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A general relation between quantum phase transitions and the second derivative of the fidelity �or the
“fidelity susceptibility”� is proposed. The validity and the limitation of the fidelity susceptibility in character-
izing quantum phase transitions are thus established. Moreover, based on the bosonization method, general
formulas of the fidelity and the fidelity susceptibility are obtained for a class of one-dimensional gapless
systems known as the Tomonaga-Luttinger liquid. Applying these formulas to the one-dimensional spin-1 /2
XXZ model, we find that quantum phase transitions, even of the Beresinskii-Kosterlitz-Thouless type, can be
signaled by the fidelity susceptibility.
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In order to obtain fresh insight into the quantum many-
body problem, a great deal of effort has been devoted to the
application of concepts emerging from quantum information
science1 to the analysis of quantum phase transitions
�QPTs�.2 QPTs are characterized by a drastic change in the
ground states of quantum many-body systems, driven solely
by quantum fluctuations. Since entanglement measures the
strength of quantum correlations between subsystems of a
compound system, it is natural to expect that entanglement
will be a reliable indicator of QPTs. Much attention has been
focused on the role of entanglement in characterizing QPTs
in the last few years �e.g., Refs. 3–6 and references therein�.
More recently, another approach to identify QPTs based on
the ground-state fidelity has been proposed7 and applied to
various many-body systems.8–20 Because the fidelity is a
measure of similarity between states, one anticipates that the
fidelity should drop abruptly at critical points, as a conse-
quence of the dramatic changes in the structure of the ground
states, regardless of what type of internal order is present in
quantum many-body states. A perhaps more effective indica-
tor is given by the singularity in the second derivative of the
fidelity �or the so-called fidelity susceptibility�.7–11,13–17,21

The main advantage of this approach lies in the fact that,
since the fidelity is a purely Hilbert-space geometrical quan-
tity, no a priori knowledge of the structure �order parameter,
correlations driving the QPTs, topology, etc.� of the consid-
ered system is required for its use. The fidelity approach has
been examined in various systems, including the Dicke
model,7 one-dimensional XY model in a transverse
field,7,19general quadratic fermionic Hamiltonians,8,9 and
Bose-Hubbard model.11,12 The success in analyzing QPTs in
these models shows the generality of this procedure. The
ground-state fidelity is usually difficult to calculate, due to
the lack of knowledge of the exact ground-state wave func-
tions. Therefore, investigations so far are restricted to some
particular many-body models. Conceivably, in order to un-
derstand its validity and limitation, a general connection be-
tween the fidelity and QPTs is highly desired.

In this paper, we discuss, in a general framework, how the
fidelity can be related to a QPT characterized by nonanalyt-
icities in the derivative of the ground-state energy. It is found
that, under certain conditions mentioned below, the fidelity
susceptibility is indeed an effective tool in detecting the criti-
cal points of first-order QPTs �1QPTs� and second-order

QPTs �2QPTs�, as illustrated before in several concrete mod-
els. However, it fails to determine the order of the transition,
and may not detect higher-order QPTs. We stress that, al-
though the fidelity susceptibility cannot always detect
higher-order QPTs, it is possible to signal the Beresinskii-
Kosterlitz-Thouless �BKT� transition22 in one-dimensional
many-body systems, which is a QPT of infinite order. To
demonstrate this, analytic formulas for the fidelity and the
fidelity susceptibility are derived for the single-component
Luttinger model, which describes a large class of one-
dimensional systems possessing a gapless spectrum. The fi-
delity susceptibility is shown to be finite in the thermody-
namic limit even for these gapless systems. Besides, it is a
smooth function of the controlling parameter driving QPTs
�see Eq. �12� below�, as long as the system lying in the
critical Luttinger-liquid phase. By using these formulas, the
fidelity and the fidelity susceptibility can be easily calculated
for a large class of gapless systems, as long as the relation
between the Luttinger-liquid parameters and the controlling
parameter driving QPTs is known. Employing our general
formulas to the one-dimensional spin-1 /2 XXZ model, we
show that the BKT transition therein can indeed be signaled
by the singularity in the fidelity susceptibility. Though we
restrict our attention to the XXZ spin chain, according to the
general expressions of the fidelity and the fidelity suscepti-
bility, one can expect that the same results should apply to all
the BKT-type QPTs of one-dimensional models.

We now begin to show the general relation between quan-
tum phase transitions and the fidelity susceptibility. Only
QPTs characterized by nonanalytic behavior in the deriva-
tives of the ground state energy are considered here. Accord-
ing to the conventional classification, a 1QPT is character-
ized by a finite discontinuity in the first derivative of the
ground state energy. Similarly, a 2QPT is characterized by a
finite discontinuity, or divergence, in the second derivative of
the ground state energy, assuming the first derivative is con-
tinuous. Following the notations in Ref. 4, the most general
Hamiltonian of N distinguishable particles governed by up to
two-body interactions can be written as

H = �
i��

���
i ��i���i� + �

ij����

V����
ij ��i��� j���i��� j� ,

where 	��i�
 is the basis for the local Hilbert space of particle
i. For these systems, it has been shown that the derivatives of
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the ground state energy per particle E can be written as4

�E
��

=
1

N
�
ij

tr� �U�ij�
��

�ij� , �1�

�2E
��2 =

1

N
�
ij
tr� �2U�ij�

��2 �ij� + tr� �U�ij�
��

��ij

��
�� , �2�

where � is a controlling parameter of the system’s Hamil-
tonian and tr denotes the trace over the degrees of freedom
for two particles. U�ij� denotes a matrix with matrix ele-
ments U��,���ij�=���

i ���
j /Ni+V����

ij , where ���
j is the Kro-

necker symbol on particle j, and Ni is the number of particles
that particle i interacts with. �ij =Trî ĵ�0��� is the two-particle
reduced density matrix, which is obtained by taking a partial
trace Trî ĵ over all degrees of freedom except particles i and j.
Here �0�����	0�����	0���� is the density matrix of the
ground state with �	0���� being the normalized ground state.
U�ij� includes all the single- and two-body terms of the
Hamiltonian associated with particles i and j. We assume
that U�ij� is a smooth function of the Hamiltonian parameter
�. From Eqs. �1� and �2�, one finds that the origin of a 1QPT
�2QPT� is due to the fact that one or more of the matrix
elements of �ij ����ij� are discontinuous or divergent at the
transition point �=�c.

4

The quantum fidelity �or the modulus of the overlap� F of
two normalized ground states �	0��+���� and �	0���� cor-
responding to neighboring Hamiltonian parameters is given
by F��+�� ,��= ��	0��+��� �	0�����.7 To detect QPTs, a
more effective indicator is provided by the peak in the “den-
sity” of the second derivative of the fidelity �or the so-called
fidelity susceptibility� S���,7–11,13–17,21 which is free from the
arbitrariness of the small parameter ��. In the thermody-
namic limit �i.e., both the particle number N and the number
of lattice sites L approach to infinity, while N /L keeps finite�,
S��� can be written as23

S��� = lim
��→0

lim
L→


− 2 ln F�� + ��,��
L��2 . �3�

To make comparison with the expressions of the derivatives
of the ground-state energy, we rewrite the quantum fidelity
and the fidelity susceptibility in terms of the density matrix
�0��� of the ground state. Notice that

F�� + ��,��2 = Tr��0����0�� + ���� . �4�

Now, expanding �0��+��� in powers of ��, and using
the identity ����	0��� �	0�����=0, which implies
Tr��0������0����=0, one can easily show that

F�� + ��,�� � 1 −
��2

4
Tr� ��0���

��

��0���
��

� , �5�

and thus

S��� = lim
L→


1

2L
Tr� ��0���

��

��0���
��

� . �6�

As mentioned before, 1QPTs �2QPTs� must come from dis-
continuity in �discontinuity in or divergence of� one or more

matrix elements of �ij ����ij�. Since the matrix elements of
the reduced density matrix �ij are linear functions of those of
�0, 1QPTs and 2QPTs will be associated with nonanalyticity
in the matrix elements of ���0, and therefore imply the sin-
gularity in S���. That is, the singular behavior of the fidelity
susceptibility is able to signal 1QPTs and 2QPTs. This ex-
plains the success of the fidelity approach discovered in the
previous investigations. Note that the above conclusion is
valid only if the discontinuous or divergent quantities do not
accidentally all vanish or cancel with other terms in Eqs. �5�
and �6� �i.e., assumptions �b� and �c� in Ref. 4�. However,
some limitations of this approach are discussed in order.
First, even though S��� can be a good indicator of 1QPTs
and 2QPTs, it fails to distinguish between them, in contrast
to the entanglement measurements discussed in Refs. 4 and
5. Second, from Eq. �6�, we find that S��� cannot detect the
higher-order QPTs resulting from the nonanalyticities in ��

2�0
and even higher-order derivatives. Nevertheless, it does not
mean that S��� always fails to signal the higher-order QPTs.
Reminding that the two-particle reduced density matrix �ij is
calculated by taking a partial trace of �0, it is thus possible
that the nonanalyticities in the matrix elements of ���0 can-
cel one another in obtaining ���ij. That is, while the discon-
tinuity or divergence in �ij and ���ij does imply the nonana-
lyticities in ���0, the reverse is not true. In this case, ��

2E can
be continuous even though S��� is singular, and therefore
such a higher-order QPT can indeed be detected by S���.
One such example is provided by the BKT transition in the
one-dimensional spin-1 /2 XXZ model, where a critical an-
isotropy separates a gapless phase from a gapful phase. As
demonstrated in Ref. 24, the ground-state energy and all of
its derivatives with respect to the anisotropy are continuous
at the critical point. That is, it is a QPT of infinite order.
However, as discussed below, S��� does become singular
despite the regularity of the ground state energy at this criti-
cal point.

It is known that many one-dimensional gapless systems,
which may undergo the BKT transition, can be described by
a single-component Luttinger model.25 They include the
spin-1 /2 XXZ spin chain and the spin-1 /2 J-J� spin chain in
their spin fluid phases, and the Bose-Hubbard model in its
superfluid phase, etc. Before specifying to the XXZ spin
chain, we first derive analytic formulas of the fidelity and the
fidelity susceptibility for the single-component Luttinger
model. By using the bosonization method, the Luttinger
model can be described by the following effective
Hamiltonian:25,26

Heff =
u

2
� dx�K��x�2 +

1

K
��x��2� . �7�

Here the bosonic phase field operators � and � are given
by27

��x� � −
i�

L
�
k�0

�L�k�
2

�1/21

k
e−ikx�ak

† + a−k�,

MIN-FONG YANG PHYSICAL REVIEW B 76, 180403�R� �2007�

RAPID COMMUNICATIONS

180403-2



��x� �
�

L
�
k�0

�L�k�
2

�1/2 k

�k�
e−ikx�ak

† − a−k� ,

where ak and ak�
† obey canonical boson commutation rela-

tions: �ak ,ak�
† �=�k,k�. We note that the Luttinger liquid pa-

rameters K and u are functions of the controlling parameter �
of the original Hamiltonian. When K=1, the effective Hamil-
tonian reduces to the free-boson model, whose ground state
�	0�K=1�� is nothing but the vacuum �0� of the canonical
bosons satisfying ak �0�=0 for all k�0. When K�1, the ef-
fective Hamiltonian contains the unpleasant terms aka−k and
ak

†a−k
† . These terms can be diagonalized by a Bogoliubov

transformation on the bosons such that

�−k = cosh �a−k + sinh �ak
†,

�k
† = sinh �a−k + cosh �ak

†,

with cosh �= �1+K� /2�K and sinh �= �1−K� /2�K. We note
that, in the present case, the parameter � is independent of
the momentum k. The transformed Hamiltonian becomes a
free-boson model in terms of the new set of canonical bosons
�k. That is, the effective model in Eq. �7� can be considered
as a “quasifree” boson model, where the ground states
�	0�K�� for general values of K are the vacuum of �k satis-
fying �k �	0�K��=0 for all k�0. Thus the �not normalized�
ground states become

�	0�K�� = exp�−
sinh �

cosh �
�
k�0

ak
†a−k

† ��0� . �8�

With these exact expressions of the ground states,
now one can calculate the ground-state fidelity. From
its definition, the ground-state fidelity F of two �not
normalized� ground states �	0�K��� and �	0�K�� becomes
F�K� ,K�=Z�K� ,K� /�Z�K� ,K��Z�K ,K�, where Z�K� ,K�
���	0�K�� �	0�K���. By using the expressions of the ground
states in Eq. �8�, it can be shown that

Z�K�,K� = �
k�0

�1 −
sinh �� sinh �

cosh �� cosh �
�−1

, �9�

and therefore a general expression of the fidelity is reached,

F�K�,K� = �
k�0

1

cosh��� − ��
= �

k�0

2
�K/K� + �K�/K

.

�10�

Here the prime denotes the corresponding variables taking
their values at K�. Obviously, F=1 if K�=K. Generically,
1 /cosh���−���1. Therefore, for systems with a large but
finite size L, the fidelity in Eq. �10� scales as �cosh���
−���−L, and decays very fast when K� separates from K. That
is, the fidelity of two different ground states becomes zero in
the thermodynamic limit, despite the two states being in the
same phase. Therefore, in this case, it is difficult to signal a
precursor of the QPT simply by seeking a drop in the fidelity.
As mentioned before, a more effective indicator is provided
by the fidelity susceptibility given in Eq. �3�. From the ana-

lytic expression of the fidelity in Eq. �10�, it can be shown
that

lim
L→


ln F�K + �K,K�
L

� −
1

8
� 1

K

dK

d�
�2

��2, �11�

and one finally obtains the general formula for the fidelity
susceptibility

S��� =
1

4
� 1

K

dK

d�
�2

. �12�

Thus we show that S��� can be finite in the thermodynamic
limit even for gapless systems. This result agrees with the
findings in Ref. 14 based on the scaling arguments. In the
present work, we further provide the analytic expression of
S���. From this expression, we find that S��� becomes sin-
gular only when dK /d� diverges. It is noted that, in terms of
the Luttinger liquid parameter K, the general expressions of
F and S��� in Eqs. �10� and �12� apply to all one-
dimensional systems in their Luttinger liquid phases. The
precise location of the singularity in S��� can be determined,
once the exact relation between the Luttinger liquid param-
eter K and the controlling parameter � driving QPTs is
known.

Now we consider the case of the XXZ spin chain, which
can be taken as a special case in the Luttinger-liquid descrip-
tion. The Hamiltonian of the one-dimensional spin-1 /2 XXZ
model is written as

H = �
j=1

L

�Sj
xSj+1

x + Sj
ySj+1

y + �Sj
zSj+1

z � . �13�

Here Sj
x ,Sj

y, and Sj
z are the spin-1 /2 operators at the jth lattice

site. The parameter � denotes an anisotropy in the spin-spin
interaction. The XXZ spin chain is an exactly solvable
model.24 It is known that there is a critical point of 1QPT at
�=−1, which corresponds to the isotropic ferromagnetic
Heisenberg model. At the isotropic antiferromagnetic point
�=1, a BKT transition occurs, which is described by a di-
vergent correlation length but without true long-range order.

After applying the Jordan-Wigner transformation and
bosonization procedure for the spin-1/2 operators, when −1
���1, the Hamiltonian in Eq. �13� can be mapped to the
bosonized effective Hamiltonian in Eq. �7�.25 That is, the
XXZ spin chain can be considered as a quasifree boson
model. For general values of � �obeying −1���1�, the
Luttinger liquid parameters K and u can be obtained by com-
parison with the Bethe-ansatz solution. They are given by
K= � /2� / �−arccos���� and u=�1−�2 / �2 arccos ��.28

For �=0, we have K=1; while K�1 for ��0. Substituting
the above exact relation between the Luttinger-liquid param-
eter K and the anisotropy parameter � to Eqs. �10� and �12�,
the expressions of F��� ,�� and S��� can be obtained. Here
we discuss S��� only, which becomes

S��� =
1

4� − arccos����2

1

1 − �2 . �14�

Therefore, the fidelity susceptibility S��� diverges as �
→ ±1. That is, the singular behavior in S��� is able to signal
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either the 1QPT at �=−1 or the BKT transition at �=1.
According to our previous analysis, the singularity in S��� at
�=1 indicates that one or more of the matrix elements of
���0 should be divergent at this BKT transition. Since the
BKT transition is a QPT of infinite order, nonanalyticities in
the density matrix of the ground state, �0, must accidentally
all vanish or cancel with other terms, such that the ground-
state energy and all of its derivatives with respect to the
anisotropy are continuous at this critical point. Therefore, the
BKT transition in the XXZ spin chain does provide an ex-
ample, where the higher-order QPTs can be detected by the
singularity in the fidelity susceptibility.

In summary, according to the proposed general relation
between QPTs and the fidelity susceptibility, the validity and
the limitation of the fidelity susceptibility in characterizing
QPTs are discussed. Employing our analytic formulas of the
fidelity and the fidelity susceptibility for the one-dimensional
Luttinger model, it is shown that the fidelity susceptibility

can be finite even for critical systems, which agrees with the
result in Ref. 14 based on the scaling analysis. Moreover,
while the fidelity susceptibility may not detect higher-order
QPTs in general, we demonstrate that the BKT transition, a
QPT of infinite order, in the spin-1/2 XXZ chain can indeed
be signaled by the singularity in the fidelity susceptibility.
Though we restrict our attention to the XXZ spin chain, we
believe that the same results will apply to all the BKT-type
QPTs of one-dimensional models, such as the transition from
spin fluid to dimerized phase in the J-J� model, and the
superfluid-insulator transition in the Bose-Hubbard model at
integer filling, etc.

The author is grateful to M.-C. Chang for many valuable
discussions. This work was supported by the National Sci-
ence Council of Taiwan under Contract No. NSC 96-2112-
M-029-004-MY3.

1 M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information �Cambridge University Press, Cambridge,
U.K., 2000�.

2 S. Sachdev, Quantum Phase Transitions �Cambridge University
Press, Cambridge, U.K., 1999�.

3 A. Osterloh, L. Amico, G. Falci, and R. Fazio, Nature �London�
416, 608 �2002�; T. J. Osborne and M. A. Nielsen, Phys. Rev. A
66, 032110 �2002�; Quantum Inf. Process. 1, 45 �2002�.

4 L.-A. Wu, M. S. Sarandy, and D. A. Lidar, Phys. Rev. Lett. 93,
250404 �2004�.

5 T. R. de Oliveira, G. Rigolin, M. C. de Oliveira, and E. Miranda,
Phys. Rev. Lett. 97, 170401 �2006�.

6 For a recent review, see L. Amico, R. Fazio, A. Osterloh, and J. V.
Vedral, arXiv:quant-ph/0703044 �unpublished�.

7 P. Zanardi and N. Paunković, Phys. Rev. E 74, 031123 �2006�.
8 P. Zanardi, M. Cozzini, and P. Giorda, J. Stat. Mech.: Theory Exp.

� 2007� L02002.
9 M. Cozzini, P. Giorda, and P. Zanardi, Phys. Rev. B 75, 014439

�2007�.
10 M. Cozzini, R. Ionicioiu, and P. Zanardi, Phys. Rev. B 76,

104420 �2007�.
11 P. Buonsante and A. Vezzani, Phys. Rev. Lett. 98, 110601 �2007�.
12 N. Oelkers and J. Links, Phys. Rev. B 75, 115119 �2007�.
13 P. Zanardi, P. Giorda, and M. Cozzini, Phys. Rev. Lett. 99,

100603 �2007�.
14 L. Campos Venuti and P. Zanardi, Phys. Rev. Lett. 99, 095701

�2007�.
15 P. Zanardi, L. Campos Venuti, and P. Giorda, arXiv:0707.2772

�unpublished�.
16 W. L. You, Y. W. Li, and S. J. Gu, Phys. Rev. E 76, 022101

�2007�.

17 S. J. Gu, H. M. Kwok, W. Q. Ning, and H. Q. Lin,
arXiv:0706.2495 �unpublished�.

18 S. Chen, L. Wang, S. J. Gu, and Y. Wang, arXiv:0706.0072 �un-
published�.

19 H. Q. Zhou and J. P. Barjaktarevic, arXiv:cond-mat/0701608 �un-
published�; H. Q. Zhou, J. H. Zhao, and B. Li, arXiv:0704.2940
�unpublished�; H. Q. Zhou, arXiv:0704.2945 �unpublished�.

20 Y. C. Tzeng and M. F. Yang, arXiv:0709.1518 �unpublished�.
21 Similar quantities, say the Riemannian metric tensor inherited

from the parameter space �Refs. 13–15� have also been pro-
posed.

22 V. L. Beresinskii, Sov. Phys. JETP 32, 493 �1971�; J. M. Koster-
litz and D. J. Thouless, J. Phys. C 6, 1181 �1973�; J. M. Koster-
litz, ibid. 7, 1046 �1974�.

23 Because F��+�� ,�� reaches its maximum for ��=0, on expand-
ing the fidelity in powers of ��, the first derivative vanishes and
F��+�� ,���1+ ����

2 F��� ,�����=� ��2 /2. Therefore, one can
show that the expression in Eq. �3� is identical to that given in
the literature.

24 C. N. Yang and C. P. Yang, Phys. Rev. 150, 321 �1966�; 150, 327
�1966�.

25 T. Giamarchi, Quantum Physics in One Dimension �Oxford Uni-
versity Press, New York, 2004�.

26 Here we use the notations such that �� and � /� employed in
Ref. 25 are identified as � and �.

27 See, for example, Appendix D in Ref. 25. Here the zero-mode
operators are omitted and a cutoff parameter is dropped for sim-
plicity.

28 J. D. Johnson, S. Krinsky, and B. McCoy, Phys. Rev. A 8, 2526
�1973�; A. Luther and I. Peschel, Phys. Rev. B 12, 3908 �1975�;
F. D. M. Haldane, Phys. Rev. Lett. 45, 1358 �1980�.

MIN-FONG YANG PHYSICAL REVIEW B 76, 180403�R� �2007�

RAPID COMMUNICATIONS

180403-4


