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We study a class of two-dimensional spin models with the Kitaev-type couplings in mosaic structure lattices
to implement topological orders. We show that they are exactly solvable by reducing them to some free
Majorana fermion models with gauge symmetries. The typical case with a 4-8-8 close packing is investigated
in detail to display the quantum phases with Abelian and non-Abelian anyons. Its topological properties
characterized by Chern numbers are revealed through the edge modes of its spectrum.

DOI: 10.1103/PhysRevB.76.180404 PACS number�s�: 75.10.Jm, 05.30.Pr, 71.10.Pm

INTRODUCTION

The phenomenon of emergence �such as a phase transi-
tion� in a condensed matter system is usually understood
according to the Landau symmetry-breaking theory �LSBT�.1
There also exists a new kind of order called “topological
order”1–5 which cannot be described in the frame of the
LSBT �e.g., fractional quantum Hall effect�. The study of
topological order in theoretical and experimental aspects has
been an active area of research.2–15 Since local perturbations
hardly destroy the topological properties, such topologically
ordered states show exciting potential to encode and process
quantum information robustly.2 Therefore it is significant and
challenging to find more exactly solvable models showing
various topological orders.

In this Rapid Communication, the Kitaev’s honeycomb
model2 is generalized to the general mosaic spin models with
different two-dimensional Bravais lattices of complex unit
cells. Then we study the 4-8-8 case in detail to reveal the
general and special properties of mosaic spin models.

Our mosaic spin models are constructed with the basic
block shown in Fig. 1�a�, which is a vertex with three differ-
ent types of spin couplings along x- �black solid link�, y-
�blue dotted link�, and z- �red double link� directions, respec-
tively. In spite of the lattice symmetry, numerous spin mod-
els can be built based on this basic block. However, taking
translational symmetry and rotational symmetry as much as
possible into account, we regard each basic block as the
common vertex of three isogons with n1, n2, and n3 edges, so
there are only four kinds of mosaic spin models16 illustrated
in Figs. 1�b�–1�e�, called n1-n2-n3 mosaic models.

Obviously, the 6-6-6 mosaic model is just Kitaev’s hon-
eycomb model.2 Here, we remark that for given n1, n2, and
n3, there exist some unequivalent kinds of plane arrangement
of x links, y links, and z links, but we only illustrate one of
them in Fig. 1. The general Hamiltonian of all mosaic spin
models reads as

H = − �
u=x,y,z

Ju �
�j,k��S�u�

� j
u�k

u, �1�

where S�u� is the set of links with u-direction couplings.

PERTURBATION THEORY STUDY
AND ABELIAN ANYONS

First, we study the 4-8-8 mosaic model as a typical illus-
tration in detail. To see its topological properties, we first
analyze its low energy excitations when the system is ini-
tially spontaneously polarized with the strong Ising interac-
tion H0=−Jz�z links� j

z�k
z. The ground energy of H0 is

E0=−NJz, where N is the number of z links. For larger Jz in
comparison with Jx and Jy, we regard the transverse part
V=H−H0 as a perturbation and then prove that the obtained
effective Hamiltonian Hef f just describes Kitaev’s toric code
model,2 which supports many topological issues of the origi-
nal mosaic spin model.

The ground eigenstates of H0 are highly degenerate,
where each two spins connected by a z link can be
either �↑ ↑ � or �↓ ↓ �. The fusion projection2 �l

† can
map the lth aligned spin pair �m ,m�l to an effective spin
�m�l �m=↑ or ↓�, i.e., �l

† �m ,m�l= �m�l. We use the fusion
projection and the Green function formalism to calculate the
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FIG. 1. �Color online� �a� Basic block for mosaic spin models,
which consists of three branches with x- �black solid link�, y- �blue
dotted link�, and z- �red double link� type couplings. �b� 6-6-6 mo-
saic model, i.e., Kitaev’s honeycomb model. �c� 3-12-12 mosaic
model. �d� 4-6-12 mosaic model. �e� 4-8-8 mosaic model, e vortices
lie on squares while m vortices lie on octagons. �f� and �g� The
possible nonconstant terms of the effective Hamiltonian are ob-
tained by flipping four spin pairs around an octagon �f� and a qua-
trefoil �g�. �h� Kitaev’s toric code model is the effective model of
the 4-8-8 mosaic model when �Jz � � �Jx � , �Jy�.
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effective Hamiltonian Hef f =�l=0
� Hef f

�l� =E0+�†V�1+G0�E0�
+G0�E0�VG0�E0��V�+¯ where G0�E0�= �E0−H0�−1. We
first obtain the constant zeroth order one, the vanishing first
order, and third order ones. Here, each terms � j

x�k
x or � j

y�k
y in

V flips two spins, increasing the energy by 4Jz. Up to the
second order perturbation, one V flips two spins and the other
V flips them back, giving Hef f

�2� =−N�Jx
2+Jy

2� / �4Jz� as a con-
stant. As shown in Figs. 1�f� and 1�g�, we take two � j

x�k
x and

two � j
y�k

y from four V around one octagon or one quatrefoil
in a particular order. Taking all the 2�4! =48 possible cases
into account, we obtain the fourth order effective Hamil-
tonian

Hef f
�4� = −

Jx
2Jy

2

16Jz
3�5�

O

�l
y�r

y�u
y�d

y + �
Q

�l
z�r

z�u
z�d

z	 , �2�

where the constant term was dropped, and O and Q represent
the octagon and quatrefoil in the two-dimensional �2D�
lattice. Up to a unitary transformation for spin rotation
�y→�z, �z→�x, �x→�y, the above Hamiltonian represents
the Kitaev’s toric code model.2 Thus the above fusion pro-
jection constructs a new Bravais lattice illustrated in Fig.
1�h� with the effective spins laying on its links. Considering
the Kitaev model �2� possesses rich topological features
characterized by m and e anyons, we conclude that m par-
ticles live on octagons while e particles live on squares in our
model with original spin representation.

MAJORANA FERMION MAPPING
WITH Z2-GAUGE SYMMETRY

The 4-8-8 mosaic model consists of four equivalent
simple sublattices, and a unit cell �see the green rhombus
tablet in Fig. 2�a�� contains each of four kinds of vortices
referred to as 1, 2, 3, and 4. According to Kitaev,2 we use the
Majorana fermion operators to represent Pauli operators as
�x= ibxc, �y = ibyc, and �z= ibzc, where Majorana operators
bx , by , bz, and c satisfy �2=1, ��=−�� for � ,�
� 
bx ,by ,bz ,c� and ���. Then, the Hamiltonian �1� can be
rewritten as H=� j,k

1
2Gjkcjck, where the operator-valued cou-

pling Gjk� iJuZjk �u=x ,y ,z� if �j ,k��S�u�; Gjk=0 when
�j ,k��S�u�. Here, a link �j ,k� determines a type of coupling
u=u�j ,k�. Due to the vanishing anticommutator of bj

u and bk
u,

we have Zjk=−Zkj for j�k.
For each site, the above-mentioned Majorana operators

act on a 4D space, but the physical subspace is only 2D.
Thus we need to invoke a gauge transformation of the Z2
group to project the extended space into the physical sub-
space through the projection operator D=bxbybzc: ��� be-
longs to the physical subspace if and only if D ���= ���. With
this physical projection, some eigenstates of H can be found
exactly because Gjk lays on the center of an Abelian algebra
generated by Zjk with �Zjk ,H�=0 and �Zjk ,Zml�=0. Since
�Zjk�2=1 ,Zjk= ibj

ubk
u generates a Z2 group and its eigenvalues

are zjk= ±1. Therefore, 
Zjk , I � �j ,k��S�u� ,u=x ,y ,z� gener-
ate the symmetry group Z2 � Z2 � ¯ � Z2 of the model;
the whole Hilbert space is then decomposed according
to the direct sum of some irreducible representations,
and each irreducible sector is characterized by 
zjk � �j ,k�
�S�u� ,u=x ,y ,z�, i.e., the directions shown in Figs.
2�a�–2�c�.

Obviously, in each irreducible representation space, we
can reduce the Hamiltonian �1� into a quadratic form, which
represents an effective Hamiltonian of free fermions for a
given vortex arrangement. To characterize the vortex con-
figuration, we introduce square and octagon plaquette opera-
tors Wp

�4�=�1
z�2

z�3
z�4

z and Wp
�8�=�1

y�2
y�3

x�4
x�5

y�6
y�7

x�8
x or

Wp
�4� = − 


�j,k���p�4�
Zjk, Wp

�8� = − 

�j,k���p�8�

Zjk, �3�

where �p�4� and �p�8� represent the sets of boundary links
of square and octagon plaquettes with label p; the �j ,k� links
are ordered clockwise around the plaquette. The operators
Wp

�j� �j=4,8� commute with each other, �Wp
�j� ,H�=0,

Wp
�4�2=Wp

�8�2= I, and thus each plaquette operator has two ei-
genvalues wp= ±1. A plaquette with wp=1 is a vortex-free
plaquette while wp=−1 corresponds to a vortex. In the fol-
lowing we will show that different arrangements of vortices
result in different phase graphs and different energy spec-
trums.

4-8-8 MOSAIC MODEL IN DIFFERENT
VORTEX-OCCUPIED SECTORS

Let us denote the site index j in detail by �s ,	�, where s
refers to a unit cell, and 	 to a position type inside the cell.
The Hamiltonian then reads H=�s,	,t,
Gs	,t
cs	ct
 /2. Due to
the translational invariance of the lattice along the unit direc-
tion vectors n1= �1,0�, n2= �0,1�, Gs	,t
 actually depends
on 	 ,
 and t−s, and thus exp�iq · �rt−rs��Gs	,t


=exp�iq ·rt�G0	,t
. To study the spectral structure of the
system, we invoke the generic fermion operator aq,

=�te

iq·rtct
 /�2N where N is the total number of the unit cells

and ap,
aq,	
† +aq,	

† ap,
=�pq�
	. G̃	
�q� is the Fourier trans-
formation of G0	,t
. In the momentum space, the fermion
representation of the Hamiltonian reads

xJ
yJ

zJ

0 B
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zA

( )e( )dxJ
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FIG. 2. �Color online� �a�–�c� 4-8-8 mosaic spin models in �a�
vortex-free �VF� sector, �b� vortex-half occupied �VHO� sector, and
�c� vortex-full occupied �VFO� sector. �d�–�f� The corresponding
phase graphs of the above lattices with gapless phase B and gapped
phases A: �d� VF, �e� VHO, and �f� VFO.
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H =
1

2�
q

Aq
†G̃�q�Aq. �4�

Case I. In the vortex-free �VF� sector, we choose a par-
ticular direction �zjk= +1 or −1� for each link �see Fig. 2�a��,
so that translational symmetry holds and wp

�4�=wp
�8�=1 for all

plaquettes. Since Aq
† = �aq,1

† ,aq,2
† ,aq,3

† ,aq,4
† �, we have the

4�4 spectral matrix G̃�q�= G̃VF or

G̃VF = � Jx�
y − iJy�

x + iJz�

iJy�
x − iJz�

† Jx�
y 	 , �5�

where �=diag�exp�−iq2� ,−exp�iq1��, q1=q ·n1, q2=q ·n2.
The single particle spectrum ��q�=−��−q� is given by the

eigenvalues of the spectral matrix G̃�q�. An important prop-
erty of the spectrum is whether it is gapless, i.e., whether
��q� vanishes for some q. Obviously, the vanishing of deter-

minant Det�G̃VF� enjoys the zero eigenvalues of G̃VF. Then
the gapless condition is

Jx
2 + Jy

2 = Jz
2. �6�

As shown in Fig. 2�d�, the phase diagram of our model con-
sists of three phases, the gapless phase B, which is actually a
conical surface, distinguishing from two gapped phases Az
and Axy. Since the possible zero energy degenerate points are
�0, ±
� and �±
 ,0� in the first Brillouin zone, we choose
Jx=Jy =1, Jz=�2, and q1=
 to plot the profile graph of the
energy spectrum with respect to q2� �−
 ,
� in Fig. 3�b� by

solid lines. The eigenvalues of G̃VF are chosen in the con-
course 
±�2 cos�q2 /4� , ±�2 sin�q2 /4��. Thus in the vicinity
of the energy degenerate points, the low-energy excited spec-
trum is approximately linear. This property may be helpful to
study quantum state transfer problems.17

Case II. We choose another particular direction for each
link as shown in Fig. 2�b�, and the plaquettes with wp

�4�=−1
or wp

�8�=−1 are marked by blue shadings. In this vortex-half
occupied �VHO� lattice, each unit cell contains eight kinds of
sites, Aq

†�= �aq,1
† ,aq,2

† ,aq,3
† ,aq,4

† ,aq,5
† ,aq,6

† ,aq,7
† ,aq,8

† �, and the
corresponding 8�8 spectral matrix becomes

G̃VHO =�
Jx�y − iJy�x 0 iJze

−iq2��†

iJy�x Jx�y − iJz�
† 0

0 iJz� Jx�y − iJy�x

− iJze
iq2�� 0 iJy�x − Jx�y

� ,

�7�

where �=diag�1,−e−iq1��, �=diag�e−iq1� ,−1�, q1�=q ·n1�,
q2�=q ·n2�, n1�= �1,1�, and n2�= �−1,1�. The gapless condition
for the VHO lattice is

Jx
2 � Jy

2 + Jz
2, Jy

2 � Jx
2 + Jz

2, Jz
2 � Jx

2 + Jy
2 �8�

and the corresponding phase graph is plotted in Fig. 2�e�. We
notice that the same phase graph has been obtained by
Pachos7 for the Kitaev model.

Case III. We choose the directions of links as shown in
Fig. 2�c� so that the translational symmetry still holds and
wp

�4�=wp
�8�=−1 for every plaquette. The unit cell can be cho-

sen as the same as the one in the VF sector, so do �, q1, and
q2. Therefore

G̃VFO = � Jx�
y − iJy�

x + iJz�

iJy�
x − iJz�

† − Jx�
y 	 . �9�

The gapless condition is found as

�Jx − Jz�2 � Jy
2 � �Jx + Jz�2. �10�

If Jx ,Jy ,Jz�0, we have Jx�Jy +Jz, Jy �Jx+Jz, Jz�Jx+Jy.
Thus in this case the phase diagram of our model is the same
as that of Kitaev’s honeycomb model. As shown in Fig. 2�f�,
the region within the red lines labeled by B is gapless.
The other three gapped phases Ax, Ay, and Az are algebra-
ically distinct. However, the energy spectrum of the 4-8-8
mosaic model is more complex than that of the Kitaev
model. When Jx=Jy =Jz=1 and q1=−q2=q, the eigenvalues
of the single fermion are chosen in the concourse

−1/2±cos�q /2+
 /4� ,1 /2±cos�q /2−
 /4��. Similarly, the
different energy spectrums of mosaic spin models imply their
different dynamic properties.

In order to see the stability of the ground state in the VF
sector, we compare the ground energy E0=−�q�q /2 of the
VF lattice with that of the VHO and VFO lattices mentioned
above. By choosing Jx=Jy =Jz=1, we find the ground
energy per site is E0,VF=−0.804 15, E0,VHO=−0.759 30, and
E0,VFO=−0.736 31, so E0,VF�E0,VHO�E0,VFO. The other
cases can be studied similarly. Actually, as it was pointed out
by Kitaev,2 Lieb’s theorem18 ensures that the VF lattice has
the lowest energy to form a ground state. In the following,
we will focus on the stable VF lattice and investigate the
nontrivial topological properties in the B phase.

TOPOLOGICAL PROPERTIES OF B PHASE
IN THE PRESENCE OF MAGNETIC FIELD

The perturbation V=−� j�hx� j
x+hy� j

y +hz� j
z� introduced by

Kitaev2 can break the time-reversal symmetry. Then the non-
trivial third-order term becomes Hef f

�3� =�� j,k,l�iZjlZkl� cjck,
where ��hxhyhz /J2. As illustrated in Fig. 3�a�, the thin
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FIG. 3. �Color online� �a� Thin dashed arrows describe the ef-
fective second nearest-neighbor interactions between fermions and
the corresponding gauge induced by a magnetic field. �b� Profile
graph of an energy spectrum with Jx=Jy =1, Jz=�2 along the
q1=
 axis in the absence �solid lines� and presence �dashed lines�
of a magnetic field. �c� Energy spectrum of the above system with
finite size along the n2 direction in the magnetic field. Two chiral
edge modes crossing at E=0 correspond to Chern number ±1.
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dashed arrows represent the effective second nearest-
neighbor interactions between fermions induced by Hef f

�3�, and
their directions denote the chosen gauge ZjlZkl. When
�=0.025, the changed profiled spectrum is figured by dashed
lines in Fig. 3�b�. Therefore the system in the B phase ac-
quires an energy gap in the presence of a magnetic field,
which is helpful for protecting non-Abelian anyons.

According to Kitaev,2 the topological properties of a two-
dimensional noninteracting fermion system with an energy
gap are usually characterized by Chern number, which can
be determined by observing the edge modes of the
spectrum.2,19 If the system illustrated in Fig. 2�a� is finite
along the n2 direction while still periodic in the n1 direction,
its energy spectrum is shown in Fig. 3�c� with Jx=Jy =1, Jz
=�2, and �=0.025. Then we can observe two edge modes
�corresponding to two edges� crossing at E=0. Since the
Fermi energy lies in the central gap, only these two edge
states around zero energy are relevant to the Chern number.19

We also notice that the two edge modes have a universal
chiral feature,2 i.e., even if the edges are changed, the energy
curves of the edge modes do not change their tendencies,
respectively. Therefore we conclude that the Chern number
is ±1 in the non-Abelian B phase. We also get zero Chern
number in the Abelian phases Axy and Az with similar studies.
Compared with Kitaev’s honeycomb model and the 4-8-8
mosaic model with even cycles in the lattice, the 3-12-12
mosaic model with odd cycles spontaneously breaks time

reversal symmetry to obtain Chern number ±1 without ap-
plying a magnetic field.2,20

CONCLUSION

We generalize Kitaev’s honeycomb model to various mo-
saic spin models with translation and rotation symmetries
and study the 4-8-8 case in detail. It is found that when
�Jz � � �Jx � , �Jy�, our model is equivalent to Kitaev’s toric code
model with Abelian anyons. Different vortex excitations re-
sult in different phase diagrams with a gapless and gapped
spectral structure. In the stable vortex-free case, the zero-
energy Dirac points appear and the external magnetic field
can induce an energy gap. The nontrivial Chern number in
the B phase is obtained by studying the edge modes of the
spectrum.
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