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Constructing a fault-tolerant quantum computer is a daunting task. Given any design, it is possible to
determine the maximum error rate of each type of component that can be tolerated while still permitting
arbitrarily large-scale quantum computation. It is an underappreciated fact that including an appropriately
designed mechanism enabling long-range qubit coupling or transport substantially increases the maximum
tolerable error rates of all components. With this thought in mind, we take the superconducting flux qubit
coupling mechanism described by Plourde et al. �Phys. Rev. B 70, 140501�R� �2004�� and extend it to allow
approximately 500 MHz coupling of square flux qubits, 50 �m a side, at a distance of up to several millime-
ters. This mechanism is then used as the basis of two scalable architectures for flux qubits taking into account
cross-talk and fault-tolerant considerations such as permitting a universal set of logical gates, parallelism,
measurement and initialization, and data mobility.
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I. INTRODUCTION

The field of quantum computation is largely concerned
with the manipulation of two state quantum systems called
qubits. Unlike the bits in today’s computers which can be
either 0 or 1, qubits can be placed in arbitrary superpositions
��0�+��1� and entangled with each other. For a complete
review of the basic properties of qubits and quantum infor-
mation, see Ref. 2. The attraction of quantum computation
lies in the existence of quantum algorithms that are in some
cases exponentially faster than their best known classical
equivalents. Most famous are Shor’s factoring algorithm3

and Grover’s search algorithm.4 There has also been exten-
sive work on using a quantum computer to simulate quantum
physics,5–9 an ongoing exploration of adiabatic
algorithms,10–12 plus the discovery of quantum algorithms for
differential equations,13 finding eigenvalues,14,15 numerical
integration,16 and various problems in group theory17–19 and
knot theory.20,21

Quantum systems suffer from decoherence, meaning their
state rapidly becomes unknowable through unwanted inter-
action with the environment. Flux qubit decoherence times
of up to a few microseconds have been demonstrated22 ver-
sus single-qubit gate times of the order of 10 ns, and likely
initial two-qubit gate times of the order of a few tens of
nanoseconds.1,23,24 To perform long quantum computations,
quantum error correction will be required.25–27 It has been
shown that provided the totality of decoherence and control
errors is below some nonzero threshold, and given an arbi-
trarily long time and an arbitrary large number of qubits, an
arbitrarily long and large quantum computation can be
performed.28 Despite being well known in certain circles, the
broader quantum computing community has not yet suffi-
ciently come to terms with the fact that long-range interac-
tions permit much higher levels of decoherence and control
error to be tolerated. With unlimited range interactions and
extremely large numbers of qubits, the threshold error rate
has been shown to be of the order of 10−2.29 With fewer

qubits but still unlimited range interactions, the threshold is
reduced to between 10−3 and 10−4.30 A two-dimensional lat-
tice of qubits interacting with their nearest neighbors only
has been devised with an approximate threshold of 10−5.31

The full analysis of an infinite double line of qubits with
nearest neighbor interactions has been performed, yielding a
lower bound to the threshold of 1.96�10−6.32 Work on an
infinite single line of qubits with nearest neighbor interac-
tions is in progress, and the threshold is expected to be of the
order of 10−8.33

Despite the extremely low expected threshold of linear
nearest neighbor architectures, a great deal of theoretical
work has been devoted to the design of such architectures
using a variety of physical systems.34–44 This is reasonable in
the context of providing an experimental starting point, but
we believe the time has come to expect at least a theoretical
proposal for how long-range interactions or long-distance
qubit transport might be performed. Without this, it is ex-
tremely difficult to argue the long-term viability of a given
system. Furthermore, any proposed method of interaction or
transport must be capable of being performed in parallel on a
number of pairs of qubits that grow linearly with the size of
the computer to permit the simultaneous application of error
correction to a constant fraction of the logical qubits in the
computer. In contrast, a quantum computer based around a
single, global, serial interaction or transport mechanism,
such as a single resonator shared by all qubits in the
computer,45 cannot simultaneously apply quantum error cor-
rection to multiple logical qubits. Such a quantum computer
could, at best, apply quantum error correction to each logical
qubit in turn. As the number of logical qubits increases and
the amount of time between applications of error correction
to a given logical qubit increases, more errors accumulate
and the probability of successful error correction decreases.
Beyond a certain amount of time between error correction
applications, it is overwhelmingly likely that every physical
qubit comprising a given logical qubit will have suffered an
error, meaning no amount of quantum error correction will
successfully recover the original logical state. Consequently,
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any quantum computer based around a single, global, serial
interaction or transport mechanism is not scalable in the
sense that it could never perform an arbitrarily large quantum
computation.

The purpose of this paper is to present a long-range cou-
pling mechanism for superconducting flux qubits that can be
used to couple many pairs of qubits together in parallel in a
manner suited to the construction of an arbitrarily large fault-
tolerant quantum computer. In Sec. II, we review the cou-
pling mechanism of Refs. 1 and 23, and extend it to allow
long-range coupling in Sec. III. In Sec. IV, we firstly describe
a simple, yet scalable, flux qubit architecture based on this
interaction, but not taking full advantage of it, then a more
complicated architecture with a better threshold error rate,
though much more difficult to build. Finally, Sec. V con-
cludes with a summary of results and a description of further
work.

II. COUPLING FLUX QUBITS

Before discussing our coupling mechanism, a few words
elaborating exactly why long-range interactions are advanta-
geous are in order. Essentially, the problem lies in the need to
perform transversal multiple logical qubit gates, as shown in
Fig. 1�a�. If long-range interactions are available, two logical
qubits each comprised of n physical qubits can be trans-
versely interacted in a single time step using n gates. If we
now try to do the same thing on a linear nearest neighbor
architecture using swap gates prior to the necessary gates to
perform the transversal interaction, we immediately run into
a serious problem. A single swap gate failure can lead to two

errors in a single logical qubit as shown in Fig. 1�b�. Under
normal circumstances, two or more errors in a single logical
qubit are not correctable. A solution to this dilemma that
avoids the need to resort to a multiple error correcting code
is shown in Fig. 1�c�, where a second line of placeholder
qubits has been added. Now swap gates never simulta-
neously touch two qubits that are both part of logical qubits.
Note that the first three steps of Fig. 1�c� need to be repeated,
time reversed, to return the qubits to their original configu-
ration. We can now see that to interact two n-qubit logical
qubits transversely and fault tolerantly using only nearest
neighbor interactions, using the scheme described, we need
4n qubits, 2n2+n gates, and 2n+1 time steps with 2n2 loca-
tions where data qubits are left idle. For all of this additional
machinery to result in a circuit with the same reliability as
the nonlocal case, every individual component must be sig-
nificantly more reliable. This is the origin of the lower
thresholds quoted in the Introduction for ever more con-
strained architectures.

With the above motivation in mind, we proceed to the
discussion of coupling superconducting flux qubits. Coherent
oscillations of the state of a superconducting flux qubit were
first demonstrated at Delft in 2003.46 A number of other in-
stitutions are also developing flux qubit technology, includ-
ing Berkeley,23 NEC,47,48,58 RIKEN,49,50 NTT,51 and IPHT.52

A flux qubit is essentially a superconducting ring interrupted
by typically three Josephson junctions with clockwise and
anticlockwise persistent currents forming the basis of an ef-
fective two level quantum system. For an up-to-date review
of superconducting qubit theory in general, including flux
qubits, see Ref. 53.

The coupling scheme as proposed in Ref. 1 is shown,
somewhat simplified, in Fig. 2. Let K0 denote the strength of
the direct inductive coupling between the qubits, Mqq the
mutual inductance of the qubits, and �Iq� the magnitude of the
qubit circulating current. Note that in Ref. 1, the algebraic
analysis was done with potentially different current magni-
tudes �Iq

�1�� and �Iq
�2��, but the numerical analysis was done

with �Iq
�1��= �Iq

�2��=0.48 �A. The above quantities are related
by K0=2MqqIq

2. Let Ks denote the strength of the coupling
mediated by the superconducting quantum interference de-
vice �SQUID�, Mqs the mutual inductance between either of
the qubits and the SQUID, J the circulating current in the
SQUID, �s the flux through the SQUID, and Ib the SQUID
bias current. These are related by

Ks = 2Mqs
2 Iq

2� �J

��s
�

Ib

. �1�
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FIG. 1. �a� Nonlocal transversal interaction. �b� Naive linear
nearest neighbor transversal interaction showing the propagation of
errors resulting from the failure of a single swap gate, leading to
two errors in both logical qubits. �c� The first four time steps of a
bilinear fault-tolerant transversal interaction between two sets of
three physical qubits. The remaining three steps are the time reverse
of the first three steps.

FIG. 2. Coupling scheme as proposed in Ref. 1, including circuit
symbols and orientations.
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Ib = I0 sin �1 + I0 sin �2, �2�

2J = I0 sin �2 − I0 sin �1, �3�

where �1 and �2 are the phase drops across the SQUID Jo-
sephson junctions. This can be written as

Ib = 2I0 sin �̄ cos �� , �4�

J = I0 sin �� cos �̄ , �5�

where ��=
�2−�1

2 and �̄=
�1+�2

2 . These equations are con-
strained by

�� =
�

�0
��s − LdJ� , �6�

where L is the inductance of the coupler and �s is nominally
set to �s=0.45�0 to maximize the response of J to varia-
tions in �s. Taking the partial derivative of Eqs. �4�–�6� with
respect to �s, we obtain

�Ib

��s
= 0 = 2I0

�

��s
�cos �� sin �̄� , �7�

�J

��s
= I0	−

��̄

��s
sin �̄ sin �� +

���

��s
cos �̄ cos ��
 , �8�

���

��s
=

�

�0
�1 − L

�J

��s
� . �9�

Using these equations, we can derive the expression

� �J

��s
�

Ib

=
1

2Lj

1 − tan2 �̄ tan2 ��

1 +
L

2Lj
�1 − tan2 �̄ tan2 ���

, �10�

where Lj =�0 /2�I0 cos �� cos �̄ is the Josephson induc-
tance. This expression characterizes the tunable nature of the
coupling scheme.

III. LONG-RANGE COUPLING

We propose modifying the coupler as shown in Fig. 3. All
dimensions are typical of the Berkeley group.23 This design

results in decreased mutual inductance between the qubits,
increased mutual inductance between the qubits and the cou-
pler, increased self-inductance of the coupler, and significant
capacitance structurally incorporated into the coupler. All of
these effects will be investigated as well as the resultant im-
pact on the coupling strength.

Before discussing coupling strengths, we need to deter-
mine the various inductances of the new system. Figure 4
shows the self-inductance of the coupler versus coupler
length D for coupler width d=1.5 �m, generated using FAS-

THENRY, assuming superconducting aluminum wires with a
penetration depth of 49 nm.54 The inset shows the short
length behavior. For all lengths of interest, the coupler self-
inductance is approximately given by �356+0.863D /�m�
pH. A small value of d is desirable to minimize L at a given
length and, as we shall see, maximize the coupling strength.
However, this also introduces a large capacitance, with con-
sequences to be discussed at the end of this section. The
mutual inductance of each qubit with the coupler was found
to be 75 pH.

We are now in a position to calculate the coupler medi-
ated coupling strength Ks for zero bias current, done numeri-
cally for two different critical currents I0=0.48 and 0.16 �A,
and shown in Fig. 5. Note the existence of optimum lengths,
700 and 2500 �m, respectively, a consequence of the cosine
terms in Lj. The coupling strength due to the mutual induc-
tance of the qubits is shown in Fig. 6. Note that to neglect the

FIG. 3. Extending coupling scheme, including circuit symbols,
orientations, and dimensions. All wires are 0.75 �m wide and
0.1 �m thick.
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FIG. 4. The self-inductance of the coupler as a function of the
length of the coupler.
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FIG. 5. The coupling strength at zero bias current ��s

=0.45�0� without mutual qubit interaction versus the length of the
coupler for I0=0.48 �A �solid� and I0=0.16 �A �dashed�.
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direct mutual coupling, it is necessary for the qubits to be
separated by approximately 650 �m, corresponding to a cou-
pling strength approximately 3 orders of magnitude less than
that induced by a coupler of length 650 �m. Its conse-
quences in architecture design will be discussed in Sec. IV.

The coupling strength can be reduced to zero by suffi-
ciently increasing the bias current. It is desirable to ensure
that the necessary increase is as small as possible, as the
presence of a bias current, particularly one close to the criti-
cal current, is a significant source of decoherence.1,47,55 Fig-
ure 7 shows the coupling strength versus bias current for a
selection of four coupler lengths. This figure uses the critical
current I0=0.48 �A from Ref. 1. Clearly, particularly for
long lengths, the bias current required to achieve zero cou-
pling strength is too close to the critical current. This prob-
lem can be circumvented by reducing the critical current of
the junctions to I0=0.16 �A, resulting in Fig. 8. Reducing
the critical current reduces the zero bias coupling strength,
lowering the ratio Ib / Ic required to achieve zero coupling
strength.

In principle, Fig. 8 is promising, both in terms of coupling
strength and coupling length. However, the effect of the ca-
pacitance of the coupler must be determined. As a starting
point, consider a single flux qubit initially prepared in a
clockwise current state. Left alone, this qubit will oscillate
between clockwise and anticlockwise current states at its tun-
neling frequency, which is typically of the order of a few

gigahertz in current devices. As seen by the coupler, by vir-
tue of their mutual inductance, such a qubit plays the role of
an alternating current source. Considering the coupler in iso-
lation now, we wish to check that an alternating current
source at one end of the coupler with amplitude A generates
an alternating current of amplitude as close to A as possible
at the other end. Using a lumped circuit model and discretiz-
ing the capacitive section of the coupler, deviation from per-
fect transmission of the order of 1% was found. This is low
enough to give us confidence that the fundamental concept of
the extended coupler is sound, but high enough that achiev-
ing high fidelity gates will require a closer examination of
the physics of the system.56 We have also begun simulations
of the complete system including silicon substrate using the
commercial package HFSS. The results of these simulations
and capacitive and radiative effects, in general, will be dis-
cussed in detail in a separate publication.

IV. ARCHITECTURES

In quantum computing literature, the word “scalable” is,
regrettably, frequently used rather loosely, and sometimes in-
accurately. Ideally, as a minimum, it should only be claimed
that an architecture is scalable if, in principle, an arbitrarily
large number of qubits can be implemented, the number of
quantum gates and measurements that can be executed si-
multaneously grows linearly with the number of qubits, and
the physics of any one quantum gate or measurement does
not depend on the total number of qubits. A simple example
of such an architecture making use of the coupler described
in this paper is shown, not drawn to scale, in Fig. 9�a�. This
figure shows eight qubits with three couplers around each
qubit, each electrically isolated from the others, which is
feasible with current layering technology. These have been
drawn one on top of another. Note that one qubit of each pair
of qubits in each coupler is more weakly coupled to the
coupler following Ref. 23; this is indicated by the increased
spacing in the figure between the qubit and the coupler. This
enables readout of both qubits simultaneously using one cou-
pler via the resonant readout scheme of Ref. 57. Also shown
in the figure are current bias lines for each coupler with, for
example, the group of three lines entering the couplers sur-
rounding the top left qubit representing the current bias lines
for the left, downward, and right leading couplers, respec-
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FIG. 6. The strength of the direct qubit-qubit interaction due to
mutual inductive coupling as a function of the length of the coupler,
and thus, qubit separation.
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FIG. 7. The coupling strength as a function of the bias current
with �s=0.45�0 and Ic= Ic��s�, using Josephson junction critical
currents of I0=0.48 �A. D=500 �m �dotted�, D=1000 �m
�dashed�, D=2000 �m �dash-dotted�, and D=4000 �m �solid�.
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FIG. 8. The coupling strength as a function of the bias current
with �s=0.45�0 and Ic= Ic��s�, using Josephson junction critical
currents of I0=0.16 �A. D=500 �m �dotted�, D=1000 �m
�dashed�, D=2000 �m �dash-dotted�, and D=4000 �m �solid�.
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tively. Lastly, both the qubits and the couplers need indepen-
dent flux bias lines, represented by small current loops near
each of the qubits and each center of the couplers. These flux
bias lines keep both the qubits and couplers at their optimal
working points, and provide the pulses for single-qubit gates.

Given the large potential length of each coupler, cross-
talk can be neglected, and with only a small number of con-
trol lines leading to external circuitry per pair of qubits,
given a sufficiently large fridge, many qubits can be accom-
modated. The details of how many qubits and how to include
the necessary control lines and classical control machinery
shall be left for a future publication. Two lines of qubits have
been incorporated in the design to permit simpler error cor-
rection, resulting in a threshold two-qubit gate error rate for
arbitrarily large fault-tolerant quantum computation of 1.96
�10−6 as described in Ref. 32. Note that to use this archi-
tecture in practice, this implies the need for two-qubit gates
operating with an error rate of 10−7 or less, far below what is

achievable in most solid-state systems given the current ra-
tios of decoherence times to gate times.

Of course, the architecture of Fig. 9�a� does not take full
advantage of the potential length of the coupler. As discussed
earlier, to ensure relatively low cross-talk, from Fig. 4, qubits
need to be spaced approximately 650 �m apart. This still
gives us enough space to firstly stretch the architecture of
Fig. 9�a� into a single line as shown in Fig. 9�b�, then dupli-
cate this line seven times to permit an additional layer of the
seven-qubit Steane code to be used. Referring to Fig. 11,
these duplicated qubits correspond to the bottom seven qu-
bits in each group of 21. The middle row of qubits in each
group of 21 corresponds to ancilla qubits used during error
correction according to the scheme described in Ref. 27, with
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FIG. 10. To reduce the need for long-range interactions, the
circuit �a� taken from Ref. 27, which encodes and decodes a logical
zero, was modified as shown in �b� by swapping two pairs of qubits.
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FIG. 11. �Color online� A complete architecture for a flux qubit
quantum computer. Squares represent flux qubits, lines connecting
squares represent SQUID couplers, lines running away from each
square represent squid bias current lines, and small dots with lines
running away from them represent qubit and SQUID flux bias lines.
The size of the flux qubits has been exaggerated for clarity. Red
lines represent the SQUIDs and flux bias lines for the second and
higher levels of error correction and logical gates.

a.)

b.)

FIG. 9. �a� Simple scalable bilinear flux qubit architecture in-
cluding flux lines for each coupler and qubit. As drawn, the archi-
tecture requires three layers of metal corresponding to the three
couplers around each qubit. See Sec. IV for a full description of the
various components of the figure. �b� Topologically identical array
used as the basis of Fig. 11.
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slight modifications to reduce the range of the necessary in-
teractions as shown in Fig. 10. The top row of qubits in each
group of 21 corresponds to ancilla qubits only used during
the implementation of the fault-tolerant T gate, or � /8 gate,
as it is also known, which is required to ensure that the
computer can perform a universal set of fault-tolerant gates.
A complete description of the circuitry of this gate can be
found in Ref. 32. Note that, even with all the additional
control lines, the architecture requires just one wire per ap-
proximately 40 �m per side.

The network of qubits and couplers shown in Fig. 11 en-
ables the most efficient known nonlocal error correction
scheme and fault-tolerant gates to be implemented at the
lowest level. All higher levels make use of the circuitry de-
vised for the bilinear architecture. When the threshold two-
qubit error rate of this more complicated architecture was
calculated, using the mathematical tools described in Ref. 32,
the disappointingly low result of 6.25�10−6 was obtained—
just over a factor of 3 better than the bilinear array. In short,
the dominant nearest neighbor behavior of the large-scale
architecture is not overcome by a single layer of nonlocal
error correction and gates.

V. CONCLUSION

We have described in detail a nonlocal method of cou-
pling pairs of flux qubits and shown that it is suited to the

construction of complex, scalable quantum computer archi-
tectures as shown in Fig. 11. By virtue of the fact that flux
qubits do not require large quantities of classical control cir-
cuitry on a chip, there are no obvious lithographic or heat
dissipation barriers to the construction of such an architec-
ture. The primary concern, as with all superconducting quan-
tum technology, is decoherence. In the near future, we wish
to look at other superconducting qubits and coupling
schemes with the aim of removing all known sources of de-
coherence from the design. For example, in Ref. 47, a
method of coupling flux qubits tunably is described that does
not resort to a nonzero SQUID bias current. Furthermore, the
need for large qubit separations to minimize cross-talk could,
in principle, be alleviated by enclosing each qubit in a mi-
crometer scale Meissner cage. Devising a more practical
method of achieving higher qubit densities would greatly
increase the utility of the proposed coupling scheme. Finally,
with or without higher qubit densities, additional architecture
design work is required to try to raise the threshold further,
possibly by attempting to incorporate two layers of nonlocal
error correction into the design.
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