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The formation of prismatic dislocation loops is an important factor leading to radiation damage of metals.
However, the formation mechanism and the size of the smallest stable loop has remained unclear. In this Rapid
Communication, we use electronic structure calculations with millions of atoms to address this problem in
aluminum. Our results show that there is a cascade of larger and larger vacancy clusters with smaller and
smaller energy. Further, the results show that a seven vacancy cluster on the �111� plane can collapse into a
stable prismatic loop. This supports the long-standing hypothesis that vacancy clustering leads to a prismatic
loop, and that these loops can be stable at extremely small sizes. Finally our results show that it is important
to conduct calculations using realistic concentrations �computational cell size� to obtain physically meaningful
results.
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The embrittlement of metals subjected to radiation is a
long-standing problem in various applications including
nuclear reactors. As the irradiation dose increases above a
certain threshold, a significant population of prismatic dislo-
cation loops �dislocation loops whose Burgers vector has a
component normal to their plane� has been experimentally
observed to arise in metals.1–5 It is widely believed these
prismatic loops form through the clustering of vacancies that
are generated randomly by irradiation.6 Specifically, the va-
cancies diffuse and eventually cluster on specific planes.
Once there is a large enough planar cluster, the atoms on the
two faces collapse onto each other leaving behind a prismatic
dislocation loop.

However, the formation mechanism and the size of the
smallest stable loop remain unclear: there is no direct experi-
mental observation of the process, and the theoretical inves-
tigations are inconclusive. Recent molecular dynamics
simulations7 support the hypothesized mechanism for iron,
but these calculations used the Finnis-Sinclair empirical ato-
mistic potentials whose validity is uncertain in situations in-
volving changing atomic bonds.8 In contrast, calculations for
aluminum using quantum mechanical density-functional
theory9,10 show that divacancies—a complex of two
vacancies—are either energetically unfavorable if they are
aligned along the �110� direction or barely favorable with
negligible binding energy if aligned along �100�. If two va-
cancies can barely bind, it seems doubtful that they can be
stable and grow to form clusters that can turn into prismatic
loops. While these density-functional theory �DFT� methods
are far more accurate, the computational effort is extremely
large and consequently these calculations were limited to less
than 100 atoms. This corresponds to an unphysically high
concentration of vacancies. Furthermore, the results are in
variance with experiments11,12 that are indicative of a high
binding energy of divacancies and a significant concentration
of divacancies, especially at elevated temperatures.

We study vacancy clustering and prismatic loops by per-
forming electronic structure calculations using orbital-free

density-functional theory �OFDFT�.13 Specifically, the ki-
netic energy functional is modeled using the Thomas-Fermi-
Weizsacker family of functionals with �=1/6. We use the
modified form of the Heine-Abarenkov pseudopotential14 for
aluminum to model the external field created by the nuclei
and core electrons. The exchange-correlation effects are
treated using a local density approximation.15,16 These func-
tionals have been shown to correctly predict the bulk and
vacancy properties of aluminum.17,18

A challenge in studying defects in solids, and especially
vacancies, is their extremely small concentrations which are
typically a few parts per million in aluminum.19 Therefore
any realistic calculation of vacancies and their interaction has
to involve millions of atoms. Unfortunately, performing elec-
tronic structure calculations with such numbers of atoms
remained beyond reach until the recent development of
the quasicontinuum orbital-free density-functional method
�QCOFDFT�.18 This method has enabled the calculation of
the electronic structure using OFDFT of samples with mil-
lions of atoms subjected to arbitrary boundary conditions.
Importantly, the method is completely seamless, does not
require any ad hoc assumptions, uses OFDFT as its only
input, and enables convergence studies of its accuracy.

The independent unknowns of the QCOFDFT analysis are
the nuclear positions and the electronic fields comprised of
electron-density and electrostatic potential. As in the conven-
tional QC approach, the nuclei positions are interpolated
from the positions of representative nuclei, Fig. 1�a�. Near
the defect core, all nuclei are represented, whereas away
from the defect core the interpolation becomes coarser and a
small fraction of the nuclei determines the displacements of
the rest. We refer to this computational mesh as the coarse
mesh. The electronic fields exhibit subatomic oscillations
and require a fine mesh to accurately capture these oscilla-
tions. In regions away from the defect cores these oscilla-
tions are locally periodic on the length scale of the lattice.
Hence a first guess to the electronic fields is computed from
a periodic unit cell calculation using the underlying Cauchy-
Born lattice deformation. We refer to this guess as the
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Cauchy-Born predictor. Though the Cauchy-Born predictor
is an accurate representation of the electronic fields in re-
gions far away from the defect, they greatly differ close to
the defect cores. Thus the electronic fields are represented as
a sum of the Cauchy-Born predictor and corrector fields. The
corrector fields are computed on a mesh that exhibits sub-
atomic resolution near the defect core, where the electronic
fields differ greatly from the Cauchy-Born predictor, and
coarsens away from the defect core, where the corrector
fields exhibit slow variation on the scale of the lattice, Fig.
1�b�. We refer to this computational mesh as the intermediate
mesh. Finally, the Cauchy-Born predictor is sampled on an
auxiliary mesh that resolves an integration lattice unit cell in
each finite element with exceedingly fine resolution, Fig.
1�c�. This auxiliary mesh is introduced for purposes of rep-
resenting the Cauchy-Born predictor and does not introduce
any degrees of freedom into the calculation. The degrees of
freedom of the QCOFDFT analysis are the corrector fields
on the intermediate mesh and the positions of representative
atoms on the coarse mesh which are computed from a varia-
tional principle. These fields completely describe the elec-
tronic structure and the relaxed atomic structure of the ma-
terial system.

In a recent work, we used QCOFDFT to study divacan-
cies in aluminum,18 where we found a very strong cell-size
�concentration� effect. Specifically, we found that �110� di-

vacancies were repulsive for small cell sizes, in agreement
with previous calculations,9,10 and the same divacancies were
attractive for larger cell sizes corresponding to realistic con-
centrations, with binding energies of 0.19 eV in agreement
with experimental measurements.11,12 This work showed that
electronic structure calculations do not rule out vacancy clus-
tering in aluminum. Therefore we examine this mechanism
further in the current work.

We begin by examining the binding energies of various
quadvacancies formed from a pair of divacancies. The num-
ber of possible quadvacancies that may be formed from a
pair of divacancies is very large. Thus we restrict our analy-
sis to configurations such that each vacancy has at least two
other vacancies as nearest or second nearest neighbors. We
shall justify this choice subsequently. This criterion results in
nine distinct configurations �up to symmetry�, six of which
are planar vacancy clusters and three of which are nonplanar.
These configurations are listed in Table I.

The vacancy cluster binding energy of an n-vacancy clus-
ter is defined as

Env
bind = nEv

f − Env
f ,

where Ev
f denotes the formation energy of a single vacancy

and Env
f the formation energy of the n-vacancy cluster. The

vacancy cluster binding energies for the nine configurations

TABLE I. Vacancy cluster binding energies for quadvacancies formed from a pair of divacancies. All
possible quadvacancies such that each vacancy has two other vacancies as nearest or second nearest neigh-
bors are considered.

Structure Positions of vacancies
Vacancy binding

energy �eV�

1 planar �100� �0,0,0�, �a /2 ,a /2 ,0�, �a ,0 ,0�, �a /2 ,−a /2 ,0� 0.52

2 planar �100� �0,0,0�, �a /2 ,a /2 ,0�, �a ,0 ,0�, �3a /2 ,a /2 ,0� 0.50

3 planar �100� �0,0,0�, �a /2 ,a /2 ,0�, �a ,0 ,0�, �a ,a ,0� 0.48

4 planar �100� �0,0,0�, �a ,0 ,0�, �0,a ,0�, �a ,a ,0� 0.48

5 planar �110� �0,0,0�, �0,a /2 ,a /2�, �a ,0 ,0�, �a ,a /2 ,a /2� 0.56

6 planar �111� �0,0,0�, �0,a /2 ,a /2�, �a /2 ,a /2 ,0�, �a /2 ,a ,a /2� 0.55

7 nonplanar �0,0,0�, �0,a /2 ,a /2�,�a /2 ,0 ,a /2�, �a /2 ,a /2 ,0� 0.53

8 nonplanar �0,0,0�, �a ,0 ,0�, �a /2 ,a /2 ,0�, �a /2 ,0 ,a /2� 0.51

9 nonplanar �0,0,0�, �a ,0 ,0�, �a /2 ,a /2 ,0�, �0,a /2 ,a /2� 0.50

FIG. 1. �Color� �a� Coarse computational
mesh used to interpolate nuclei positions away
from the fully resolved defect core. �b� Interme-
diate computational mesh used to represent the
corrector fields. It has subatomic resolution in the
defect core, and coarsens away from the defect
core. �c� Fine auxiliary mesh used to sample the
Cauchy-Born predictor fields within an integra-
tion lattice unit cell, De, in each element e.
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of quadvacancies are tabulated in Table I. Figure 2�a� shows
the contours of electron density for the quadvacancy cluster
with the highest binding energy. This corresponds to configu-
ration No. 5 in Table I, which denotes a planar quadvacancy
on the �110� plane. Binding energies of each of these va-
cancy clusters listed in Table I are computed using a compu-
tational cell consisting of 106 atoms. This corresponds to
realistic vacancy concentrations of a few parts per million.19

The boundary conditions for all simulations are chosen such
that the electronic fields decay to bulk values on the bound-
aries of the sample. Numerical parameters were chosen to
keep the error in the formation energy due to discretization
and coarse-graining to be less than 0.01 eV.

It is interesting to observe that all the quadvacancies con-
sidered have positive binding energies. Further, they also
have binding energies larger than twice the computed diva-
cancy binding energy of 0.19 and 0.23 eV for �110� and
�100� divacancies, respectively. This indicates that pairs of
divacancies are attractive in all cases. These results suggest
that quadvacancy formation is an energetically feasible pro-
cess and that vacancies prefer to condense rather than split
into mono- or divacancies. This observation also justifies our
restriction to nine quadvacancy configurations.

The cell size used to simulate defects effectively sets the
concentration of the defects. To understand the effect of va-
cancy concentration on the feasibility of vacancy clustering,
we study the cell-size effect on quadvacancy binding energy
for the first configuration in Table I. This configuration rep-
resents a square-shaped quadvacancy on the �100� plane,
whose electronic structure is shown in Fig. 2�b�. Figure 3
shows a strong dependence of the vacancy binding energy on
the cell size. The quadvacancy which is energetically favor-
able for large cell sizes becomes unstable for small cell sizes.
This is a result of the long-ranged elastic and electrostatic
effects in the presence of these defects. This cell-size depen-
dence shows that vacancy clustering which is feasible at low
and realistic vacancy concentrations becomes unfavorable at
high concentrations.

The results in Table I also show that the configurations
with the highest binding energy �Nos. 5 and 6� are planar
quadvacancy clusters on �110� and �111� planes. Therefore

we performed simulations on larger vacancy clusters on
�110� and �111� planes, again using cell sizes with a 106

atoms. On the �111� plane, we studied a hexagonal cluster
with seven vacancies and found two stable configurations.
One of the stable configurations is a noncollapsed state with
a vacancy cluster binding energy of 0.88 eV, with a maxi-
mum displacement of atoms of the order of 3.2% of the
nearest neighbor distance. Note that this is larger than 7/2
times the divacancy binding energy �0.19 or 0.23 eV depend-
ing on orientation�. This means that the hexagonal cluster is
stable against dissociation into divacancies.

The second configuration is a prismatic loop where the
atoms above and below the hexagonal vacancy disk collapse
or move toward each other leaving a dislocation line at the
boundary of the disk. Figure 4 shows the atomic positions
and the contours of the electron density on �001� and �111�
planes of the collapsed prismatic loop. In particular, the dot-
ted lines in Fig. 4�a� depict the collapse of the planes result-
ing in the prismatic dislocation loop. The maximum dis-
placement of atoms is around 44% of the nearest neighbor
distance, the Burgers vector is 0.44�110�, and the dislocation
plane is �111�. These results are consistent with
experiments.20,21 Using a transmission electron microscope
�TEM�, it was observed that prismatic loops form predomi-
nantly on a �111� plane with a 1/2�110� Burgers vector. Fur-

(a) (b)

FIG. 2. �Color� �a� Contours of electron density around a planar
quadvacancy �configuration No. 5 in Table I� on the �110� plane in
a 106 atom sample. This planar quadvacancy has the highest bind-
ing energy among the various quadvacancies considered. �b� Con-
tours of electron density around a planar quadvacancy �configura-
tion No. 1 in Table I� on a �100� plane in a 106 atom sample.
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FIG. 3. Cell-size dependence of vacancy binding energy for the
quadvacancy given by the first configuration in Table I.

(a) (b)

FIG. 4. �Color� �a� Contours of electron density on the �001�
plane around a collapsed vacancy prismatic loop. �b� Contours of
electron density around the prismatic loop on the �111� plane.
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ther, in these experiments, prismatic loops whose size is as
small as 50 Å in diameter were observed. While these are
larger than our hexagonal prismatic loop formed from seven
vacancies, it is impossible to detect a loop as it nucleates.
Thus the nucleation size of a prismatic loop was hitherto
unknown. The computed vacancy cluster binding energy for
the prismatic loop is 1.55 eV which means that not only is
this structure stable against dissociation of divacancies, but
that it is even more stable than the uncollapsed configuration.

On the �110� plane, we studied rectangular vacancy clus-
ters with six and nine vacancies. The computed binding en-
ergies for these vacancy clusters are 0.81 and 1.16 eV, re-
spectively. The maximum displacement of atoms in these
vacancy clusters is around 4% of the nearest neighbor dis-
tance. These clusters did not display any bistability and col-
lapse to prismatic loops.

These results point to four important facts. First, the bind-
ing energy of vacancy clusters on �110� and �111� planes in
aluminum increases with the size of the vacancy cluster.
Also, these vacancy clusters are all stable, i.e., vacancies

prefer to condense rather than split into mono or divacancies.
This is a numerical confirmation from an electronic structure
perspective that vacancy clustering is energetically favor-
able. Second, we observe from direct numerical simulation
that the hexagonal vacancy cluster on the �111� plane col-
lapses to form a prismatic loop. This establishes from elec-
tronic structure calculations that vacancy clustering and col-
lapse of the planes surrounding the vacancy cluster is a
possible mechanism for the nucleation of prismatic disloca-
tion loops. Third, our results point to the fact that vacancy
clusters as small as seven vacancies can collapse to form
stable prismatic loops on �111� planes. Finally, our results
show the importance of studying defects in solids at realistic
concentrations.
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