
2 + 6
A110
0 
2

+ 6
A
11̄0

0 
2 + 6
A101
0 
2 + 6
A

101̄

0 
2 + 6
A
011̄

0 
2�A011
0

+ 6A
011̄

0
A

101̄

0*
A101

0 + 6A
011̄

0*
A110

0 A
11̄0

0*
+ 6A101

0 A
11̄0

0*
�c

+ 6A110
0 A

101̄

0*
�c = 0, �25�

where everywhere in this paper ẑ= n̂ corresponds to the di-
rection normal of the interface that generally differs from the
crystal axes except for �100	 crystal faces. This solvability

condition must be satisfied independently for each K� i. This

FIG. 1. Phase diagram of the PFC model obtained under the
approximation that the crystal density field is as a sum of density
waves corresponding to the set of principal reciprocal lattice vectors
for a given crystal structure.
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yields a set of twelve coupled amplitude equations �i.e.,
eleven additional equations to the one above� that are
straightforward to obtain and we do not list them all here for
brevity of presentation. These equations can also be obtained
directly from the free-energy expressed as a functional of the
amplitudes Ai

0�Z� as described in the next subsection.
The amplitude profiles are governed by these twelve

coupled nonlinear amplitude equations. These equations can
be reduced to a simple set of equations by considering the
symmetry of reciprocal lattice vectors. For �100	 crystal
faces, these twelve amplitudes can be separated into two sub-

sets with the same value of �Ki
� · n̂�2 equal to 1/2 and 0,

respectively. Therefore, the amplitude equations are reduced
to only two coupled equations and can be solved numeri-
cally. Similarly, we have two subsets of amplitudes for �111	
crystal faces and three subsets of amplitudes for �110	 crystal
faces, which results in two and three coupled amplitude
equations, respectively.

As in GL theory,44 the � anisotropy originates from the
fact that the coefficients of the second derivative terms in the

amplitude equations depend on �Ki
ˆ · n̂� and hence on the ori-

entation of the crystal face with respect to a fixed set of
crystal axes. Furthermore, as mentioned in the introduction,
since the amplitudes are complex, the spatial variation of the
phase can cause the local wave vector to change through the
solid-liquid interface by an amount proportional to the gra-
dient of this phase. To determine this variation, we substitute

Ai
0�Z� = 
Ai

0�Z�
ei�i�Z� �26�

into the amplitude equations. We obtain that �i�Z�=0 for the
principal reciprocal lattice vectors that are orthogonal to the
interface normal and

1


Ai
0�Z�


�Z�
Ai
0�Z�
2�i�Z�� = 0 �27�

for the other reciprocal lattice vectors. The above equation
implies that


Ai
0�Z�
2�Z�i�Z� = C0, �28�

where C0 is a constant. Since the amplitudes must vanish in
liquid, the divergence of d�i /dZ can be avoided only if C0

=0. Therefore, the wave vectors K� i’s are constant through the
solid-liquid interface in the small � limit.

C. Free-energy functional

It is useful to express the free-energy of the solid-liquid
system as a functional of the density wave amplitudes Ai

0.
For this, we define �F to be the free-energy measured from
its constant value in the liquid. Since the amplitudes are non-
conserved order parameters, the equilibrium state simply cor-
responds to a minimum of this free-energy without extra
constraint. This implies that �F should be chosen such that
the amplitude equations are recovered variationally from this
free-energy. Namely, the equation for a given Ai

0 derived in
the last subsection should be equivalent to


�F

Ai

0* = 0, �29�

up to a multiplicative constant. This constant can be deter-
mined by matching the limiting value of �F /V on the solid-
side, where all the amplitudes are constant �Ai

0=�−1/2As for
all i� to the difference of free-energy densities between the
two phases fs− f l, where fs and f l are given by Eqs. �9� and
�12� and V is the volume. This yields the free-energy func-
tional

�F = �3/2�� dZ��
i

2�Ki
ˆ · n̂�2�dAi

0

dZ
�2

+ f�Ai
0�� , �30�

where ���dxdy is the interface area and

f�Ai
0� =

1

2�
i

�3�c
2 − 1�
Ai

0
2 +
3

4�
i

�
j�i


Ai
0
2
Aj

0
2

+ 6A110
0* A

11̄0

0*
A101

0 A
101̄

0
+ 6A110

0 A
11̄0

0
A101

0* A
101̄

0*

+ 6A
11̄0

0
A011

0 A
011̄

0
A110

0* + 6A
11̄0

0*
A011

0* A
011̄

0*
A110

0

+ 6A
011̄

0
A

101̄

0*
A101

0 A011
0* + 6A

011̄

0*
A

101̄

0
A101

0* A011
0

+ 6�cA011
0* A101

0 A
11̄0

0*
+ 6�cA011

0 A101
0* A

11̄0

0

+ 6�cA011
0* A110

0 A
101̄

0*
+ 6�cA011

0 A110
0* A

101̄

0

+ 6�cA011̄

0*
A110

0 A101
0* + 6�cA011̄

0
A110

0* A101
0

+ 6�cA011̄

0*
A

101̄

0
A

11̄0

0*
+ 6�cA011̄

0
A

101̄

0*
A

11̄0

0
. �31�

It is simple to check that by applying Eq. �29� to the above
functional for Ai

0=A011 we obtain the same amplitude equa-
tion as Eq. �25� and similarly for the other principal recipro-
cal lattice vectors. Finally, Eq. �6� implies that the dimen-
sional free-energy functional derived from the amplitude
equations �AE� is given by

�FAE =
�2q0

5

g
�F . �32�

IV. COMPARISON OF AMPLITUDE EQUATIONS AND
GINZBURG-LANDAU THEORY

In this section, we compare the free-energy functional de-
rived from the PFC amplitude equations to GL theory.44 This
comparison sheds light on the relation between this theory
and the PFC model and uniquely fixes the parameters of the
latter in terms of physical quantities that can be extracted
from MD simulations.

A. Ginzburg-Landau theory

The free-energy functional of GL theory is expressed in
terms of the amplitude ui of density waves defined by Eq.
�1�. We write this functional here for convenience using the
same notation as in Ref. 44 with the direction normal to the
solid-liquid interface parallel to the z axis
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�FGL =
n0kBT�

2 �� dza2�
i,j

cijuiuj
0,K� i+K� j

− a3�
i,j,k

cijkuiujuk
0,K� i+K� j+K� k

+ a4 �
i,j,k,l

cijkluiujukul
0,K� i+K� j+K� k+K� l
+ b�

i

ci�dui

dz
�2� ,

�33�

where 
m,n is the Kronecker delta that equals 0 or 1 for m
�n or m=n, respectively. The latter enforces that only com-
binations of principal reciprocal lattice vectors that form

closed polygons K� i+K� j + ¯ =0 contribute to the free-energy
functional. The multiplicative factors ai and b are introduced
since it is convenient to normalize the sums of the c’s to
unity �i.e., �ici=1, �i,jcij
0,K� i+K� j

=1, etc.�.
The coefficients of quadratic nonlinearities of the GL free-

energy were determined in Ref. 44 by relating �FGL to the
free-energy functional that describes small density fluctua-
tions of an inhomogeneous liquid in the simplest formulation
of DFT �Eq. �3� in Ref. 44�. In particular, the latter can be
reduced to the form28

�FDFT 
n0kBT�

2
� dz��

i,j

1

S�
K� i
�
uiuj
0,K� i+K� j

− �
i

1

2
C��
K� i
��K̂i · n̂�2�dui

dz
�2� �34�

by assuming that the density wave amplitudes vary slowly
through the interface region and are essentially constant on
the scale of the interatomic layer spacing. The small � mul-
tiscale expansion of the last section is an alternative proce-
dure to derive the form of Eq. �34� that formalizes this as-
sumption. Here C�K� is the Fourier transform of the direct
correlation function C�
r�
�

C�K� = n0� dr�C�
r�
�e−iK� ·r� , �35�

and S�K�= �1−C�K��−1 is the liquid structure factor.
Equating �FGL and �FDFT at quadratic order in the non-

linearities and using the normalization that the sums of ci’s
and cij’s equal unity, we obtain

cij = 1/12, �36�

ci =
1

4
�K̂ · n̂�2, �37�

a2 =
12

S�Kmax�
, �38�

b = − 2C��Kmax� , �39�

where the magnitude 
K� i
=q0 of the principal reciprocal lat-
tice vectors can be set equal to the K value corresponding to
the first peak of the structure factor Kmax under the assump-

tion that the wave vectors are constant in the interface re-
gion. This assumption was formally justified in the deriva-
tion of the amplitude equations in Sec. III B by showing that
the phase � of the complex amplitudes is constant in the
interface region at leading order in the small � expansion.
The reader is referred to Ref. 44 for the determination of the
cubic and quartic nonlinearities in the GL theory, which shall
be briefly reviewed below.

B. Determination of phase-field crystal model parameters

We are now in a position to compare the free-energy func-
tionals derived from the amplitude equations and GL theory
and to relate the parameters of the PFC model to physical
quantities. For this, we note that �FAE has the same form as
�FGL because the density wave amplitudes Ai

0’s and ui’s pro-
portionally related. The proportionality constant is readily
obtained by combining Eq. �5� and Eq. �13�, which yields

n0ui =��q0
4

g
�1/2Ai

0. �40�

Furthermore, Eq. �29� used to construct �FAE is equivalent
to the constraint that only combinations of principal recipro-
cal lattice vectors that form closed polygons contribute to the
free-energy functional as shown explicitly in Eq. �31�.

Next, using Eq. �40� and equating �FAE, defined by Eqs.
�30� and �32�, and �FGL defined by Eq. �33�, we obtain the
relations

a2 =
12n0a�1 − 3�c

2�
kBT

=
12

S�Kmax�
, �41�

b =
16n0�q0

2

kBT
= − 2C��Kmax� , �42�

where we made use of Eqs. �38� and �39� to write the second
equalities and �c=−�45/103 as shown earlier. Equations
�41� and �42� uniquely relate the parameters a and � of the
PFC model to peak properties of the liquid structure factor
that can be computed from MD simulations or measured
experimentally. They also fix the value of � related to a and
� by Eq. �3�

� =
8

�1 − 3�c
2�q0

2S�Kmax�C��Kmax�
. �43�

The only left unknown parameter g of the PFC model can be
obtained by applying Eq. �40� in the solid where all the den-
sity wave amplitudes have equal magnitude. Substituting
into Eq. �40� ui=us and the solid value of the amplitudes

Ai
0 = �−1/2As = −

2

15
�c +

1

15
�5 − 11�c

2, �44�

which follows from Eq. �11� or Eq. �25�, we obtain the rela-
tion

g = �q0
4�−

2

15
�c +

1

15
�5 − 11�c

2�2��n0
2us

2� . �45�

This relation fixes g in terms of the other parameters and us,
which can be extracted directly from MD simulations44 or
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related to the latent heat of melting and the temperature de-
pendence of S�Kmax�.44,45

C. Coefficients of quartic nonlinearities

The free-energy functionals derived from the PFC ampli-
tude equations and GL theory only differ in the values of the
coefficients of higher order nonlinearities. As we shall see in
the next section, these differences turn out to be unimportant
because the amplitude equations and GL theory yield essen-
tially identical predictions of � and its anisotropy. However,
they deserve brief mention. In GL theory, the coefficients a3
and a4 are determined from the two equilibrium conditions
that �i� the solid and liquid phases must have equal free-
energies at melting 
�FGL
ui=us

=0, and �ii� the equilibrium
state of the solid is a minimum of free-energy
��FGL/ 
�ui
ui=us

=0. These two conditions yield the
relations44,45

a3 = 2a2/us �46�

and

a4 = a2/us
2. �47�

The amplitude-equation free-energy functional �FAE satis-
fies automatically the above two equilibrium conditions by
construction. Thus, it only differs from �FGL in the calcula-
tion of the other coefficients of the cubic and quartic terms
cijk and cijkl. In GL theory, these coefficients by the ansatz

that all closed polygons of K� i’s with the same number of
sides have the same weight, which yields cijk=1/8 and cijkl
=1/27.44

In contrast, in the PFC amplitude equations, these coeffi-
cients are uniquely determined by the choice of the nonlinear
terms in the original PFC free-energy functional. For the
simplest choice of nonlinearity ��4 considered here, the am-
plitude equation derivation yielded the same coefficients of
cubic terms as GL theory but different coefficients of quartic
terms. Comparing Eq. �33� with Eqs. �30� and �32�, we ob-
tain that, in the expression for �FAE, cijkl=1/90 for two-

sided polygons that contain only two wave vectors K� i and

−K� i, and cijkl=4/90 for the rest of the quartic terms.
To make these differences explicit, we consider the �110	

crystal faces. The set of 12 principal reciprocal lattice vectors
corresponding to �110� direction can be separated into three

subsets with the same value of �Ki
ˆ · n̂�2: subset I with eight

vectors ��011�, �01̄1�, �011̄�, �101�, �1̄01�, �101̄�, �01̄1̄�,
�1̄01̄�� and �K̂i · n̂�2=1/4, subset II with two vectors ��110�,
�1̄1̄0�� and �K̂i · n̂�2=1, and subset III with two vectors

��1̄10�, �11̄0�� and �K̂i · n̂�2=0. Density waves in a given sub-
set have the same amplitude denoted here by u, v, and w for
subsets I, II, and III, respectively. Then for �110	 crystal
faces, Eqs. �30� and �32� reduce to

�FAE =
n0kBT�

2
� dz�a2�2

3
u2 +

1

6
v2 +

1

6
w2� − a3�1

2
u2v

+
1

2
u2w� + a4�36

90
u4 +

1

90
v4 +

1

90
w4 +

16

90
u2v2

+
16

90
u2w2 +

4

90
w2v2 +

16

90
u2vw� − C��
K� 110
��du

dz
�2

− C��
K� 110
��dv
dz
�2� , �48�

and differ from the corresponding expression obtained from
GL theory

�FGL =
n0kBT�

2
� dz�a2�2

3
u2 +

1

6
v2 +

1

6
w2� − a3�1

2
u2v

+
1

2
u2w� + a4�12

27
u4 +

1

27
v4 +

1

27
w4 +

4

27
u2v2

+
4

27
u2w2 +

1

27
w2v2 +

4

27
u2vw� − C��
K� 110
��du

dz
�2

− C��
K� 110
��dv
dz
�2� . �49�

V. COMPARISON OF CONTINUUM THEORIES AND
MOLECULAR DYNAMICS SIMULATIONS

In Ref. 44, the predictions of GL theory were compared to
MD simulations of Fe with interatomic potentials developed
by Mendelev, Han, Srolovitz, Ackland, Sun, and Asta
�MH�SA�2� based on the embedded atom method.49 In this
section, we extend this comparison to include the predictions
of both the PFC model, with the free-energy functional de-
fined by Eq. �2� and the amplitude equations derived from
this model with the free-energy functional defined by Eqs.
�30� and �32�. We use the same MD simulation results for the
present comparison. Details of the MD simulations and of
the method to extract the density wave profiles from these
simulations are given in Ref. 44 and need not be repeated
here.

The input parameters for the different continuum theories
are computed from the MD simulations in order to make the
comparison with these simulations as quantitative and pre-
cise as possible. These include the parameters related to peak
properties of the liquid structure factor Kmax=q0=2.985 Å−1,
1 /S�Kmax�=0.332, C��Kmax�=−10.40 Å2, and the amplitude
of density waves corresponding to the principal reciprocal
lattice vectors in the solid us=0.72. These input parameters
fix the various coefficients of the continuum theories derived
in the last section, which are listed in Table I.

The calculation of density wave profiles and � values for
the PFC amplitude equations, Eqs. �30� and �32�, proceeds in
the same way as for GL theory.44 For example, for the case
of the �110	 crystal faces elaborated in Sec. IV C, the density
wave profiles were calculated by minimizing �FAE given by
Eq. �48� with respect to the order parameters u, v, and w, and
by solving numerically the resulting set of coupled ordinary
differential equations with the boundary condition u=v=w
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=us in solid and u=v=w=0 in liquid. The value of �110
=�FAE/� was then computed by integration of Eq. �48�
with these profiles. The same procedure was repeated for the
�100	 and �111	 crystal faces, with different set of order pa-
rameters for each crystal face.

To compute � in PFC simulations, we first relax the den-
sity field � to a minimum of the free-energy functional F
��dr�f , where the free-energy density f is the integrand of
Eq. �7�, using a simple diffusive dynamics. We then compute
� in dimensional units using the relation

� = �−1�2q0
5

g
� dr�� f − � fs

� − �̄l

�̄s − �̄l

− f l
� − �̄s

�̄s − �̄l

�� , �50�

where �̄s ��̄l� and fs �f l� are the mean values of � and the
free-energy density in solid �liquid�, respectively, and �
=�dxdy is the interface area. Although � is small, these val-
ues need to be computed numerically �i.e., by calculating the
solid free-energy density from the numerical solution of the
PFC model rather than using the weakly nonlinear approxi-
mations derived in Sec. II� in order to obtain an accurate
computation of �.

The predictions of the different continuum theories are
compared to MD simulations in Table II. Interestingly, de-
spite the differences in quartic coefficients described in Sec.
IV C, the PFC amplitude equations and GL theory give es-
sentially identical predictions. The density wave profiles pre-
dicted by the two theories are almost indistinguishable on the
scale of Fig. 2. Furthermore, the predicted � values by the
different continuum theories for a given crystal face do not
differ by more than a few tenth of a percent. Both theories
predict a weak fourfold anisotropy �4���100−�110� / ��100

+�110� close to one percent consistent with the results of MD
simulations with the MH�SA�2 EAM potential49 for Fe.

The PFC simulations predict essentially the same aniso-
tropy value but about 10% larger � values that are in closer

agreement with MD simulation results. The larger � values

can be attributed to larger 
K� 
 modes and to the variation of
the mean density in the interface region, both of which are
neglected in the weakly-nonlinear amplitude equations and
GL theory.

The anisotropy parameter �4 defined in terms of �100 and
�110 has been traditionally used to quantify the magnitude of
anisotropy in dendrite growth theory.4–8 As seen in Table II,
this parameter is reasonably well predicted by the PFC simu-
lations and amplitude equations or GL theory. Over the past
few years, however, numerous MD simulation studies have
consistently found that at least two anisotropy parameters �1
and �2 are necessary to represent the entire �-plot of fcc-
liquid and bcc-liquid interfaces in diverse systems.9 These
parameters are defined by the expansion of � in terms of
cubic harmonics �i.e., combination of spherical harmonics
with cubic symmetry� that has the form

��n̂� = �0�1 + �1��
i=1

3

ni
4 −

3

5
�

+ �2�3�
i=1

3

ni
4 + 66n1

2n2
2n3

2 −
17

7
�� , �51�

where the ni’s are the coordinates of the direction normal to
the interface �n̂� in a set of cartesian coordinates parallel to
the crystal axes. Values of � for the the three independent
crystal faces listed in Table II uniquely fix �0, �1, and �2.
While a positive �1 favors dendrite growth along the set of
six �100� directions, a negative �2 favors growth along the set
of twelve �110� directions. A recent phase-field simulation
study has revealed the existence of hyperbranched dendrite
morphologies with a basic set of twenty four growth direc-
tions between �100� and �110� over some region of the
��1 ,�2� parameter space, where �10 and �2�0 favor dif-
ferent growth directions.10

TABLE I. Values of input parameters from MD simulations with interatomic EAM potential for Fe from
MH�SA� �Refs. 2 and 49� and resulting coefficients used in GL theory, the PFC model, and the amplitude
equations derived from this model.

n0 �Å−3� a2 b �Å2� us q0 �Å−1� a �eV Å3� � �eV Å7� g �eV Å9� �

MD �MH�SA�2�
�Ref. 41�

0.0765 3.99 20.81 0.72 2.985 −2.136 0.291 9.705 0.0923

TABLE II. Comparison of � values for different crystal faces �in erg/cm2� and anisotropy parameters
including �4���100−�110� / ��100+�110� in percent and �1 and �2 values �see text�, predicted by MD simula-
tions, and by various continuum theories �PFC simulations, PFC amplitude equations, and GL theory� with
the input parameters of Table I from MD simulations.

100 110 111 �4�%� �1 �2

MD �MH�SA�2� �Ref. 41� 177.0 �10.8� 173.5 �10.6� 173.4 �10.6� 1.0�0.6� 0.033 0.0025

PFC simulation 160.47 156.83 152.00 1.15 0.075 −0.0094

Amplitude equations 144.14 140.67 135.76 1.22 0.082 −0.0110

GL theory �Ref. 44� 144.26 141.35 137.57 1.02 0.066 −0.0082
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As seen from Table II, the agreement between the differ-
ent continuum theories and MD simulations is poorer for the
ratio �111/�100 than for �110/�100. Consequently, the �1 and
�2 values, which depend on these two ratios, are not well
predicted by these theories in comparison to �4, which de-
pends only on �100/�110. This discrepancy appears to be an
intrinsic limitation of weakly nonlinear theories where aniso-
tropy is computed using only one set of density waves asso-
ciated with principal reciprocal lattice vectors of magnitude
Kmax. While this one-set approximation is reasonably good
on the liquid side of the interface, where the density wave
amplitude is small, it breaks down on the solid side where
the highly nonlinear crystal density field is better approxi-
mated by sharply peaked Gaussians centered around atomic
positions. Resolving this field requires a very large number
of sets of reciprocal lattice vectors.29

An interesting related issue is the sensitivity of crystalline
anisotropy to microscopic details of interatomic potentials.

MD simulations to date indicate that the magnitude of this
anisotropy tends to be larger for fcc than bcc forming sys-
tems, suggesting that crystal structure is a main determinant
of anisotropy. Despite this trend, anisotropy values do de-
pend on the choice of potentials for a given crystal structure.
For example, two other interatomic potentials for Fe yield
values of �4 twice smaller than for the MH�SA�2 potential.9

In contrast, anisotropy values are independent of material
parameters in both the PFC amplitude equations and GL
theory. The reason is that all the material-dependent input
parameters, which include the density wave amplitude in the
solid us and peak liquid structure factor properties, can be
scaled out of the free-energy functionals for these theories.
This is readily seen in the dimensionless form of the free-
energy functional for the PFC amplitude equations given by
Eq. �30�. Consequently, the ratios of � values for different
crystal faces that determine the anisotropy parameters �1 and
�2 are universal for all bcc elements within the confines of
each theory, and the value of anisotropy parameters depend
on the nonlinear coupling between density waves. The re-
sults of Table II show that differences in these couplings �i.e.,
coefficients of quartic terms in the free-energy functionals�
lead to only small differences of anisotropy values. It is pos-
sible, however, that other choices could produce values of �1
and �2 in closer agreement with MD simulations.

VI. CONCLUSIONS

We have studied equilibrium properties of bcc-liquid in-
terfaces in a physically motivated small � limit of the PFC
model,19,20 where the freezing transition is weakly first order.
This limit lends itself naturally to a multiscale analysis that
was used to derive a set of equations for the leading order

amplitudes Ai
0 of density waves corresponding to the set �K� i	

of principal reciprocal lattice vectors, and to express the free-
energy of the solid-liquid system as a functional of these
amplitudes. Furthermore, by exploiting the close analogy be-
tween this functional and GL theory derived from classical
DFT,44,45 we have determined all the parameters of the PFC
model in terms of peak properties of the liquid structure fac-
tor and the solid density wave amplitude.

In both the PFC amplitude equations and GL theory, the
anisotropy of � originates from the directional dependence

�i.e., the dependence on K� i · n̂ where n̂ in the interface nor-

mal� of the coefficients of gradient-square terms �
�� Ai
0
2� in

the free-energy functional, which govern the spatial decay
rate of density waves in the liquid. In the isotropic limit
where this directional dependence is neglected, and hence all
amplitudes are equal, Ai

0=� for all i, both theories reduce to
the conventional phase-field model of solidification formu-
lated in terms of the nonconserved order parameter �. From
this standpoint, the present analysis relates formally the crys-
tal and conventional phase-field models.

Numerical results show that the PFC model, the ampli-
tude equations derived from this model, and GL theory44 all
give very similar predictions of � and its anisotropy for pa-
rameters of Fe where � is small enough ��0.1� for the
amplitude equations to be quantitatively valid. The magni-
tude of �, the shape of density wave profiles in the spatially
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FIG. 2. �Color online� Comparison of numerically calculated
nonlinear order parameter profiles u and v for �110	 crystal faces
obtained from the PFC amplitude equations �blue dashed line� and
the GL theory �Ref. 44� �red solid line� and computed form MD

simulations with K� 101 and K� 110 for u and v, respectively �solid
circles�.
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diffuse solid-liquid interface region, and the standard crystal-
line anisotropy parameter �4 defined in terms of the ratio
�110/�100, are in good overall agreement with the results of
MD simulations. The various continuum theories, however,
do not predict accurately higher order anisotropies that also
depend on the ratio �110/�100. These anisotropies probably
depend generally on the contributions of higher sets of recip-
rocal lattice vectors, which are neglected in the simplest for-
mulation of the PFC model considered here.
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