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Using series expansions around the dimer limit, we find that the ground state of the spin-1/2 Heisenberg
antiferromagnet on the kagome lattice appears to be a valence bond crystal �VBC� with a 36 site unit cell, and
ground-state energy per site E=−0.433±0.001 J. It consists of a honeycomb lattice of “perfect hexagons.” The
energy difference between the ground state and other ordered states with the maximum number of perfect
hexagons, such as a stripe-ordered state, is of order 0.001 J. The expansion is also done for the 36 site system
with periodic boundary conditions; its energy per site is 0.005±0.001 J lower than the infinite system, consis-
tent with exact diagonalization results. Every unit cell of the VBC has two singlet states whose degeneracy is
not lifted to sixth order in the expansion. We estimate this energy difference to be less than 0.001 J. The
dimerization order parameter is found to be robust. Two leading orders of perturbation theory give lowest
triplet excitations to be dispersionless and confined to the perfect hexagons.
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The spin-1/2 antiferromagnetic kagome-lattice Heisen-
berg model �KLHM� with Hamiltonian

H = J�
�i,j�

Si · S j �1�

is a highly frustrated quantum spin model.1 Its properties
have been studied by a wide variety of numerical and ana-
lytical techniques.2–9 Yet, the precise nature of the ground
state remains a subject of debate. Proposals have included a
number of valence bond crystals �VBC�10–13 as well as spin-
liquid states with algebraic correlations.14,15 Recent experi-
mental work on the material ZnCu3�OH�6Cl2 has attracted
further interest to this model.16–20

Here, we show that the ground state of KLHM appears to
be a valence bond crystal with a 36 site unit cell. It consists
of a honeycomb lattice of perfect hexagons as initially pro-
posed by Marston and Zeng,10 discussed in more detail by
Nikolic and Senthil,12 and shown in Fig. 1. In a dimer cov-
ering, all triangles that have a singlet valence bond are lo-
cally in a ground state. As can be readily shown, any dimer
covering leaves one-fourth of all triangles in the kagome
lattice empty. All quantum fluctuations in the ground state
originate from these empty triangles, since it is only there
that the singlet dimer covering is not locally a ground state of
the Hamiltonian.

We develop series expansions around an arbitrary dimer
covering of the infinite lattice using a linked cluster method21

and compare the energies of various dimer coverings. To
carry out the expansions, all �“strong”� bonds that make up
the dimer covering are given an interaction strength J and all
other �“weak”� bonds are given a strength �J. Expansions are
then carried out in powers of � and extrapolated to �=1
where all bonds are equivalent in the Hamiltonian. Following
the recent development of the numerical linked cluster
scheme,22 we group together all weak bonds belonging to
each triangle. This significantly simplifies the calculations:
only five graphs contribute to the ground-state energy to fifth

order in � �see Fig. 2�. The resulting series expansion for the
ground-state energy shows surprisingly rapid convergence
even at �=1.

To second order in our expansion for the ground-state
energy, all dimer coverings have the same energy. At zero
order, the singlet dimers each have energy −0.75 J. These
dimers can lower their energy further by “resonating,” but
only on the empty triangles. At second order, these pairwise
dimer-dimer interactions lower the energy by 0.281 25 J per
empty triangle. The degeneracy of all the dimer configura-
tions is finally lifted at third order, where there is binding of
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FIG. 1. �Color online� Ground-state ordering pattern of low-
energy �“strong”� bonds �blue/dark gray� for the kagome-lattice
Heisenberg model. The perfect hexagons are denoted as H, the
empty triangles by E, and the pinwheels as P. The two dimer cov-
erings of the pinwheels that remain degenerate to high orders of
perturbation theory are denoted by thick solid �blue/dark gray� and
dotted �magneta/gray� bonds.
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three empty triangles into “perfect hexagons”; the three
dimers around a perfect hexagon �see Fig. 2�b�� can then
resonate together. This process lowers the energy of each
perfect hexagon at third order by 0.070 312 5 J. At fourth
order, resonances between two empty triangles when they are
connected by a single dimer bond as in Fig. 2�c� produce an
additional binding energy of amount 0.019 531 25 J.

Thus at fourth order in our expansion we find that the
ground state comes from the dimer covering with the maxi-
mum number of perfect hexagons, with neighboring hexa-
gons arranged such that their empty triangles share a dimer
bond as much as possible. It follows that once the positions
and dimer coverings of two neighboring perfect hexagons
are picked, the rest uniquely fall on a honeycomb lattice of
perfect hexagons. Furthermore, the dimerizations of all hexa-
gons are simple translations of one another. This leads to the
valence bond crystal �VBC� arrangement shown in Fig. 1.
For an infinite lattice, the ground state of this array of perfect
hexagons is 24-fold degenerate, with 12 distinct translations,
each of which has two reflections. As shown in Fig. 1, the
arrangement into this VBC also leaves a “pinwheel” of
dimers in every unit cell. There are two degenerate pinwheel
dimer coverings, and this degeneracy is not lifted to quite
high orders of perturbation theory, implying that in a lattice
of N sites there are at least 2N/36 states whose energy differ-
ence, per site, is much less than 0.001 J.

We have carried the expansion to fifth order for the
ground-state energy. For the infinite lattice, the contribution
at fifth order is quite small �about 0.0005 J per site� and
slightly increases the energy difference between the honey-
comb and stripe VBC �Ref. 12� that was established at fourth
order.

In addition to carrying out the expansions for the infinite
system, one can also study the ground-state properties of
finite systems using the series expansion techniques. The 36
site cluster with periodic boundary conditions �PBC� studied
by Leung and Elser4 and Lecheminant et al.6 does accommo-
date the unit cell of the honeycomb VBC, but not that of the

stripe VBC. For the honeycomb VBC dimer covering on this
cluster, the energy agrees with the infinite system through
third order. However, at fourth order there are additional
graphs that enter due to the periodic boundary conditions,
permitting four dimers to resonate along a path through four
empty triangles that winds once around the periodic bound-
aries. From comparing the series through fifth order and us-
ing simple Padé estimates, we find the ground-state energy
for the 36 site cluster to be lower than that of the infinite
system by 0.005±0.001 J per site, consistent with the exact
diagonalization result of an energy of −0.438377 J per site.4

The �=1 energies for the infinite-lattice honeycomb
VBC, the stripe VBC of Nikolic and Senthil,12 and for the
finite 36 site cluster with PBC and honeycomb VBC are
listed in Table I, summed through fifth order. Note the appar-
ently rapid convergence of the series, especially for the infi-
nite lattice VBC states.

For the 36-site cluster, our considerations imply 48 spin-
singlet states with very low energies per site within of order
0.001 J of the ground state, 24 corresponding to the ground-
state degeneracy of the thermodynamic system, and 2 each
for the pinwheel states. But the other 48 states with two
perfect hexagons should also fall below the lowest triplet
state, whose excitation energy for the 36-site cluster trans-
lates to a per site value larger than 0.004 J. In the exact
diagonalization studies about 200 singlet states are found
below the lowest triplet. Since the binding energy for a per-
fect hexagon translates into a per site energy of 0.002 J for
the 36-site cluster, some singlet states with only one perfect
hexagon presumably can also have energies below the triplet
gap in that cluster.

We have also studied the local bond energies to third or-
der in perturbation theory. To this order only four types of
nearest-neighbor bonds, representing only 27 of the 72 bonds
per unit cell, have their expectation values changed from the
zero order values of −0.75 J for strong bonds and 0 for weak
bonds. These are the following: bond type A, the strong
bonds inside the perfect hexagons; bond type B, the weak
bonds inside the perfect hexagons; bond type C, the weak
bonds in the empty triangles which do not form part of the
hexagon; and bond type D, the strong bonds that join two
empty triangles between perfect hexagons. Their expectation
values are listed in Table II. The total ground-state energy is
about −0.22 J per bond. Although the series for the total
energy is converging quickly to this value, the energies of
individual bonds remain very different, as is expected for a
valence bond crystal.

TABLE I. Ground-state energy per site in units of J for various
dimer states in perturbation theory. At each order we sum the con-
tributions through that order for �=1.

Order Honeycomb VBC Stripe VBC 36-site PBC

0 −0.375 −0.375 −0.375

1 −0.375 −0.375 −0.375

2 −0.421875 −0.421875 −0.421875

3 −0.42578125 −0.42578125 −0.42578125

4 −0.431559245 −0.43101671 −0.43400065

5 −0.432088216 −0.43153212 −0.43624539

(e)

(a)

(c)
(d)

(b)

FIG. 2. Topologies of the graphs that contribute to the ground-
state energy to fifth order of perturbation theory. Graphs �a�, �b�, �c�,
�d�, and �e� begin contributing in second, third, fourth, fourth, and
fifth orders, respectively.
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Leung and Elser4 had also calculated the energy-energy
correlations in the ground state of the 36-site cluster. They
had noted that the correlations at largest distances qualita-
tively matched the valence bond crystal pattern after averag-
ing over the 48 degenerate states. However, on a quantitative
level there was no correspondence with the VBC, as the
dimerization pattern seen in the exact diagonalization was
considerably weaker. The modified values of the bond energy
expectation values, calculated by us, do not significantly
change this conclusion. We believe the reason for the dis-
crepancy is the following: In the 36-site cluster, energy-
energy correlations do not factorize even at the largest dis-
tances. Due to the periodic boundary conditions, even bonds
which are furthest away on the 36-site cluster can become
correlated already in second order of perturbation theory.
Thus it is not appropriate to simply compare correlations

��S� i ·S� j��S�k ·S� l�� to the products �S� i ·S� j��S�k ·S� l�. In the future,
we hope to calculate and compare the energy-energy corre-
lations for the thermodynamic system and the 36-site cluster
within this dimer expansion.

We have also calculated two leading orders of perturba-
tion theory for the triplet excitation spectra. There are 18
elementary triplet excitations per unit cell, corresponding to
the 18 dimers. In zero order, these triplets are dispersionless
and have excitation energy J. To second order in perturbation
theory, only 9 of the 18 triplets, consisting of the six belong-
ing to the two perfect hexagons, and the three that couple the
perfect hexagons via empty triangles, become dispersive and
form a network on which excitations can move. The other 9
triplets, consisting of the 6 pinwheel dimers and the 3 other
dimers that do not touch empty triangles, can only perform
virtual hops at this order and thus remain dispersionless. The
effective Hamiltonian for the nine dispersive states can be
expressed in terms of a 9�9 matrix. Let z1=exp ik� ·r�1 with
r�1=−4�3ŷ, and z2=exp ik� ·r�2 with r�2=−6x̂−2�3ŷ, and z1

* and
z2
* be their complex conjugates, with the lattice oriented as in

Fig. 1, with a nearest-neighbor spacing of unity.Then, in
second-order perturbation theory, the triplet excitation ener-
gies are the eigenvalues of the matrix

�/J = 	1 −
5

8
�2
 + 	1

4
� +

1

8
�2
M1 + 	 1

32
�2
M2, �2�

where the matrices M1 and M2 as a function of z1 and z2 are
given in Tables III and IV.

Note that this implies that two triplets have the lowest
energy and they are each confined to one of the two perfect
hexagons and thus remain dispersionless. The triplet gap be-

comes 1− �1 /2��− �7 /8��2, which adds up to −3 /8 at �=1 if
we truncate at this order. This can be understood as arising
from the following two factors: The hexagon is similar to a
one-dimensional alternating Heisenberg chain and in that
case 1− �1 /2��− �3 /8��2 is the known gap.23 There is a
slight difference here with respect to the alternating Heisen-
berg chain because of the additional neighbors. The diagonal
term is doubled but the second neighbor hop is absent, so
that the overall result for the gap is the same. In addition,
each strong bond has its two ends both connected to the same
end of another dimer to which a triplet on that strong bond
may make a virtual hop. This is similar to the triplets in the
Shastry-Sutherland model.24,25 Due to this, and the fact that
no such process happens in the ground state, there is a dis-
persionless reduction of the spin gap of magnitude −�1 /2��2.
At second order these two types of contributions simply add.
Thus we find that although the series for the ground-state
energy shows apparently strong convergence, the series for
the spin gap does not, although the latter statement is about
only the first two orders in the expansion. Further study of
the triplet excitations is left for future work.

Our results have important implications for the finite-
temperature properties of the model. First of all, since the
difference in energy of the honeycomb VBC state and other
dimer states �such as stripes� is less than 0.001 J per site, any
finite temperature transition in to a honeycomb VBC phase
should occur at a temperature of this order or lower. Sec-
ondly, given the large number �24� of degenerate ordering
patterns, the phase transition seems likely to be first order.
Third, since the attraction between the empty triangles is
only of order 0.02 J, above T�0.02 J, all dimer configura-
tions should have comparable Boltzmann weight, giving rise

TABLE II. Expectation values �SiSj� for bond types A and D,
and ��SiSj� for bond types B and C, all evaluated at ��1.

Bond Zero order Second order Third order

A −0.75 −0.5625 −0.515625

B 0 −0.1875 −0.257812

C 0 −0.1875 −0.1875

D −0.75 −0.5625 −0.5625

TABLE III. Matrix M1.

0 −1 −1 −1 1 0 0 0 0

−1 0 −1 1 0 −1 0 0 0

−1 −1 0 0 −1 1 0 0 0

−1 1 0 0 0 0 −1 0 1

1 0 −1 0 0 0 0 z1 −z1

0 −1 1 0 0 0 z2 −z2 0

0 0 0 −1 0 z1
* 0 −1 −1

0 0 0 0 z1
* −z2

* −1 0 −1

0 0 0 1 −z1
* 0 −1 −1 0

TABLE IV. Matrix M2.

0 0 0 1 −1 0 −1 −z2 1+z2

0 0 0 −1 0 1 1+z1 −z1 −1

0 0 0 0 1 −1 −z1 z1+z2 −z2

1 −1 0 0 1+z2
* 1+z1

* 1 0 −1

−1 0 1 1+z2 0 1+z1
*z2 0 −z2 z2

0 1 −1 1+z1 1+z1z2
* 0 −z1 z1 0

−1 1+z1
* −z1

* 1 0 −z1
* 0 0 0

−z2
* −z1

* z1
*+z2

* 0 −z2
* z1

* 0 0 0

1+z2
* −1 −z2

* −1 z2
* 0 0 0 0
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to a dimer liquid regime at intermediate temperatures.
Fourth, the specific heat and entropy of the KLHM should
have structure down to T /J�0.001. It was found in the high-
temperature expansion study5 that a naive extrapolation of
the high-temperature series down to T=0 led to a finite
ground-state entropy. Furthermore, several studies have sug-
gested multiple peaks in the specific heat.9,26 Our work

shows at least 2N/36 very low energy states of the pinwheels,
for an N-site system, and many other very low-lying states,
giving further support to these results.
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