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Angle resolved photoemission data in the pseudogap phase of underdoped cuprates have revealed the
presence of a truncated Fermi surface consisting of Fermi arcs. We compare a number of proposed models for
the arcs and find that the one that best models the data is a d-wave energy gap with a lifetime broadening
whose temperature dependence is suggestive of fluctuating pairs.
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I. INTRODUCTION

It is well established that cuprates possess a superconduct-
ing phase with an order parameter that has d-wave
symmetry,1 and for hole-doped materials, this phase exists
over a range of doping above 5%. It is also well established
that at very low dopings, the material is an antiferromagetic
Mott insulator. Connecting these two states is an unusual
phase known as the pseudogap, the nature of which is still
being debated.2 It is felt by many that the proper identifica-
tion of this phase will have a major impact on the ultimate
“mechanism” for pairing in cuprate superconductors.

Angle resolved photoemission spectroscopy �ARPES� re-
veals the presence of a truncated Fermi surface in the
pseudogap phase.3–5 In a study of the pseudogap versus
temperature,6 this truncated Fermi surface was denoted as a
“Fermi arc.” The arc was shown to be intermediate between
the d-wave node of the superconductor and the complete
Fermi surface of the normal state. Moreover, the arc appears
to form by a closing of the energy gap of the superconduct-
ing state as the temperature is raised above Tc. Off the arc, in
the “pseudogapped” �antinodal� region of the Brillouin zone,
the spectral gap appears instead to fill in with temperature.
This filling in effect is also seen in c-axis conductivity data7

and is consistent with the thermal evolution of the specific
heat.8 This “dual” nature of the energy gap is suggestive of a
“two gap” scenario where a “superconducting” gap resides
on the arc and a “pseudogap” resides off the arc. Such a two
gap picture was proposed by Deutscher,9 and recent
Raman,10 ARPES,11,12 and scanning tunneling microscopy
�STM�13 data have been offered in its support. On the other
hand, even for underdoped samples, the gap function below
Tc seems to be more or less d-wave-like.14 This conundrum
of having a single gap below Tc transforming into a dual gap
above Tc was stressed sometime ago.15

Recently, a very detailed temperature and doping study
of the energy gap above Tc was done by Kanigel et al.16

They found that the length of the arc scales as T /T*, where
T*, the temperature at which the spectral gap “fills up” in the
antinodal region of the zone, strongly increases with
underdoping.17 As a consequence, the angular anisotropy of
the pseudogap looks more and more like a d-wave gap as the
temperature is lowered relative to T*. This finding is sup-
ported by thermal conductivity data, which indicate that the

d-wave dispersion of the superconducting state at low tem-
peratures survives when the doping is reduced into the
pseudogap state.18 It is also consistent with recent ARPES
and STM data on the stripe ordered phase of La7/8Ba1/8CuO4,
which indicate a d-wave-like gap anisotropy at low tempera-
tures �but above Tc�.19 More recently, the study of Kanigel et
al. has been extended to below Tc,

20 where it was found that
the arc collapses to a node within the resistive width of the
transition, with a simple d-wave-like gap below Tc. These
recent studies bring into question the two gap picture.

Primarily motivated by the ARPES data, a wide range of
models has been proposed to explain the Fermi arc. Basi-
cally, these models can be grouped into two categories. In the
first, the pseudogap is associated with a q=0 instability. Most
of the models in this category have the pseudogap as a pre-
cursor to the superconducting gap and involve pair formation
with the absence of long range phase order.21–23 �The under-
lying Fermi surface in a state with superconducting long
range order has been discussed in Refs. 24 and 25.� Theories
of pairing without phase coherence have been extended to
describe the arc by explicitly invoking vortexlike
excitations26–29 as revealed by measurements of the Nernst
effect.30 The node of the d-wave dispersion is broadened into
an arc by a combination of lifetime broadening as well as
Doppler shifts of the single particle states due to the vortices.
Arcs also arise in models of pairing fluctuations in a quan-
tum critical region between the superconducting and insulat-
ing phases.31 There are, though, q=0 theories which do not
involve pairing. One example is the model of Varma and
Zhu,32 which involves circulating currents within a CuO2
plaquette �and thus has the same periodicity as the unit cell�.
In this case, the gap function has a “d2” anisotropy. Another
example is the “nodal nematic” phase33 where the node in
the superconducting state is displaced by a nematic order
parameter rather than a vortex Doppler shift. The final ex-
ample we mention is the model of Wen and co-workers34,35

where the node is displaced in energy due to staggered flux
phase correlations.

The second category involves a nonzero q vector. This
category ranges from models based on a precursor spin den-
sity wave,36,37 charge density wave,38 stripes,39 flux phases,35

or orbital currents.40 In the case of fluctuating order,35,41–43

the nonzero q vector is not as obvious in the excitation spec-
trum. Those scenarios involving a �� ,�� wave vector pos-
sess small hole pockets centered at �� /2 ,� /2�, where the
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intensity is reduced on one side of the pocket due to the
amplitude factors which mix the states differing by q. Re-
lated models are those where the Luttinger surface �surface
of zeros of the single particle Green’s function� differs from
the Fermi surface.44–47 In this case, the Fermi surface is trun-
cated where it crosses the Luttinger surface. In a more gen-
eral 2kf context, the flat parts of the Fermi surface which
reside in the antinodal region of the zone can be eliminated
by nesting,48,49 leaving a residual arc.

In this paper, some of these scenarios will be addressed in
the context of the ARPES data. In Sec. II, several nonzero q
scenarios, where for simplicity long range order is assumed,
will be analyzed. These scenarios typically lead to �a� Fermi
arcs whose length is T independent, �b� deviations of the arcs
from the underlying Fermi surface, �c� energy gaps which are
not centered symmetrically about the Fermi energy, and �d�
shadow bands. We argue that there is no evidence for these
effects in ARPES and tunneling data, at least in the mildly
underdoped region. In Sec. III, we turn to the q=0 solutions.
We find that the scenario most consistent with the data is one
where the node remains along the zone diagonal and at the
Fermi energy. The temperature evolution of the arc above Tc
is consistent with lifetime broadening of the node, though the
data also indicate a distortion of the d-wave gap anisotropy
with temperature. In Sec. IV, we offer some conclusions and
suggest future ARPES experiments that could further differ-
entiate between the various models for the Fermi arc.

II. NONZERO Q SCENARIOS

A. Commensurate density wave

These scenarios assume a q vector of �� ,�� with an en-
ergy gap that either is isotropic or has d-wave symmetry.40

The secular matrix is of 2�2 form, and the Green’s function
associated with the wave vector k in the presence of simple
elastic broadening, �, can be written as

Gk = �E+ − �k+q

E+ − E−
� 1

� − E+ + i�
− �E− − �k+q

E+ − E−
� 1

� − E− + i�
,

�1�

where

E± =
�k + �k+q

2
±�� �k − �k+q

2
�2

+ �k
2. �2�

We have looked at several cases, with various dispersions,
�k, including some with bilayer splitting, and several differ-
ent forms for �k. For brevity, we present results using for �k
the tight binding dispersion of Norman et al.50 and a
d-density-wave gap40 �k=

�0

2 �cos�kx�−cos�ky��.
In Fig. 1�a�, we present the intensity plot of the spectral

function �imaginary part of Gk� in the two-dimensional �2D�
zone for �=0. At the simplest level, one indeed finds an arc.
However, there are several details worth pointing out. First,
the ends of the arc turn away from the underlying Fermi
surface of the normal state. This is due to the fact that the
zero energy contour traces out a pocket centered at
�� /2 ,� /2�, the back side of which is suppressed by the co-

herence factors �the prefactor of each term in Eq. �1��. Sec-
ond, there is a strong suppression of the intensity at the “hot
spots”—the points where the normal state Fermi surface
��k=0� crosses its �� ,�� displaced image. This can be re-
lated to the “Luttinger surface” effect mentioned in the In-
troduction. To see this, we note that the Green’s function in
this model can be rewritten as

Gk
−1 = � − �k + i� −

�k
2

� − �k+q + i�
. �3�

The “gap” self-energy �the last term of this equation� di-
verges when �=�k+q in the absence of broadening ��=0�.
Thus, the �� ,�� translated image of the normal state Fermi
surface ��k+q=0� is the Luttinger surface, and therefore the
zero energy intensity is suppressed when the normal state
Fermi surface crosses this surface. Finally, there is weaker
intensity centered around the �� ,0� points which will be sup-
pressed as �0 increases. To investigate this further, in Fig.
1�b�, we show the spectral function for several k points along
the �� ,0�− �� ,�� direction. One clearly sees that the spectral
function has a minimum value that sits at negative energy. At
k= �� ,0�, it is obvious from Eq. �2� that this minimum value
occurs at �=�k, which is −34 meV for this dispersion. This
asymmetry in energy is obviously enhanced for dispersions
where ��,0 is deeper in energy.

In relation to the experimental data, we note the following
issues with this model, which are generic to models based on
a finite q order parameter. First, there is no natural way to
generate an arc whose length is proportional to the tempera-
ture. In particular, we have verified that the arc length in Fig.
1�a� is independent of the lifetime broadening �. Even
though variations in � produce changes in the spectral inten-
sity at zero energy, nevertheless, the arcs always terminate at
the new zone boundary associated with the ordering vector q.
Second, there is no evidence from ARPES for a “turn in” of
the ends of the arc away from the underlying normal state
Fermi surface �Fig. 2�c��. Third, ARPES is consistent with
spectral functions which have either a maximum �arc� or a
minimum �antinodal region� at zero energy along the under-
lying Fermi surface. We demonstrate this in Fig. 2�a�, where
data in the pseudogap phase along the underlying Fermi sur-
face are plotted. These data are the same as used to construct
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FIG. 1. �Color online� �a� Spectral intensity at zero energy ver-
sus kx ,ky, and �b� versus energy for kx=1 for several ky, for the
d-density-wave model �Ref. 40�. The black curve in �a� is the nor-
mal state Fermi surface. Zone dimensions for all figures are in � /a
units, and energies are in meV. For all figures �unless otherwise
noted�, �0=50 meV and �=25 meV.
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Fig. 1�b� of Ref. 16, but instead of “symmetrizing” the raw
data as was done there �which implicitly assumes a maxi-
mum or minimum at zero energy�, we divide the data by a
resolution broadened Fermi function. The clear maxima at
zero energy along the arc, and the minima at zero energy
away from the arc, are quite evident. This is consistent with
tunneling data as well,51 where the minimum in the tunneling
conductance is at zero bias, even in the pseudogap phase.

B. Differing Luttinger surface

These scenarios44–47 are related to the ones just discussed.
For discussion purposes, we look at the recently proposed
model of Yang et al.44 In this case, the Green’s function is

Gk
−1 = � − �k + i� −

�k
2

� + �k
NN + i�

, �4�

where �k
NN is just the near neighbor term of the tight binding

dispersion ��k has the same form as the d-density-wave
case�. Note that if �k only had a near neighbor term, then at
half filling, this model would be equivalent to the
d-density-wave model. The similarity of these two models
can be seen in Fig. 3, where we show the zero energy inten-

sity plot in the 2D zone as well as the intensity versus � for
k along �� ,0�− �� ,��. Again, note the pronounced suppres-
sion of the intensity at the hot spots in Fig. 3�a�, which is not
evident in the data �a plot of the experimental zero energy
intensity around the Fermi energy is shown in Fig. 2�b��, as
well as the pronounced asymmetry of the energy gap relative
to the Fermi energy in Fig. 3�b�. As with the d-density-wave
model, there is no obvious mechanism to obtain an arc pro-
portional to T.

C. Nesting density wave

These scenarios assume a q vector which nests the antin-
odal points of the 2D Fermi surface. Two approximations
were analyzed. In the first, a single q vector along qy, q
= �0,−q�, was used in the first octant �bounded by �0,0�
− �� ,0�− �� ,��− �0,0�� of the square lattice zone �a 2�2
secular equation�, the result of which was then reflected to
the other octant. The orientation of q was designed so as to
connect the antinode at �� ,q /2� with the one at �� ,−q /2�.
The equation for the Green’s function is the same as in Eqs.
�1� and �2�, except that �k in this case was taken to be iso-
tropic.

In the second approximation, a 3�3 secular equation is
separately solved for q vectors oriented, respectively, along
qx, q= �q ,0� and q= �−q ,0�, and along qy, q= �0,q� and q
= �0,−q�, in the first quadrant of the zone, and then the two
results are averaged �representing averaging over two do-
mains�. The unaveraged Gk is given by

Gk = �
i=1

3
�Ei − �k+q��Ei − �k−q�
�Ei − Ei+1��Ei − Ei+2�

1

� − Ei + i�
, �5�

where by i+1 and i+2 we mean modulo 3. The Ei are given
by solving the appropriate cubic equation and can be written
as

Ei = − 2�d cos��� + 2�i�/3� − a/3, �6�

where

a = − ��k + �k+q + �k−q� ,

b = �k�k+q + �k�k−q + �k+q�k−q − 2�k
2,

c = − �k�k+q�k−q + �k
2��k+q + �k−q� ,
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FIG. 2. �Color online� �a� Experimental energy distribution
curves �EDCs� for optimal doped Bi2Sr2CaCu2O8 �Bi2212� around
the underlying Fermi surface in the pseudogap phase �T=140 K�
divided by a resolution broadened Fermi function. The bottom
curve is at the node and the top curve at the antinode. The data set
is the same as in Fig. 1�b� of Ref. 16. �b� Zero energy intensity from
�a� as a function of the Fermi surface angle �, where �=0° corre-
sponds to the antinode and �=45° to the node. �c� Zero energy
intensity versus kx ,ky �the data were reflected relative to kx=ky�. For
�b�, the intensities were obtained by subtracting a background EDC
�obtained from an unoccupied k�, then normalizing this subtracted
intensity by its energy integrated weight. This was designed to
minimize the effect of the photoemission matrix elements. This was
not done in �c� in order to demonstrate that the raw data show no
indication for any deviation of the arc from the underlying Fermi
surface �black curve�.
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FIG. 3. �Color online� �a� Spectral intensity at zero energy ver-
sus kx ,ky, and �b� versus energy and ky for kx=1, for the model of
Yang et al. �Ref. 44�.
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d = �a2 − 3b�/9,

r = �2a3 − 9ab + 27c�/54,

� = cos−1�r/d3/2� . �7�

In Fig. 4, we show the zero energy intensity in the 2D
zone for the two approximations. Again, a clear arc is seen,
with extra structure that can be attributed to the reduced in-
tensity �due again to the coherence factors� of the “shadow”
bands. This is particularly true in Fig. 4�b� where more
shadow bands occur. A similar situation would occur if one
had “checkerboard” order �this would be obtained by solving
a 5�5 secular matrix associated with a “double q” struc-
ture�.

A significant difference from the previous cases is the
origin of the arc. In the previous cases, the arc is due to the
Fermi energy cutting across the lower of the two energy
bands. In essence, the energy gap is centered above the
Fermi energy for k vectors from the node to the hot spots,
and it is centered below the Fermi energy for k vectors from
the hot spots to the antinode. However, in this “antinodal”
nesting case, it is the reverse situation. In the 2�2 approxi-
mation, the arc is formed from the Fermi energy cutting
across the upper of the two bands. This is particularly evi-
dent near the arc tip, as shown in Fig. 5. In essence, the
energy gap is centered below the Fermi energy for k along
the arc. For momenta near the arc tip, one would find a
minimum in the spectral function at a negative energy �as in
Fig. 1�b��. This effect is not evident, though, in the ARPES
data. Again, as the arc tip is associated with where the un-

derlying normal state Fermi surface intersects the density
wave zone boundary �in the first octant, this would corre-
spond to ky =q /2�, there is no natural mechanism for an arc
proportional to temperature. As discussed by McElroy,49 this
would require a two gap scenario, where the density wave
gap would wipe out the antinodal parts of the Fermi surface,
and then a second gap would wipe out the remaining arc with
reducing temperature. Despite the attractiveness of such sce-
narios in regard to some experimental data,9–13 a definitive
signature of this density wave gap would be to observe the
shadow bands evident in Fig. 4 and the asymmetry of the gap
relative to the Fermi energy evident in Fig. 5. So far, we have
found no evidence for either of these effects.52

III. ZERO Q SCENARIOS

A. Energy displaced node

The resonating valence bond �RVB� model of Wen and
Lee34 is based on incorporating both the effect of a d-wave
gap in the particle-particle channel and a staggered flux
phase gap in the particle-hole channel. An ansatz for the
Green’s function in this model that makes it of the same form
as the earlier cases we studied is

Gk
−1 = � − �k + i� −

�k
2

� + �k + 	sh + i�
. �8�

The effect of 	sh is to move the d-wave node off the Fermi
energy, and the sign of 	sh is chosen to be negative so that
the node is above the Fermi energy. The result is an arc at
zero energy that is tied to the underlying Fermi surface �Fig.
6�a��. This is a positive feature of this model. If 		sh	 were
proportional to T for some �unknown� reason, this could also
account for the temperature evolution of the arc. The major
problem with this model, though, is that as one goes to posi-
tive energy, the arc would shrink in size, and as one goes to
negative energy, the arc would expand in size. This effect is
not evident in the ARPES data in the pseudogap phase,
though, which seems to be more or less consistent with arcs
which are independent of energy up to energy scales of order
�0.53 In this model, the energy gap is always centered at an
energy above the Fermi energy for all momentum cuts in the
zone, an effect not visible in Fig. 2�a�.

B. d-wave pairs plus lifetime broadening

The simplest model in this class is equivalent to the one
just described with 	sh=0,
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FIG. 4. �Color online� Spectral intensity at zero energy versus
kx ,ky for �a� the 2�2 secular equation and �b� the 3�3 secular
equation approximations, for the antinodal nesting model with q
= �0.36,0�.
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near the arc tip �kx=0.6� for �a� the 2�2 secular equation and �b�
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model with q= �0.36,0�.
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Gk
−1 = � − �k + i� −

�k
2

� + �k + i�
. �9�

The spectral function for finite � traces out an “arc,” as
shown in Fig. 7�a�. The energy gap is centered at the Fermi
energy, as shown in Fig. 7�b�. That is, the gap is tied to the
Fermi energy and the Fermi surface, consistent with experi-
ment. In Fig. 8�a�, we plot the evolution of the spectral func-
tion on the Fermi surface ��k=0� for this model, and in Fig.
8�b� the angular anisotropy of the spectral gap �half the peak
to peak separation�.

Gapped and ungapped spectra on the Fermi surface �Fig.
8�a�� are obviously controlled by the sign of the second de-
rivative of the spectral function with respect to � at �=0.
The condition that this second derivative is zero is �=�3�k.
Assuming a simple d-wave gap of the form �k=�0 cos�2��,
where � is the Fermi surface angle measured relative to the
antinode, one then obtains for the position of the arc tip �0
=0.5 cos−1�� /�3�0�. T* would then be the condition that
��T�=�3�0�T�.

In Fig. 9�a�, we show the variation of the arc length with
�. This variation is consistent with experiment, as shown in
Fig. 9�a�, if one assumes that �
T and �0 is a constant in T
�similar plots are shown in Refs. 43 and 54�. This linear
variation of the arc length with � is a natural consequence of
the linear variation of �k with � around the node. The upturn
of the arc length at larger � is due to the quadratic depen-
dence of the energy gap with � about the antinode.

The theory of Varma and Zhu32 is similar except that �k is
taken to be the square of the d-wave gap. As they point out,

this fits the angular anisotropy of the parameter �k in the
pseudogap phase16 better than the simple d-wave model, as
can be seen in Fig. 9�b�. On the other hand, the arc length
variation with T is more consistent with the simple d-wave
form, as shown in Fig. 9�a�, though we remark that Varma
and Zhu were able to obtain a much better fit to the arc
length by allowing a self-energy with a more sophisticated
frequency and temperature dependence.32

IV. CONCLUSIONS

In regard to the “nonzero q” scenarios, there are several
ways that experiment could address this question. Definitive
evidence would be finding a departure of the arc from the
underlying normal state Fermi surface, evidence for an en-
ergy gap which is asymmetric in energy relative to the
chemical potential, or the existence of shadow bands �i.e.,
bands displaced from the main band by the wave vector q�.
Other evidence would be the existence of intensity suppres-
sion at “hot spots” �where the Fermi surface would cross the
Luttinger surface�, as has been observed by ARPES in elec-
tron doped cuprates.55 It should be remarked that small pock-
ets have recently been identified from Shubnikov–de Haas
oscillations in underdoped YBa2Cu3O6.5.

56 However, they
may be due to a field induced density wave state,57 so their
relation to zero field ARPES measurements remains to be
seen.

In regard to the “zero q” scenarios, the simplest theory
consistent with the data appears to be a d-wave gap with an
inverse lifetime that is proportional to T. There are, though,
some limitations of this model. The data of Ref. 16 were
actually fitted with a form more general than that of Eq.
�9�,58

Gk
−1 = � − �k + i�1 −

�k
2

� + �k + i�0
. �10�

This “two lifetime” model has the advantage of being able to
describe a broad spectral function ��1� but with a sharp lead-
ing edge gap ��0� as indicated by ARPES data in the
pseudogap phase.4,6,58 It has since been extended to include a

-100-100-100-100

-50-50-50-50

0000

50505050

100100100100

E
(m

e
V

)
E

(m
e

V
)

E
(m

e
V

)
E

(m
e

V
)

0.50.50.50.50.00.00.00.0
kykykyky

(b)(b)(b)(b)
1.01.01.01.0

0.50.50.50.5

0.00.00.00.0

kykykyky

1.01.01.01.00.50.50.50.50.00.00.00.0
kxkxkxkx

(a)(a)(a)(a)

FIG. 7. �Color online� �a� Spectral intensity at zero energy ver-
sus kx ,ky and �b� versus energy and ky for kx=0.6, for the d-wave
pair model.

0

1 0

2 0

3 0

4 0

5 0

6 0

0 1 5 3 0 4 5 6 0 7 5 9 0

ga
p

(m
eV

)

φ (°)

(b)

0

2

4

6

8

1 0

1 2

1 4

-100 -50 0 5 0 100

In
te

ns
ity

E (meV)

(a)

FIG. 8. �Color online� �a� Spectral intensity around the Fermi
surface for the d-wave pair model. The top curve is at the node,
whereas the bottom curve is at the antinode. �b� Spectral gap �half
the peak to peak separation� versus the Fermi surface angle. The
dashed curve corresponds to �=0.

0

1

2

3

4

5

6

7

0 1 5 3 0 4 5

exp
d

d2

In
te

ns
ity

(E
=

0)

φ (°)

(b)
0

2 0

4 0

6 0

8 0

100

0 2 0 4 0 6 0 8 0

0 0.2 0.4 0.6 0.8 1

d

d2

exp

ar
c

le
ng

th
(%

)

Γ (meV)

T/T*

(a)

FIG. 9. �Color online� �a� Arc length versus � for a d-wave gap
and a d2 gap �data from Ref. 16�. �b� Experimental spectral intensity
at zero energy versus Fermi surface angle �as in Fig. 2�b�� versus
fits that assume either a d-wave gap �cos�2��� or a d2 gap
�cos2�2���.

MODELING THE FERMI ARC IN UNDERDOPED CUPRATES PHYSICAL REVIEW B 76, 174501 �2007�

174501-5



more general frequency dependence for the self-energy.59

The presence of two lifetimes may seem unusual, as this
does not occur, for instance, in the standard Eliashberg treat-
ment of strong-coupling superconductors.60 The motivation
in Ref. 58 was that �1 denotes the interaction in the particle-
hole channel, whereas �0 denotes that in the particle-particle
channel. If the dispersion of the single particle states is ig-
nored, a calculation of fermions interacting with pair fluctua-
tions leads to �0 proportional to T−Tc.

58 In contrast, in two
dimensions, a dependence proportional to �T−Tc is
obtained.61 Consideration of vortex excitations26 leads in-
stead to linear T behavior at high T. In general, one would
expect linear T behavior at high temperatures, since this oc-
curs for any model of fermions interacting with bosons,62 but
with a collapse to zero at Tc since the inverse pair lifetime
should vanish in the ordered state. This general T depen-
dence not only naturally describes the linear T variation of
the arc length,16 it can also account for the “filling up” of the
gap in the antinodal region.58 It also explains why the arc
length collapses to zero within the resistive width of the
transition.20 Regardless, our experience has been that two
lifetimes are necessary to properly model the data.16,58,59 A
complete description of modeling based on Eq. �10� in re-
gard to the ARPES data is beyond the scope of the present
paper and will be left for a future study.

The fits presented in Ref. 16 also indicated that the gap
anisotropy changed with temperature, and that this effect

could not be described by lifetime broadening of the zero
temperature gap, though it should be remarked that the actual
value of �k is difficult to extract once the broadening signifi-
cantly exceeds �k. Whether such changes in anisotropy �and,
in particular, a region around the node where �k is identi-
cally zero as indicated by these fits� can be described by pair
breaking within a strong-coupling Eliashberg context re-
mains to be seen. Certainly, careful measurements of the gap
anisotropy at different temperatures and dopings would help
to better differentiate models based on a d-wave gap from
other ones, such as that of Varma and Zhu,32 that have a
fundamentally different gap anisotropy.

In conclusion, we believe that a model of a d-wave gap
with a temperature dependent lifetime consistent with fluc-
tuating pairs gives the simplest description of ARPES data in
the pseudogap phase. Future experimental work should be
aimed at further differentiating between various proposed
models for the Fermi arc, as well as using this information to
address other data, such as transport.
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