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We study the effective anisotropy induced in thin nanomagnets by the nonlocal demagnetization field
�dipole-dipole interaction�. Assuming a magnetization independent of the thickness coordinate, we reduce the
energy to an inhomogeneous on-site anisotropy. Vortex solutions exist and are ground states for this model. We
illustrate our approach for a disk and a square geometry. In particular, we obtain good agreement between
spin-lattice simulations with this effective anisotropy and micromagnetic simulations.
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I. INTRODUCTION

Magnetic nanoparticles and structures have recently at-
tracted a growing interest for their physical properties and a
number of possible applications.1–3 For example, the vortex
�ground� state of a disk-shaped nanoparticle could provide
high density storage and high speed magnetic random access
memory.4 The theoretical models for these systems have
been known for some time,5,6 and include the nonlocal de-
magnetization field. At the microscopic level, this field is due
to the dipolar interaction

Hd =
D

2 �
n,m

n�m

�Sn · Sm

rnm
3 − 3

�Sn · rnm��Sm · rnm�
rnm

5 � . �1�

Here, Sn��Sn
x ,Sn

y ,Sn
z � is a classical spin vector with fixed

length S on the site n= �nx ,ny ,nz� of a three-dimensional lat-
tice. The summation runs over all magnets �n ,m�, and rmn

�rn−rm. The parameter D=�B
2g2 is the strength of the long

range dipolar interaction and g is the Landé factor.
In the past, analytical studies have been mainly limited to

assuming a homogeneous demagnetization field distribution,
uniform Stoner-Wohlfarth theory7 and nearly uniform Brown
linear analysis.2 Recent advances in nanotechnology and
computing power established the complexity of magnetiza-
tion distribution in nanoparticles. For example square nano-
particles exhibit buckling states, flower states, apple states,
leaf states, etc.,8–10 when their size exceeds the single-
domain limit. In disk-shaped particles, vortex states,1,11 edge
fractional vortex states, etc.,12,13 appear. Some of these com-
plex states can be obtained by a small perturbation of a ho-
mogeneous state. For example, Cowburn and Welland14

showed that dipolar interactions cause flower and leaf states
in square nanoparticles, which was confirmed by direct
experiments.9 However, the linear analysis does not work for
topologically nontrivial states such as kinks, vortices, etc.
One possibility to study these structures in nanomagnets is
through the Ritz variational method. It was applied to ana-
lyze the vortex structure of the disk-shaped nanodot.1,11 A
disadvantage of this method that it limits the solution to a
certain class of minimizers, so that one can usually study

only one type of excitation. Linear waves are left out to-
gether with their coupling to the main excitation.

The various regimes were studied in Refs. 15–21. The
important length scale is the magnetic exchange length �
=�A /4�MS

2, where A is the exchange constant and MS is the
saturation magnetization. Depending on the relation between
the film diameter 2R, its thickness h, and �, many scaling
limits can be analyzed �see Ref. 19 for an overview�. Prob-
ably the first rigorous study was made by Gioia and James,15

who showed that for an infinitesimally thin film �h /R→0,
� /R→const�, the magnetostatic energy tends to an effective
two-dimensional �2D� easy-plane anisotropy energy. In this
case, the ground state is a homogeneous in-plane magnetiza-
tion state.15 This effective easy-plane anisotropy has a simple
magnetostatic interpretation. The sources of magnetostatic
field are volume and surface magnetostatic charges. For thin
structures, one can neglect the volume charges. Face surface
charges contribute to the energy density as 2�Mz

2, which is
the same term one would get with an effective easy-plane
anisotropy.22 In the case h /R�1 and �2�2hR � ln�h /2R��,
the magnetization develops edge defects, including fractional
vortices.13,20,21 This problem has a boundary constraint and
an interior penalty. It is relevant for typical Permalloy
�Ni80Fe20, Py� disks, where we have h	20 nm, 2R	100
nm, and �	5.3 nm.

It was shown in Refs. 18 and 19 that in the limit h /R
→0 under the scaling

2hR

�2 
ln
h

2R

→ C , �2�

the full three-dimensional �3D� micromagnetic problem re-
duces to a much simpler 2D variational problem, where the
magnetostatic energy tends to the effective surface-
anisotropy term

Esurf = �
S

�S · ��2dS , �3�

where � is the local tangent vector on the surface S. In this
case, the magnetization S has no out-of-plane component
�Sz=0� and does not develop walls and vortices.
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To study nanomagnets with curling ground states, here we
develop a different analytical approach. We split the dipole-
dipole spin interaction �1� into two parts. The first one is an
on-site anisotropy with spatially dependent anisotropy coef-
ficients. The second part represents an effective dispersive
interaction. The anisotropy interaction consists of two terms:
an easy-plane anisotropy and an in-plane anisotropy. We
show that the vortex state minimizes the effective in-plane
anisotropy. We also show that for ultrathin nanomagnets
�h /R→0�, the in-plane anisotropy term reduces to the sur-
face anisotropy �3�. For the nonhomogeneous state which is
our main interest, our approach is valid if

R � h and R � � . �4�

In Sec. II, we introduce our discrete model together with
the dipolar energy and adapt it to the plane-parallel spin-field
distribution, which is our main simplification. We further
simplify the model by considering only the local part of the
dipolar energy, which results in an effective anisotropy. In
the continuum approximation of the system, we get a local
energy functional with nonhomogeneous anisotropy coeffi-
cients �see Sec. II A�. The dispersive interaction is discussed
in Sec. II B. To illustrate our method of effective anisotropy,
we consider in Sec. III the disk-shaped nanoparticle and
study its ground state spin distribution. Our simple model
describes exactly the homogeneous state �see Sec. III A� and
very precisely the vortex state �see Sec. III B�. In Sec. IV, we
confirm our analysis by numerical simulations. These are
done first for the disk-shaped nanoparticle �Sec. IV A� and
then for the prism-shaped one �Sec. IV B�. We discuss our
results in Sec. V.

II. MODEL: EFFECTIVE ANISOTROPY

We consider a ferromagnetic system described by the
classical Heisenberg isotropic exchange Hamiltonian

Hex = −
J

2 �
n,n�

SnSn�, �5�

where the exchange integral J�0 and the summation runs
over nearest neighbors n, n�. The total Hamiltonian is the
sum of the exchange energy �5� and the dipolar one �1�.

Our main approximation is that Sn depends only on the x
and y coordinates. Such a plane-parallel spin distribution is
adequate for thin films with a constant thickness h=Nza0 �a0
being the lattice constant� and nanoparticles with a small
aspect ratio. The exchange interaction can be written as the
sum of an intraplane Hex

intra term and an interplane one Hex
inter,

Hex
intra = −

�Nz + 1�J
2 �

�,��

S�S��,

Hex
inter = − NzJ�

�

�S��2 = − NzNxNyJS2. �6�

Here and below, the Greek index �= �nx ,ny� corresponds to
the XY components of the vector n= �nx ,ny ,nz�. One can see
that the interplane interaction is equivalent to an on-site an-

isotropy. The interexchange term gives a constant contribu-
tion, so it can be omitted.

Let us consider the dipolar energy. Using the above men-
tioned assumption about the plane-parallel spin distribution,
the dipolar Hamiltonian can be written as �see Appendix A
for the details�

Hd = −
D

2 �
�,�

�A���S� · S� − 3S�
z S�

z � + B���S�
xS�

x − S�
yS�

y �

+ C���S�
xS�

y + S�
yS�

x �
 . �7�

Here, the sum runs only over the 2D lattice XY. All the
information about the original 3D structure of our system are
in the coefficients A��, B��, and C��,

A�� =
1

2 �
mz,nz

rnm�0

rmn
2 − 3zmn

2

rmn
5 , �8a�

B�� =
3

2 �
mz,nz

rnm�0

xmn
2 − ymn

2

rmn
5 , �8b�

C�� = 3 �
mz,nz

rnm�0

xmnymn

rmn
5 . �8c�

To gain insight into the anisotropic properties of the sys-
tem, we represent the dipolar energy �7� as a sum

Hd = Hd
loc + �Hd,

where

Hd
loc = −

D

2 �
�

�Ā���S��2 − 3�S�
z �2
 + B̄���S�

x�2 − �S�
y�2


+ 2C̄�S�
xS�

y� �9�

is an effective on-site anisotropic energy and

�Hd =
D

4 �
�,�

�A����S� − S��2 − 3�S�
z − S�

z �2
 + B����S�
x − S�

x �2

− �S�
y − S�

y �2
 + 2C���S�
x − S�

x ��S�
y − S�

y �� �10�

is the dispersive part of the dipolar interaction. Here, we
introduce the coefficients of effective anisotropy

Ā� = �
�

A��, B̄� = �
�

B��, C̄� = �
�

C��. �11�

The dipolar energy Hd
loc contains only local interaction; it has

a form of the anisotropy energy with nonhomogeneous Ā�,

B̄�, C̄�. In the next sections, we discuss both the local part
Hd

loc �see Sec. II A� and dispersive one �Hd �see Sec. II B�.
For this end, we need to obtain the continuum limit of our
model.
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A. Continuum description

The continuum description of the system is based on
smoothing the lattice model using the normalized magneti-
zation

m�r� =
g�B

a0
3MS

�
n

Sn	�r − rn� , �12�

where MS is the saturation magnetization. The exchange en-
ergy, the continuum version of Eq. �6�, is

Eex =
1

2
A�h + a0� � dxdy��m�2, �13�

where A=JMS
2a0

5 /D is the exchange constant.
Now let us consider the dipolar energy and use its ap-

proximate Hamiltonian �9�. We need to transform the sum-
mation over the lattice to an integration over the volume.
There is a singularity for rmn→0. Using a regularization
similar to the one in Ref. 23, we find �see Appendix B for
details� that the local part of the dipolar energy is

Ed = �MS
2h� dxdy�A�x,y��1 − 3 cos2 
�x,y�


+ sin2 
�x,y�Re�B�x,y�e2ı���x,y�−�

� , �14�

where we used the angular parametrization for the magneti-
zation: mz=cos 
 and mx+ imy =sin 
eı�. Here and below, we
dropped the loc superscript. One can see that the original
nonlocal dipolar interaction results in an effective local an-
isotropy energy. The coefficients of effective anisotropy A
and B are nonhomogeneous:

A�x,y� = −
2

3
−

a0

12h
�8
+�h� + 3 +

3a0
3

�a0
2 + h2�3/2�

+
1

2�
�

0

2�

d���P2 + h2 − P

h
+

a0

�P2 + h2

+
a0

2

4Ph
+

a0
2P2

4h�P2 + h2�3/2� , �15a�

B�x,y� =
1

2�
�

0

2�

F�P,h�e−2ı�d� , �15b�

F�P,h� =
P − �P2 + h2

h
− 2�1 +

a0

h
�ln

�P2 + h2 − h

P

+
a0

�P2 + h2
+

3a0
2

4Ph
+

a0
2

4h

3P2 + 2h2

�P2 + h2�3/2 , �15c�

where the Heaviside function 
+�x� takes the unit value for
any positive x and zero for x�0. The term P is the distance
from the point �x ,y� to the border of the system; it depends
on the azimuthal angle � and position �x ,y� �see Fig. 1�.

In the limiting case of the pure 2D system �monolayer
with h=0�, the total energy, normalized by the 2D area S,
takes the form

Wh=0 �
Eex + Ed

MS
2Sa0

= Wex
h=0 + Wd

h=0,

Wex
h=0 =

2��2

S � dxdy���
�2 + sin2 
����2
 ,

Wd
h=0 =

�

S � dxdy�Ah=0�x,y��1 − 3 cos2 



+ sin2 
 Re�Bh=0�x,y�e2ı��−��
� ,

Ah=0�x,y� = −
1

2
+

a0

4�
�

0

2� d�

P
,

Bh=0�x,y� =
3a0

4�
�

0

2� e−2ı�d�

P
. �16�

Here, the exchange length � has the standard form5

� =� A

4�Ms
2 = a0� Ja0

3

4�D
. �17�

Note that the dipolar induced magnetic anisotropy was con-
sidered by Lévy24 for a pure 2D spin system from a Taylor
series expansion of the spin field.

The above case �16� has a rather academic interest. Be-
low, in the paper, we consider another limit, when h�a0. In
that case, one can neglect the energy of the monolayer Wh=0.
The total energy, normalized by the volume of the magnet,
takes the form

W �
Eex + Ed

h

MS
2Sh

= Wex + Wd, �18a�

Wex =
2��2

S � dxdy���
�2 + sin2 
����2
 , �18b�

χ

α

Ρ(x,y,α)

x

y

ρ

x'

y'

x

y

FIG. 1. �Color online� Arrangement of coordinates in the local
reference frame.
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Wd =
�

S � d2x�A�x,y��1 − 3 cos2 



+ sin2 
 Re�B�x,y�e2ı��−��
� . �18c�

The effective anisotropy constants can be expressed as fol-
lows:

A�x,y� �
1

2�
�

0

2�

d�
�P2 + h2 − P

h
−

2

3
, �19a�

B�x,y� =
1

2�
�

0

2�

F�P,h�e−2i�d� , �19b�

F�P,h� �
P − �P2 + h2

h
− 2 ln

�P2 + h2 − h

P
. �19c�

Let us discuss the magnetization distribution of the nano-
particle on a large scale. The equilibrium magnetization con-
figuration is mainly determined by the dipolar interaction,
which takes the form of an effective anisotropy �18c�. The
coefficient A determines the uniaxial anisotropy along the z
axis. For a thin nanoparticle, this coefficient is always nega-
tive �with A→−2/3 when h→0�, favoring an easy-plane
magnetization distribution in agreement with the rigorous
calculations.15 The coefficient B is responsible for the in-
plane anisotropy in the XY plane. Assume that all spins lie in
the plane corresponding to the thin limit case. The preferable
magnetization distribution in the XY plane is the function �,
minimizing the expression Re�Be2ı��−��
 in Eq. �18�. This is

� = � +
�

2
−

1

2
arg B . �20�

The angle �20� determines the in-plane effective anisotropy
direction observed on a large scale without exchange inter-
action and effective uniaxial anisotropy. The analysis of the
B term shows that the effective anisotropy favors such an
in-plane spin distribution, always directed tangentially to the
border near the sample edge �see Appendix C for details�.
This statement agrees with results for pure surface
anisotropy.12 Finer details depend on the geometry of the
particle, so we need to distinguish the disk shape from the
square shape.

B. Dispersive part of the dipolar interaction

In the continuum description �12�, the dispersive part of
the dipolar interaction �10� takes the form

�Ed =
MS

2a0
6

4
� dxdy� dxdy��A�r − r����m�r� − m�r��
2

− 3�mz�r� − mz�r��
2� + B�r − r����mx�r� − mx�r��
2

− �my�r� − my�r��
2� + 2C�r − r���mx�r� − mx�r��


��my�r� − my�r��
� .

By applying the Fourier-transform

m�r� =
1

�2��2 � d2qm̂�q�eıq·r �21�

and neglecting finite-size effects, the normalized dispersive
part of the dipole-dipole interaction �Wd=�Ed /MS

2Sh can be
represented in the form

�Wd =
1

2�S � d2qG�q��− �m̂q
z �2 +

�q · m̂q�2

q2 � . �22�

Here, q= �qx ,qy� is the two-dimensional wave vector, m̂�q� is
the Fourier component of the two-dimensional magnetization
m�r�, and the function G�q� is defined by the expression

G�q� =
qh − 1 + e−qh

qh
. �23�

Note that Eq. �22� is obtained under the assumption that the
orthonormalization relation

1

�2��2 � d2xeı�q−q��·r = 	�q − q��

takes place. Being exact for the infinite domain, this relation
is only approximate for the finite-size system. For qh→0,
the function �23� takes the form G�q��qh /2. For homoge-
neous states, we get vanishing dispersive dipolar energy. For
weakly inhomogeneous states, we expect that our effective
anisotropy approach yields a good approximation, which will
be verified in Sec. III for disk-shaped nanoparticles.

III. DISK-SHAPED NANOPARTICLE

Let us consider a cylindrical nanoparticle of top surface
radius R and thickness h. We introduce here the aspect ratio
� and the relative distance � as follows:

� =
h

2R
, � =

r

R
. �24�

Let us calculate first the effective anisotropy coefficients A
and B. For the circular system, the coefficients A and B
depend only on �. We calculated analytically the coefficients
A and B �see Appendix B�, and these are presented in Fig. 2
and Eqs. �B8� and �B10�. First, note that when ��1, both
anisotropy constants asymptotically do not depend on �:
A���→1/3 and B���→0 �see Fig. 2�. The coefficient of ef-
fective uniaxial anisotropy A��� slowly depends on �,
namely, A�0�= ���1+4�2−1� /2�
− �2/3� and A�1�=1/3.
When the particle aspect ratio ��1, then A����0 �see Fig.
2�a�
 and we have an effective easy-plane anisotropy. When
��1, then A����0 and we have an effective easy-axis an-
isotropy. More details are given in Sec. III A.

In addition to the effective uniaxial anisotropy given by
A���, we have the essential B��� term, which gives an effec-
tive in-plane anisotropy. For the disk-shaped particle, this
anisotropy coefficient is always real, arg B=0. The value of
B is almost 0 at the origin, but its contribution becomes
important at the boundary �see Fig. 2�. We obtain the follow-
ing asymptotics, valid for small � and 0.75���1:
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B��� �
arctan� �

1 − �
�

��2 −
��3� − 4�

3�
ln� 64

�2 + �1 − ��2�
+

1 − �

2��
ln� �1 − ��2

�2 + �1 − ��2� �25�

�see Appendix B�. Thus, the B��� term causes boundary ef-
fects and is responsible for the configurational anisotropy. In
the limit �→0 �more precisely, when a0�h�R�, the B���
term is concentrated near the boundary, corresponding to the
surface anisotropy.

The energy of the nanodisk can be derived from Eqs.
�18a�–�18c�:

W = Wex + Wd,

Wex = 2� �

R
�2�

0

R

rdr�
0

2�

d����
�2 + sin2 
����2
 ,

Wd = �
0

2�

d��
0

1

�d��A����1 − 3 cos2 
�

+ B���sin2 
 cos 2�� − ��
 . �26�

In the next sections, we analyze the homogeneous state and
the vortex state.

A. Homogeneous state

Let us consider a homogeneous magnetization along the x
direction of the disk-shaped nanodot, so that 
=� /2 and �
=0. The exchange energy vanishes. The second term in the
dipolar energy �26� also vanishes because of averaging on �.
The total energy Wx is then

Wx = 2��
0

1

A����d� = WMS
x ��� −

2�

3
,

WMS
x ��� =

4

3�
�− 1 + �1 + �2��2K�m� + �1 − �2�E�m�
� ,

�27�

where m= �1+�2�−1 and K�m� and E�m� are the complete
elliptic integrals of the first and the second kind,
respectively.25 The constant term −2� /3 is the isotropic con-
tribution. The second term WMS

x is the well-known magneto-
static energy of the homogeneously magnetized disk, first
calculated by Joseph.26

If the disk is now homogeneously magnetized along the z
axis, then 
=0. From Eq. �26�, one sees that the correspond-
ing total energy Wz=−2Wx. The transition between these two
homogeneous ground states occurs when Wx=Wz. This hap-
pens only for Wx=0, i.e., for WMS

x ��c�=2� /3. This gives a
critical value �c�0.906, which agrees with the result by
Aharoni:27 the homogeneous easy-plane state with 
=� /2 is
realized when ���c, and the homogeneous easy-axis state
with 
=0 exists when ���c.

B. Vortex state

Let us consider a nonhomogeneous state of the disk-
shaped particle. In this state, the system has a larger ex-
change energy compared to the homogeneous state. This
should be compensated by the dipolar term. According to Eq.
�20�, the dipolar interaction always favors a spin distribution
of the form

� = � ±
�

2
, �28�

where we take into account that the in-plane anisotropy con-
stant B takes real values only. Such a configuration is called
a vortex. In highly anisotropic magnets, there can exist pure
planar vortices with 
=� /2.28 However, we consider here
out-of-plane vortices, realized in “soft” materials typical of
nanodisks. The out-of-plane component of the magnetization
has a radial symmetric shape, and it almost does not depend
on z for thin disks, 
=
�r�. Now we can calculate the vortex
energy. The vortex solution �28� is characterized by
cos 2��−��=−1, providing the minimum of the in-plane
component of the dipolar energy:

Wd
vortex = Wx − 2��

0

1

�d��3A���cos2 
 + B���sin2 

 .

�29�

The exchange energy term

-0.6
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(b)

FIG. 2. �Color online� Spacial dependence of the effective an-
isotropy constants A �see Eq. �B8�
 and B �see Eq. �B10�
. �a� The
anisotropy constant A��� vs �. �b� The product � ·B��� vs �.
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Wex
vortex = 4�� �

R
�2�

0

R

rdr�
�2 +
sin2 


r2 � . �30�

Finally, the vortex energy is

Wvortex = Wx + WEP
vortex − F��� ,

WEP
vortex = 4�� �

R
�2�

0

R

rdr�
�2 +
sin2 


r2 +
cos2 


�2 � ,

F��� = 2��
0

1

�d���3A��� + 2
cos2 
�R�� + B���sin2 
�R��� .

�31�

Here, WEP
vortex coincides with the energy of the vortex in an

easy-plane magnet,29

WEP
vortex = 2�� �

R
�2

ln���R2

�2 �, � = 5.27, �32�

and F��� is the configurational anisotropy term. The vortex
state is energetically preferable to the homogeneous state
when the configurational anisotropy term exceeds the energy
of the easy-plane vortex, F����WEP

vortex. This relation allows
us to calculate the critical radius Rc by solving the equation

2�� �

R
�2

ln���R2

�2 � = F��� . �33�

To calculate the integral in F���, we use the trial function for
the vortex structure

mz � cos 
 = exp�− r2/rv
2� . �34�

The core width depends on the disk thickness30

rv�h� � ��2�3 1 + ch/�, c � 0.39. �35�

The relation �33� providing the border between the easy-
plane and out-of-plane vortex states can be analyzed in the
limit �→0. Then F���	�2�� /3�ln�� /2��, hence R�c�

���3/�. This is in qualitative agreement with previous
results.11,31

Let us estimate now the contribution of the dispersive part
of the dipolar energy. Taking into account that for the curling
state �20� the second term in Eq. �22� vanishes: q ·m̂q

�� ·m̂=0 and that the Fourier component of the out-of-

plane component �34� has the form m̂z=�rv
2e−q2rv

2
, from Eq.

�22� we get

�Wd ��
��

8
�

rv

R
for rv � h

1

2

rv
2

R2 for rv � h .� �36�

Comparing Eq. �36� with Eqs. �31� and �32�, and taking into
account Eq. �35�, one can conclude that in the limit �→0,
the dispersive part of the dipolar interaction does not change
significantly the vortex stability criterion. More precisely,
our effective anisotropy approximation works correctly not

only for �→0, but also for R�h and R��. Our numerical
results show that it gives the vortex state as an energy mini-
mum for disk diameters 2R�30�.

IV. NUMERICAL SIMULATIONS

To check our effective anisotropy approximation, we per-
formed numerical simulations. We used the publicly avail-
able three-dimensional OOMMF micromagnetic simulator
code.32 In all micromagnetic simulations, we used the fol-
lowing material parameters for Py: A=2.6�10−6 erg/cm
�using SI units ASI=2.6�10−11 J /m�, Ms=8.6�102 G
�Ms

SI=8.6�105 A/m�, the damping coefficient �=0.006,
and the anisotropy has been neglected. This corresponds to
an exchange length �=�A /4�Ms

2�5.3 nm ��SI=�A /�0Ms
2�.

The mesh cells were cubic �2 nm�.
We also test our effective anisotropy approach by the

original discrete spin-lattice simulator. The spin dynamics is
described by the discrete version of the Landau-Lifshitz
equations with Gilbert damping

dSn

dt
= − �Sn �

�H
�Sn

� −
�

S
�Sn �

dSn

dt
� , �37�

which we consider on a 2D square lattice of size �2R�2. We
have assumed a plane-parallel spin distribution homoge-
neous along the z direction. Each lattice is bounded by a
circle of radius R on which the spins are free, corresponding
to a Neuman boundary condition in the continuum limit. We
integrate the discrete Landau-Lifshitz equations �37� with the
Hamiltonian H=Hex+Hd given by Eqs. �5� and �7�, using a
fourth-order Runge-Kutta scheme with time step 0.01/Nz.
These spin-lattice simulations were done to validate our ana-
lytical calculations for the effective anisotropy model.
Throughout this work, we compared the results of the spin-
lattice simulations with H=Hex+Hd with the results of mi-
cromagnetic simulations. We never found any noticeable dif-
ference. We present the results for a disk-shaped and a prism-
shaped nanoparticle because these two geometries are the
most common ones in experiments.

A. Disk-shape nanoparticle

Our effective anisotropy approximation provides the exact
solution for all homogeneous states for a nanodisk. There-
fore, we do not need to justify it for the homogeneous states.
We consider here the vortex state. As we have analyzed be-
fore, the model can provide the preferable vortex state for
disk diameters 2R�30�, which is in agreement with the
model usage criterium �4�. We compare the magnetization
distribution in the vortex for our effective anisotropy model
and for the micromagnetic simulations. Since the in-plane
vortex structure is characterized by the same distribution �
=�±� /2 for both methods, we are interested in the out-of-
plane vortex profiles. We performed such a comparison for a
disk of size 2R /�=40 and h /�=3, which satisfies the crite-
rium �4�. The results are presented in Fig. 3. One can see that
the vortex shape from the effective anisotropy model agrees
with the one obtained from the micromagnetic simulations
within 0.11 in absolute error.
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B. Prism-shaped nanoparticle

Now we check the validity of the effective anisotropy
approximation for the prism-shaped nanoparticle. We chose
this shape because there are numerous experiments with a
square geometry �for a review, see Ref. 1�. We performed
two types of simulations for a square-shaped nanoparticle
�see Figs. 4�a� and 4�b�
. The two equilibrium magnetization
distributions, obtained for the micromagnetic model and the
spin-lattice simulation, agree with a very high precision.

As discussed above, the large scale distribution of the
magnetization is described by Eq. �20�. Calculating numeri-
cally the coefficient B �see Appendix C for details�, we found
the distribution of the configurational anisotropy lines for the
square geometry. This is shown in Fig. 4�c�. The comparison
of Figs. 4�a�–4�c� shows that the effective anisotropy lines
correspond to the magnetization direction in the main part of
the system. Note that the effective anisotropy approach fails
near the corners: the sharp field distribution near the prism
vertices �Fig. 4�c�
 is not energetically preferable when the
exchange contribution is taken into account.

We can also check the validity of the effective anisotropy
approach for the complicated “vortex” structure in the square
geometry by comparing the distribution of the in-plane spin
angle � to the one given by the micromagnetic simulations.
This is done in Fig. 5. The figure shows that the two different
approaches agree very well. The ���� dependencies coincide
within 0.11 in absolute error for r=10� and within 0.04 for
r=20�.

V. DISCUSSION

To summarize, assuming that magnetization is indepen-
dent of the thickness variable z, we have reduced the mag-
netic energy of a thin nanodot to a local 2D inhomogeneous
anisotropy. The first term A determines the uniaxial aniso-
tropy along the z axis. The second term B gives the aniso-
tropy in the XY plane.
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FIG. 3. �Color online� Comparison of the vortex profiles for the
micromagnetic simulation and the effective anisotropy approxima-
tion for a Py nanodisk �2R=212 nm and h=16 nm�. The red curve
corresponds to the spin-lattice simulations for the effective aniso-
tropy model with H=Hex+Hd

loc. The blue curve corresponds to the
micromagnetic simulations. The black dashed curve to the Gaussian
ansatz cos 
=exp�−r2 /rv
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FIG. 4. �Color online� Numerical results for the vortex state Py
prism �sides 212�212 nm2 and thickness h=16 nm�. �a� and �b�
represent the spin-field distribution ��a� spin-lattice simulations for
the effective anisotropy model Hamiltonian �9� and �b� micromag-
netic OOMMF simulation data
, and �c� the configurational aniso-
tropy lines. These lines determine the in-plane anisotropy axis ori-
entation, calculated from Eq. �20�; the length of the lines
corresponds to the anisotropy amplitude in a particular point.
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For thin nanoparticles ��1, the term A�const�0 gives
an effective easy-plane anisotropy. This generalizes the rig-
orous results obtained for infinitesimally thin films.15 The
function B�x ,y� is localized near the edge of the particle so
that spins will be tangent to the boundary. This confirms the
notion of a surface edge anisotropy.12,13

When the nanoparticle is thick ��1, the anisotropy con-
stant A�0 is again almost constant and the spins will tend
to follow the z axis �easy-axis anisotropy�. The in-plane an-
isotropy B depends on the thickness �see Fig. 2�a�
. The spe-
cial distribution of B�x ,y� is responsible for the volume con-
tribution of the dipolar energy.

The above effective anisotropy approach �i� shows the
nature of the effective easy-plane anisotropy and the surface
anisotropy, �ii� generalizes the surface anisotropy for finite
thickness, and �iii� gives a unified approach to study dipolar
effects in pure 2D systems and 3D magnets of finite thick-
ness.

It is instructive to make a link between our approach and
the rigorous results obtained in Refs. 15–21. Our Eqs. �31�
and �33� show that for the vortex ground state to exist, it is
crucial to have both types of anisotropy: out-of-plane aniso-
tropy and in-plane one. It is shown by Kohn and Slastikov19

that the energy of a thin magnetic film with an accuracy up to
�2 can be presented as the sum

E = Eexch + Ebdry + Etrans

= �2��
�

��m�2 +
�2�ln ��

2�
�

��

�m · n�2 + ��
�

�mz�2.

�38�

Considering the limit �→0 and �2 / ���ln ���=const, we see
from Eq. �38� that formally the last term is dominating and
its contribution has to be accounted as a constraint mz=0 �see
Ref. 19�. This constraint prevents the existence of the vortex
ground state of the nanodot because the energy of the vortex
in the continuum limit is infinite due to divergence at r→0.
However, this divergence is removed by the out-of-plane
component of the vortex, which is described by a localized
function with radius of localization rv	� �see Eq. �35�
.
This means that the last term Etrans in Eq. �38� scales like the
exchange term Eexch. In this limit, all three terms Eq. �38� are
of the same order and provide the existence of the vortex
ground state.

This reduction of the nonlocal dipolar interaction to a lo-
cal form is a first step toward an analytical study of nano-
magnetism. We developed a method of effective anisotropy
and illustrated it on a few examples. We plan to apply this
method to the dynamics of vortices in nanomagnets.
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APPENDIX A: DISCRETE DIPOLAR ENERGY
CALCULATIONS

Let us consider the dipolar interaction term Hd. Using the
notations

xnm

a0
= nx − mx,

ynm

a0
= ny − my,

znm

a0
= nz − mz,

��� = �xnm
2 + ynm

2 , rnm = ����
2 + znm

2 . �A1�

one can rewrite this energy as follows:

0
Π
�����
2

Π 3 Π
����������
2

2 Π

Χ

Π
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2

Π

3 Π
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2

2 Π
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Φ
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FIG. 5. �Color online� The in-plane spin angle � as a function of
the polar angle for the vortex state in a prism of Py of sides 212
�212 nm2 and thickness h=16 nm. The red dashed curves corre-
spond to the effective anisotropy approximation; the blue solid
curves to the micromagnetic simulation data. �a� Distance from the
vortex center r=10�. �b� Distance from the vortex center r=20�.
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Hd =
D

2 �
n,m

rnm�0

� �Sn · Sm�
rnm

3 −
3Sn

z Sm
z znm

2

rnm
5 −

6

rnm
5 Sn

z znm�Sm
x xnm

+ Sm
y ynm� −

3

rnm
5 �Sn

xxnm + Sn
yynm��Sm

x xnm + Sm
y ynm��

= D �
�,�

����0

�S�
z S�

z Kz����� + �S�
xS�

x + S�
yS�

y �K1�����

− �S�
xx�� + S�

yy����S�
x x�� + S�

y y���K2������ . �A2�

Here, we used the obvious relations xnm=x�� and ynm=y��,
and the basic assumption that the magnetization does not
depend on the z coordinate: Sn=S� and Sm=S�. This allows
us to reduce the summation to the 2D lattice. The kernels K1,
K2, and Kz contain information about the original 3D struc-
ture of our system,

K1�s� =
1

2 �
nz,mz

1

�s2 + znm
2 �3/2 ,

K2�s� =
3

2 �
nz,mz

1

�s2 + znm
2 �5/2 ,

Kz�s� =
1

2 �
nz,mz

s2 − 2znm
2

�s2 + znm
2 �5/2 . �A3�

Taking into account that

S�
xS�

x x��
2 + S�

yS�
y y��

2 = 1
2���

2 �S�
xS�

x + S�
yS�

y �

+ 1
2 �x��

2 − y��
2 ��S�

xS�
x − S�

yS�
y � ,

one can present the dipolar energy in a more symmetrical
way:

Hd = −
D

2 �
�,�

����0

�Kz������S� · S� − 3S�
z S�

z �

+ K2������x��
2 − y��

2 ��S�
xS�

x − S�
yS�

y �

+ 2K2�����x��y���S�
xS�

y + S�
yS�

x �� . �A4�

The total Hamiltonian is the sum of two terms �5� and �A4�.
Here, we show that the main effect of the nonlocal dipolar

interaction is an effective nonhomogeneous anisotropy. Us-
ing equality

�
n,m

CmnSnSm = �
n

CnSn
2 −

1

2 �
n,m

Cnm�Sn − Sm�2, Cn = �
m

Cnm,

where Cnm=Cmn, one can split the dipolar Hamiltonian �A4�
into a local contribution and a nonlocal correction

Hd = Hd
loc + �Hd �A5�

Hd
loc = −

D

2 �
�

�Ā���S��2 − 3�S�
z �2


+ B̄���S�
x�2 − �S�

y�2
 + 2C̄�S�
xS�

y� , �A6�

�Hd =
D

4 �
�,�

����0

�Kz�������S� − S��2 − 3�S�
z − S�

z �2


+ K2������x��
2 − y��

2 ���S�
x − S�

x �2 − �S�
y − S�

y �2


+ 4K2�����x��y����S�
x − S�

x ��S�
y − S�

y �
� . �A7�

APPENDIX B: CONTINUUM LIMIT OF THE LOCAL
DIPOLAR ENERGY

Here, we present the continuum limit of the discrete di-
polar Hamiltonian �A6� corresponding to the dipolar energy

Ed
loc = −

a0
6MS

2

2 �
�

�Ā��1 − 3�m�
z �2
 + B̄���m�

x�2 − �m�
y�2


+ 2C̄�m�
xm�

y� , �B1�

where m�=
g�B

a0
3Ms

S�. Hence, the continuous magnetization vec-
tor m according to Eq. �12� takes the form m�r�=��m�	�r
−r��. Here, Ā�, B̄�, and C̄� are determined as follows:

Ā� = �
�

rnm�0

Kz����� =
1

2 �
�

rnm�0

�
nz,mz

���
2 − 2znm

2

����
2 + znm

2 �5/2 , �B2a�

B̄� = �
�

rnm�0

K2������x��
2 − y��

2 � =
3

2 �
�

rnm�0

�
nz,mz

x��
2 − y��

2

����
2 + znm

2 �5/2 ,

�B2b�

C̄� = �
�

rnm�0

K2�����2x��y�� =
3

2 �
�

rnm�0

�
nz,mz

2x��y��

����
2 + znm

2 �5/2 .

�B2c�

The continuum version of the effective anisotropy constants
�B2� can be found using a relation

�
nz=0

Nz

�
mz=0

Nz

F��znm��

�
1

a0
2�

0

h

dz�
0

h

dz�F��z − z��� +
1

a0
�

0

h

dz�F��z��

+ F��h − z��
 +
1

2
�F�0� + F��h��


=
2

a0
2�

0

h

dzF��z���h − z + a0
 +
1

2
�F�0� + F��h��
,

h = Nza0 � 0. �B3�

Let us start with the calculation of the coefficient Ā� from
Eq. �B2a�:
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A�x,y� � −
a0

4

2�h
Ā� =

1

h
�A1 + A2 + A3� ,

A1 =

+�h�

2�
lim

r�→0
�

�r−r���r�
dx�dy�

��
0

h

dz
�2z2 − �2��h − z + a0�

��2 + z2�5/2 ,

A2 = −
a0

4

8�
�
�

rnm�0

1

���
3 �

a0
2

8�
�

0

2� d�

P
−

a0

4
,

A3 =
a0

2

8�
� dx�dy�

2h2 − �2

��2 + h2�5/2

�
a0

2

8�
�

0

2� P2d�

�P2 + h2�3/2 −
a0

4

4�a0
2 + h2�3/2 . �B4�

Here, �=��x−x��2+ �y−y��2 and we used a local reference
frame

x� = x + � cos�� + ��, y� = y + � sin�� + �� , �B5�

which is centered at �x ,y�. The Heaviside function 
+�x�
takes the unit value for any positive x, and zero for x�0; it
is added here to fulfill the condition A1�0 in the 2D case
when h=0. There is a singularity in A1 due to the noninte-
grability of the kernel Kz at rnm=0. To regularize it, we use a
method similar to the one in Ref. 23. Specifically, we present

A1 in the form A1=A1
˜ −A0. The coefficient A1

˜ is a regular
one:

A1
˜ =


+�h�
2�

� dx�dy��
0

h

dz
�2z2 − �2��h − z + a0�

��2 + z2�5/2

= − h − a0
+�h� +
1

2�
�

0

2�

d���P2 + h2

− P +
a0h

�P2 + h2� .

The singularity is inside the A0 term:

A0 =

+�h�

2�
lim

r�→0
��r−r���r�

z=0,z��0

d2x�dz�
�2z�2 − �2��h − z� + a0�

��2 + z�2�5/2 =

+�h�

2�
��h + a0�I1 − I2
 ,

I1 = lim
r�→0

��r−r���r�

z=0,z��0

d2x�dz�
2z�2 − �2

��2 + z�2�5/2 = lim
r�→0

��r−r���r�

z=0,z��0

d2x�dz�
�2

�z�2

1

�r − r��

=
1

3
lim

r�→0
��r−r���r�

z=0,z��0

d3x��
1

�r − r��
= −

4�

3
lim

r�→0
��r−r���r�

z=0,z��0

d3x�	�r − r�� = −
2�

3
,

I2 = lim
r�→0

��r−r���r�

z=0,z��0

d2x�dz�
z��2z�2 − �2�
��2 + z�2�5/2 =

4�

3
lim

r�→0
��r−r���r�

z=0,z��0

d3x�z�	�r − r�� = 0. �B6�

Finally, A0=−�h+a0
+�h�
 /3 and the coefficient of effective anisotropy A�x ,y� takes the form �15a�.
The coefficients B̄� and C̄� can be calculated in the same way, starting from Eq. �B2b�:

B�x,y� � −
a0

4e2ı�

2�h
�B̄� − ıC̄�
 = −

3a0
4

4�h
�
�

rnm�0

���
2 e−2ı��� �

nz,mz

1

����
2 + znm

2 �5/2 =
1

h
�B1 + B2 + B3� ,

B1 = −
3

2�
� dx�dy��2e−2ı��

0

h

dz
h − z + a0

��2 + z2�5/2 =
1

2�
�

0

2�

d�e−2ı��P − �P2 + h2 +
a0h

�P2 + h2
− 2�h + a0�ln

�P2 + h2 − h

P
� ,

B2 = −
3a0

4

8�
�
�

rnm�0

e−2ı�

���
3 �

3a0
2

8�
�

0

2� e−2ı�d�

P
, B3 = −

3a0
2

8�
� dx�dy�

�2e−2ı�

��2 + h2�5/2 =
a0

2

8�
�

0

2�

d�e−2ı� 3P2 + 2h2

�P2 + h2�3/2 . �B7�

Finally, the coefficient of effective anisotropy B�x ,y� takes the form �15b�. As a result, the dipolar energy �B1� can be
expressed as Eq. �14�.

Note that for the circular system, one can obtain exact expressions for the coefficients A and B. Let us first find the
coefficient A. Assuming that h�a0 �or, equivalently, a0→0�, one can rewrite the coefficient A �see Eq. �B4�
 as follows:
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A��� =
1

3
+

1

4��
�IA�2�� − IA�0�
, IA�x� = �

0

2�

d��
0

1 ��d��
��2 + ��2 + x2 − 2��� cos �

,

IA�x� =
2

�x2 + �� + 1�2
��x2 + �� + 1�2
E��� + �1 − x2 − �2
K��� + F+�x� + F−�x�� − 2�x ,

F±�x� = x2
�x2 + �2 � 1
�x2 + �2 ± �

���±���, � =
4�

x2 + �1 + ��2 , �± =
2�

� ± �x2 + �2
, �B8�

where ���± ��� is the complete elliptic integral of the third kind.25

To calculate the in-plane anisotropy coefficient B �see Eq. �B7�
, it is convenient to use the following relations:

Re�Be−2ı�
 = −
a0

4

2�h
B̄� = −

1

2�h
�

0

h

dz�h − z�Iz�x� ,

Iz�x� = 3� dx�dy�
�x − x��2 − �y − y��2

��2 + z2�5/2 =� dx�dy�� �2

�y�y�
−

�2

�x�x�
� 1
��2 + z2

� �
�

��� � F
 · d� = �
��

F · dl�,

F = ez � �
1

��x − x��2 + �y − y��2 + z2
. �B9�

For a circular system dl�=Rd���−ex sin ��+ey cos ���, hence

Iz�x� = R�
0

2�

d��� �

�y
sin �� −

�

�x
cos ��� 1

�r2 + R2 − 2rR cos�� − ��� + z2
= rR cos�2��

�

�r�1

r
�

0

2� cos �d�

�r2 + R2 − 2rR cos � + z2� .

Taking into account that Im B=0 for the circular system, one can calculate finally the effective in-plane anisotropy coefficient
B as follows:

B��� =
1

2��
�IB�2�� − IB�0�
, IB�x� = c1K��� + c2E��� + c3��
 4�

�1 + ��2
�� ,

c1 =
2 − 2x2 − �2 − �x2 + �2�2

3�2�x2 + �1 + ��2
, c2 =

�x2 + �2 − 2��x2 + �1 + ��2

3�2 , c3 =
x2�1 − ��

�2�1 + ���x2 + �� + 1�2
. �B10�

The dipolar energy Wd �see Eq. �26�
 for the disk-shaped

system can be presented in the form Wd=Wd
0+Wd

˜ , where

Wd
˜ =

1

R2 � d2x�Ã�r� + B�r�cos 2�� − ��
sin2 


�B11�

and Wd
0=−2R−2�d2xA�r� being the isotropic part; the effec-

tive easy-plane anisotropy parameter Ã=3A.

APPENDIX C: CONFIGURATIONAL ANISOTROPY FOR A
HALF-PLANE AND A SQUARE PRISM

We start here with the problem for a half-plane. Consider
the large scale behavior of the dipolar energy given by the
in-plane effective anisotropy B�x ,y� �see Eq. �19�
. Straight-
forward calculations lead to the effective anisotropy constant
for the upper half-plane

B�x,y� � B�y0� =
1

2�
�

−�

�

dxy0�y0
2 − x2�

F�P,h�
P4

=
y0

2�h
ln

y0
2

y0
2 + h2 +

1

�
arctan

h

y0
, �C1�

where we choose the origin of the local reference frame at
the boundary of the domain, at �x ,y�= �0,0�, y0 denotes the
distance from the boundary, and P=�x2+y0

2. One can see
that B does not depend on x, it takes only positive real val-
ues; hence, arg B=0 for any distances y0 from the boundary.
This means that the in-plane spin angle � is always parallel
to the half-plane edge. Using Eqs. �19b�, �19c�, and �C1�, we
found that the main contribution to Eq. �C1� is provided by
the boundary domain x� �−R0 ;R0
 with R0	�y0h. Since
this domain collapses to a point when y0→0, we conclude
that for any geometry, the in-plane spin distribution is paral-
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lel to the boundary near the edge. If the curvature radius of
the sample boundary is larger than R0, then spins are parallel
to the boundary over a distance smaller than R0

2 /h. One
should remember that this conclusion is adequate for regions
where exchange interaction has no principal influence.

Let us consider now the configurational anisotropy for the
square prism, which has the diagonal 2R �see Fig. 6�. It is
convenient to use the local reference frame in the same way

as in Sec. II A. The relative polar coordinates are defined as
follows:

Rn = R�1 + �2 − 2� cos�n�/2 − �� ,

�n = arccos
Rn

2 + Rn+1
2 − 2R2

2RnRn+1
,

Pn =
RnRn+1

R�2

sin �n

cos�� + � − �2n + 1��/4

, �C2�

where �=�x2+y2 /R. Now we are able to compute the mag-
netization distribution on a large scale, which follows from
the minimization condition �20�. Straightforward calcula-
tions give

� = � +
�

2
−

1

2
arg B , �C3�

B =
1

2�
��

 0−�0

 0

e−2ı�F�P0,h�d�

+ �
j=1

3 �
 j−1

 j

e−2ı�F�Pj,h�d�� , �C4�

 j =  0 + �
i=1

j

�i, �C5�

 0 =
3�

4
− � − arcsin�R0 sin �0

R�2
� , �C6�

where F�Pi ,h� is defined by Eq. �19c�.
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