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Staggered field-induced tricritical behavior in the S=% quasi-one-dimensional Ising
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The impact of a staggered magnetic field due to quantum exchange mixing in the S =% quasi-one-
dimensional Ising antiferromagnet on a stacked triangular lattice is shown to induce a crossover from XY to
tricritical universality at the phase transition to the partially disordered state. Using a unique combination of
histogram and cluster heat-bath techniques, extensive Monte Carlo simulations are performed to explore the
effects of a small applied field that emulates a previously proposed addition to the spin Hamiltonian formulated
to account for unusual spin soliton excitations in such systems. It is argued that quantum fluctuations governing
short-range order in low-dimensional frustrated spin systems generally can affect measured critical properties
at the onset to long-range magnetic order. Our results explain recent high resolution neutron scattering data on

CsCoBrs;.
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I. INTRODUCTION

The recent emergence of exotic quantum spin order asso-
ciated with the frustrated S =% triangular antiferromagnet!'~
follows decades of discovery of novel classical phase transi-
tions in such systems.®” Many frustrated spin systems also
exhibit magnetic low dimensionality where dominant ex-
change interactions (J) are anisotropic, giving rise to quasi-
one-dimensional (quasi-1D) or quasi-two-dimensional short-
range order (SRO) at low temperatures. A consequence of
both frustration and low-dimensional magnetic interactions
is that the transition temperature to long-range order (LRO),
Ty, is much reduced compared to its nominal value of ~J/K.
This allows for the possibility that fluctuation effects associ-
ated with well-developed SRO at temperatures above 7 can
impact measured critical properties at the phase transition to
LRO. Such effects can be particularly relevant in attempts to
find meaningful comparisons between experimental and the-
oretical estimates of critical exponents which rely on results
inaccessibly close to Ty. The present work demonstrates that
quantum effects which govern low-dimensional spin dynam-
ics can impact the effective critical properties of the three-
dimensional (3D) system.

The Ising antiferromagnet on a stacked triangular lattice
(ISTAF) with strong c-axis exchange and weak interchain
exchange interactions is an example of such a model system.
Strong quantum effects in § =% CsCoBrj; have recently been
proposed to result in hidden chiral order associated with soli-
ton dynamics.® Much earlier work demonstrated that ex-
change mixing due to an unquenched orbital moment and
crystal field effects in the ISTAF give rise to an unusual
contribution to the effective spin Hamiltonian in the form of
a staggered magnetic field with a periodicity of 2 along the ¢
axis. This term has been employed to explain low tempera-
ture inelastic neutron scattering from soliton excitations’ in
CsCoCly and CsCoBr; and Raman data in TICoCl5.!° Invok-
ing such an effect relies on the well-developed SRO intrinsic
to low-dimensional frustrated magnetic systems at low T.
Examination of the impact of this field term on the measured
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effective critical behavior observed close to Ty is important
even though it may be strictly irrelevant in the renormaliza-
tion group sense at Ty. In this work, the influence of this
quantum staggered field in the S :% quasi-1D ISTAF is emu-
lated in Monte Carlo (MC) simulations by considering the
influence of a small uniform magnetic field applied to a
model with ferromagnetic intrachain interactions with anti-
ferromagnetic (AF) interchain coupling. This type of effec-
tive quantum staggered field is not predicted to occur in the
case of some other STAF’s such as (S=1) CsNiCl; which has
been shown to exhibit integer-spin Haldane-gap phenom-
ena.!l

Classical critical behavior in the ISTAF has been exten-
sively investigated using numerous theoretical approaches,
MC simulations, and experimentally. Despite the large num-
ber of studies, there is still no clear consensus in the litera-
ture regarding the critical exponents characterizing the phase
transition between the partially disordered phase, where one
of the three sublattices remains disordered, and the paramag-
netic phase, at 7). Most modeling results®!? support the no-
tion from symmetry arguments that the transition at 7 be-
longs to the XY universality class.'”> There have been
suggestions, however, from several MC simulations that
critical exponents are close to mean-field tricritical,'*!> but
limited statistics and data analysis were used in these inves-
tigations. From the experimental standpoint, a number of
past neutron scattering studies® of CsCoBr; and CsCoCl,
have obtained sets of critical exponents that largely support
the idea of XY critical behavior. Intriguingly, recent high
resolution neutron scattering experiments on CsCoBr; by
Mao et al.'® revealed results which suggest tricritical mean-
field behavior and it was speculated that this could be attrib-
uted to the anisotropic nature of the exchange interaction or
a consequence of the quantum nature of the § =% spins. Ex-
perimental data on weakly axial S=1 CsNiCl; with a
quenched orbital moment'! are consistent with XY uni-
versality.®!” Both types of experimental systems, strongly
Ising and weakly Ising, exhibit magnetic transitions at Ty
with the same symmetry and thus should belong to the same
classical universality class.
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FIG. 1. Planar view of the stacked triangular lattice showing the
nearest- and next-nearest-neighbor intralayer exchange interactions
Jy and J,, respectively. The exchange coupling between interlayer
neighbors is denoted by J;, (not shown).

Motivated by the new experimental data of Mao et al.,
extensive MC simulations using the efficient cluster heat
bath (CHB) algorithm,'®!° combined with the histogram
method,2? were used here to investigate the effects of aniso-
tropic exchange as well as a small applied field on the critical
properties of the classical ISTAF. This work serves to extend
previous MC simulations of the ISTAF mentioned above, but
especially that of Koseki and Matsubara,'”> where the CHB
algorithm was used with strongly anisotropic exchange but
with no applied field, as well as that of Netz and Berker?!
and Plumer and Mailhot!'> who considered isotropic ex-
change interactions with a nonzero applied field. The present
results also complement MC simulations on the frustrated
XY-STAF where anisotropy in the exchange interactions was
shown to induce a first-order transition,?? in agreement with
recent experimental data.>> An additional focus of our work
is the careful analysis of the uncertainty associated with the
procedure used to estimate critical exponents.

The MC simulation results discussed here are based on
the order-parameter cumulant crossing method?* used to es-
timate the critical temperature of the system. Finite-size scal-
ing analysis at Ty was then used to extract estimates of the
critical exponents u, y, and v. Both of these techniques have
been thoroughly tested on frustrated Ising and Heisenberg
spin models.>*

II. MODEL

For the purposes of determining classical critical behav-
ior, it is adequate to use a model system with ferromagnetic
exchange interactions along the ¢ axis, J,, with or without a
small applied uniform field H directed along the ¢ axis. A
uniform magnetic field H acting on ferromagnetically
aligned spins with S;=S, where k is a layer index, is ener-
getically equivalent (E=-HS) to a staggered field H,,,
=H(-1)* acting on antiferromagnetically aligned spins with
S:=S(~1)*. In addition to near-neighbor AF interactions be-
tween chains, J;, the effects of a small next-nearest-neighbor
exchange coupling, J,, were also considered as in previous
MC simulations.?® A schematic illustration of the system is
shown in Fig. 1. These effects can be incorporated in the
Ising Hamiltonian:

H=—Efija'ia'j—Hz T, (1)

(i.j) i
where the spin at any site is g;==1. In zero applied field,
four different cases were investigated with parameters listed
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TABLE 1. Exchange parameters used for the four zero-field
cases.

Case J() J] 12
1 1.0 -1.0 0
11 10.0 -1.0 0
it 10.0 -1.0 0.1
v 10.0 -0.3 0.001

in Table I. For all cases, J, and J, are ferromagnetic and J; is
antiferromagnetic. Finite-size scaling analysis was also per-
formed at five nonzero values of H for case II

The isotropic case 1 (|Jo|=|/;|) was previously investi-
gated using the MC histogram method with periodic bound-
ary conditions for an N=L X LX L system.!>?>2¢ Different
sets of critical exponents characteristic of different universal-
ity classes were obtained in these previous studies, serving to
illustrate the sensitivity of analyzing MC simulation data in
frustrated systems. Cases II, III, and IV correspond to models
with anisotropic quasi-1D exchange interactions (with |J|
>|J,|) for different values of J,. The anisotropic case IV was
previously investigated'® using the CHB algorithm and esti-
mates of the critical temperature and the critical exponents 8
and v were obtained using a data collapse method.

The CHB algorithm employs open boundary conditions
along the c¢ axis and periodic boundary conditions in the
other directions. For systems with quasi-1D exchange inter-
actions, the CHB algorithm is more efficient than the Me-
tropolis algorithm and allows for better statistics when simu-
lating larger lattice sizes. We considered anisotropic lattices
with N=LXLX10L and L=9,12,...,33,36. These system
sizes are smaller than those employed in Ref. 15. However, a
significantly larger number of MC steps were used in any
particular run. Averages were also performed over ten inde-
pendent simulations using different random initial spin con-
figurations. Estimates of the errors were obtained by taking
the standard deviation from the different simulations. Runs
of 1X10°-8% 103 MC steps were used for equilibration,
and 5X 10°-1.2X 10% MC steps were used to calculate av-
erages of several thermodynamic quantities including the or-
der parameter O, susceptibility x;, specific heat C, energy
cumulant Uy, order-parameter cumulant U,,, and first loga-
rithmic derivative of the order parameter V;, as defined in
Ref. 24. The primary order parameter O is defined in terms
of the Qth Fourier component of the spin density as O
=|2,0,exp(iQ-R;)|/N, with Q=(27/3,27/3,0) in units of
the lattice constants associated with the simple hexagonal
structure. In addition, the temperature dependence of the sec-
ondary order parameter O’ with the wave vector Q
=(0,0,0), corresponding to the uniform magnetization, was
also examined. Relevance of this component of the spin den-
sity (in zero applied field) on the nature of the critical behav-
ior in these systems has been previously speculated.'®!>

Accurate estimation of the critical temperature is an es-
sential first step in utilizing the histogram method for deter-
mining critical exponents. Temperature sweeps for the L
=24 system were initially performed using fewer MC steps
to obtain a rough estimate of the transition temperature 7y by
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FIG. 2. Results of applying the order-parameter cumulant cross-
ing method to estimate the critical temperature Ty for case II. The
straight lines correspond to linear fits to the data with In"'(L’/L)
<2.2.

locating the maxima of the susceptibility x; and specific heat
C. For example, for case IV, temperature scans from 7=6.8
to 8.0 in increments of AT=0.05 yielded an estimate of Ty
=7.40. To determine the critical temperature more accurately,
several histograms were generated at temperatures above and
below Ty. In this case, histograms were generated at T
=7.34, 7.36, 7.38, 7.40, and 7.42 for each lattice size L.

III. SIMULATION RESULTS AT ZERO FIELD

The order-parameter cumulant crossing method?’-?® was

used for the sets of parameters of Table I at zero applied
field. An illustrative example of the results for case II is
presented in Fig. 2. For each case, we plot the temperature at
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FIG. 3. Scaling of the energy cumulant Uy as a function of the
lattice size L for the four zero-field cases. The horizontal line de-
notes Up=2/3.
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FIG. 4. Finite-size scaling of the order parameter O, suscepti-
bility x», and the first logarithmic derivative of the order parameter
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TABLE II. Comparison of the critical temperature and critical
exponents determined in this work with other MC studies.

Ty B Y v

1 2.926(3) 0.344(7) 1.31(3) 0.671(9)
Ref. 25 2.920(5) 0.311(4) 1.43(3) 0.685(3)
Ref. 12 2.9298(10) 0.341(4) 1.31(3) 0.662(9)
Ref. 14 2.88 0.19(1) 1.15(5)

II 10.651(4) 0.355(6) 1.33(3) 0.670(7)

111 11.998(4) 0.358(5) 1.28(3) 0.677(3)

v 7.406(6) 0.362(7) 1.35(2) 0.673(4)
Ref. 18 7.34(4) 0.21(1) 1.31(3) 0.70(3)

Xy 0.345 1.316 0.671
Tricritical 1/4 1 1/2
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FIG. 5. Values of the critical exponents 3, vy, and v for cases I,
II, and IV, obtained for different choices of the critical temperature.
Results for case III are qualitatively similar and have been omitted
for clarity.

which Uy, for lattice size L’ intersects with the cumulants for
L=9, 12, and 15. Linear fits are made using the results in the
asymptotic region [i.e., In"'(L'/L)=<2.2] and an estimate of
the critical temperature T, is obtained from the average
value of the crossing points. The error +AT)y represents the
standard deviation of these values.

The fourth-order energy cumulant Uy, evaluated at Ty as a
function of system size L for each of t}}ke four cases is shown
in Fig. 3. The results extrapolate to U,=0.666 663(3) for L
— 0 in all cases, as expected for a continuous phase transi-
tion where U,=2/3.

Finite-size scaling analysis at the critical temperature Ty
of the various thermodynamic quantities O ~ L™, y~L"",
and V;~L"" was used to obtain estimates of critical expo-
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FIG. 6. Scaling of the energy cumulant Up as a function of
lattice size L is shown for several values of the applied field H. The
horizontal line denotes Urp=2/3.

nent ratios. Representative results using the exchange param-
eters in case II are shown in Fig. 4. Our data (not shown)
indicate that the secondary order parameter O’ is not relevant
at Ty for H=0.

In Table II, the zero-field estimates of the critical tempera-
tures and critical exponents determined in this work are com-
pared with those obtained by other MC studies. For each
case studied, our sets of critical exponents indicate 3D XY
universality. This is in agreement with symmetry arguments
as well as the MC results of Ref. 12 but contrast with the
tricritical behavior seen in Refs. 14 and 18, where less inten-
sive simulations were used.

In order to estimate errors due to the uncertainty in the
critical temperature Ty, finite-size scaling analysis was per-
formed at temperatures slightly above and below Ty. In Fig.
5, results are shown for the critical exponents S, y, and v
versus the choice of critical temperature for cases I, II, and
IV. We find that the cases with quasi-1D exchange interac-
tions (cases II and IV) are more sensitive to the choice of
critical temperature than the case with isotropic exchange
coupling (case I). These results indicate that the critical tem-
perature region is extremely narrow for the quasi-1D models,
highlighting the need for care in the analysis and interpreta-
tion of both computational and experimental data for such
systems.

IV. RESULTS AT NONZERO FIELD

The effects of a nonzero applied field were examined here
for the quasi-1D case II only. This extends the work of Refs.
12 and 21 where isotropic exchange was assumed and where
it is argued that the effect of an applied field is to change the
symmetry to that of the three-state Potts model and hence the
transition should be first order within mean-field theory.
However, a more complicated phase diagram emerged as a
result of these earlier MC simulations. The same number of
MC steps as in the zero-field cases was used in the present
study for equilibration and to calculate thermal averages. At
field strengths H=0.01, 0.25, 0.50, and 1.00, simulation re-
sults for the energy cumulant shown in Fig. 6 extrapolate to
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TABLE III. Critical temperature and critical exponents for sev-
eral points along the paramagnet phase boundary. The errors on the
exponents are estimated from fits performed at T=Ty+AT)y.

H Ty B b% v

0 10.651(4) 0.35(2) 1.33(5) 0.670(7)
0.10 10.651(5) 0.31(3) 1.3(1) 0.63(1)
0.25 10.685(5) 0.28(3) 1.22(6) 0.56(1)
0.50 10.756(5) 0.27(4) 1.02(9) 0.50(2)
1.00 10.891(5) 0.27(7) 1.0(1) 0.48(4)

UZ=O.666 663(3), suggesting that the phase transitions re-
main continuous at these lower field values. Results for the
critical exponents at the five field strengths from H=0 to H
=1 are shown in Table III. The error for the critical tempera-
ture is estimated from the scatter of the crossing points of the
order-parameter cumulant data. The errors on the critical ex-
ponents are obtained from fits performed at T=Ty+ATy. For
example, for H=0.25, the fits performed at 7=10.680
yielded B=0.26(1), y=1.28(4), and v=0.56(1), whereas
those at 7=10.690 yielded £=0.306(6), y=1.17(2), and v
=0.57(1). These results illustrate the sensitivity of the critical
exponents with respect to the choice of critical temperature.
The largest source of error on the critical exponents comes
from the uncertainty in 7). For small values of the applied
field (H=0.10), the estimated values of the critical exponents
[ and v are only slightly lower than the zero-field cases. At
intermediate field values H=0.50 and H=1.0, the magnetic
phase transition is characterized by a set of exponents that
are consistent with tricritical mean-field values.

The finite-size scaling for a first-order phase transition has
a different behavior and has been extensively tested in frus-
trated spin systems.'>?3 In Fig. 7, scaling of the fourth-order
energy cumulant for the case H=2.0 evaluated at the critical
temperature is plotted as a function of 1/N, where N is the
total number of spins. For a ﬁrst order phase transmon a
linear scaling of the form Up=U E+aN‘ with U,  different
from 2/3, is expected. The solid line is a linear fit to the data
with L=24. For smaller lattice sizes, scaling with the vol-
ume is not expected and additional correction terms are im-
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0.6665 4 E

0.6664
0.00000

0.00004
1N

0.00002 0.00006

FIG. 7. Scaling of the energy cumulant Uy as a function of 1/N
(where N=10L3) for H=2.0. The solid line is a linear fit to the data
with lattice sizes L=24.
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FIG. 8. Scaling behavior of the specific heat C, susceptibility x;,
and logarithmic derivative of the order parameter V| with the vol-
ume N. The solid lines are linear fits of the data with L=24.

portant. These con51derat10ns reveal a weak first-order phase
transition with U E—O 666 642(3) <2/3. The asymptotic scal-
ing of the specific heat C, susceptibility y;, and the logarith-
mic derivative of the order parameter V; with volume is
shown in Fig. 8 for H=2.0. The linear scaling with volume N
in these data confirms the first-order nature of the transition
at this larger field strength.

V. CONCLUSIONS

The results of these extensive MC simulations using a
combination of the CHB algorithm and histogram analysis
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techniques serve to demonstrate the impact of quantum ef-
fects associated with the SRO in low-dimensional frustrated
quantum spin systems on classical LRO critical behavior.
This work serves to resolve long-standing questions regard-
ing both experimental and previous modeling results on the
critical properties of the quasi-1D ISTAF where both XY and
tricritical behavior have been reported. Quantum effects due
to SRO inherent in the quasi-1D S:% compounds are emu-
lated by the addition of a small applied field (which govern
soliton dynamics in the ISTAF) and are shown here to induce
a crossover from XY to tricritical, then first-order behavior.
These results explain recent data on CsCoBr;,!® where the
strength of the staggered field term had previously been es-
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timated to be H/Jy=0.05, consistent with our simulation
results (H=0.5). Such effects have potential relevance in a

wide variety of low-dimensional frustrated systems such as
Cs,CuCl, (Refs. 2, 4, and 5) and especially Na, sCoO, where
an unusual critical exponent of 8=0.28 has been reported.?
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