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Using a Ginzburg-Landau model, we study the phase transition behavior of compressible Ising systems at
constant volume by varying the temperature T and the applied magnetic field h. We show that two phases can
coexist macroscopically in equilibrium within a closed region in the T-h plane. Its occurrence is favored near
tricriticality. We find a field-induced critical point, where the correlation length diverges, the difference of the
coexisting two phases and the surface tension vanish, but the isothermal magnetic susceptibility does not
diverge in the mean field theory. We also investigate phase ordering numerically.
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I. INTRODUCTION

Solids are under the influence of elastic constraints and
their phase transitions are often decisively influenced by cou-
plings of the order parameter and the elastic field.1 Such
elastic effects strongly depend on the nature of the coupling
and their understanding is crucial in technology. In the
present work, we will focus on the phase transition behavior
of compressible ferromagnets or antiferromagnets, which has
long been studied theoretically in the physics community.2–12

In real materials, the short-range spin interactions depend on
the distances among the spins, so the spin fluctuations are
coupled to the elastic dilation strain. In the literature on this
problem, the main issue has been the effect of the elastic
coupling on the critical behavior of the spin system. A re-
markable but subtle result of the renormalization group
calculations8,9 is that the cubic elastic anisotropy becomes
increasingly important on approaching the critical point
�which is determined in the absence of the anisotropy�. This
renormalization effect should trigger a first-order phase tran-
sition sufficiently close to the critical point. Simulations have
been performed on compressible Ising systems and a number
of numerical results still remain not well understood.10–12

These theories and simulations show that the phase transition
depends on whether the pressure or the volume is fixed.

In this paper, we will present a mean field theory of com-
pressible Ising systems at constant volume using a Ginzburg-
Landau free energy. Our main objectives are to demonstrate
the presence of unique two-phase coexistence near the tric-
ritical point and to examine phase ordering after changing
the temperature. Though our theory is a rough approxima-
tion, it will provide overall phase behavior for general values
of the parameters.

The organization of this paper is as follows. In Sec. II, we
will present a model, in which the order parameter and the
elastic field are coupled, and eliminate the elastic degrees of
freedom assuming the mechanical equilibrium condition. In
Sec. III, we will examine the phase behavior in the plane of
the temperature T and the ordering field h. Detailed calcula-
tions will also be given on the susceptibility, the correlation
length, and the surface tension. The presence of a unique
field-induced critical point will also be reported. In Sec. IV,
we will numerically integrate the time-dependent Ginzburg-
Landau equation in two dimensions �2D�. In the Appendix,

we will derive the free energy at constant pressure �or ap-
plied stress�, where two-phase coexistence can be realized
only on lines in the T-h plane.

II. THEORETICAL BACKGROUND

A. Ginzburg-Landau free energy

We assume that a single-component order parameter � is
coupled to the elastic displacement u. We set up the
Ginzburg-Landau free energy functional F=F�� ,u� in the
form13

F =� dr� f0 +
C

2
����2 + ��2e1 + fel� , �2.1�

where the space integral is within the system with volume V.
The first part f0= f0��� depends on � as

f0 =
�

2
�2 +

ū

4
�4 +

v
6

�6 − h� . �2.2�

The coefficient � depends on the temperature T as

� = A0�T − T0� , �2.3�

where A0 is a positive constant and T0 is the critical tempera-
ture in the absence of the elastic coupling. The other coeffi-
cients are treated to be independent of T. We fix the other
field variables such as the hydrostatic pressure. The coeffi-
cients v and C are positive, while ū can be either positive or
negative. The h represents a magnetic or electric field conju-
gate to �. For antiferromagnetic materials, no uniform field
conjugate to the antiferromagnetic order can be realized, so
h=0. We may assume h�0 without loss of generality. If h
=0, F is invariant with respect to �→−�. The � represents
the strength of the coupling between �2 and the dilation
strain,

e1 = � · u . �2.4�

This coupling arises when the interaction among the fluctua-
tions of � depends on the local lattice expansion or contrac-
tion.

In cubic crystals, the elastic energy density is of the form
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fel =
C11

2 	
i

�ii
2 + 	

i�j
�C12

2
�ii� j j + C44�ij

2� , �2.5�

where C11, C12, and C44 are the usual elastic moduli assumed
to be constant and �ij = ��iuj +� jui� /2 is the symmetrized
strain tensor. The dependence of the elastic moduli on �2 can
be important at low temperatures, however. Hereafter, �i
=� /�xi. The elastic stress tensor �ij is expressed as

�ii = �C11 − C12��ii + C12e1 + ��2,

�ij = 2C44�ij �i � j� . �2.6�

Nonvanishing �2 gives rise to a change in the diagonal stress
components. We then obtain 	 j� j�ij =−�F /�ui, where � is
fixed in the functional derivative of F with respect to ui. Note
that a constant hydrostatic pressure p0 can be present in the
reference state, where the total stress tensor is p0�ij −�ij.

B. Elimination of elastic field at fixed volume

The elastic field u is determined by � under the mechani-
cal equilibrium condition

	
j

� j�ij = 0. �2.7�

Furthermore, in this paper, we impose the periodic boundary
condition on �u in the region 0�x ,y ,z�V1/d. Here V is the
system volume. This can be justified when the solid bound-
ary is mechanically clamped. See the Appendix for the case
of fixed applied pressure. The space averages of the strains
then vanish; for example, 
e1�=0. Hereafter, 
¯�
=�dr�¯� /V. The following procedure of eliminating the
elastic field has been derived by many authors in the litera-
ture in physics and engineering.1,2,4,5,11,14

It is convenient to use the Fourier transformation uj�r�
=	kujk exp�ik ·r�, where k is the wave vector. Then, the Fou-
rier component of e1 is expressed as

e1k = − �	k/C12 + C44 + C44
�k̂�� , �2.8�

where 	k is the Fourier component of the variable

	�r� = �2 − 
�2� . �2.9�

The space average of 	 is made to vanish. The 
�k̂� is a

function of the direction of the wave vector k̂=k−1k and is
defined by


�k̂�−1 = 	
j

k̂ j
2/�1 + �ak̂j

2� , �2.10�

where �a is the degree of cubic anisotropy,

�a = �C11 − C12�/C44 − 2. �2.11�

We have 
�k̂�=1 in the isotropic elasticity �a=0. After some
calculations, we may eliminate u in F to obtain the free
energy F=F��� of � only in the form1

F =� dr� f0 +
C

2
����2� −

1

2V
	

k
w�k̂��	k�2. �2.12�

The second term on the right hand side arises from the elastic
coupling and is negative, where

w�k̂� = �2/C12 + C44 + C44
�k̂�� . �2.13�

The functional derivative of F is performed to give

�F

��
= f0� − C�2� + 2�e1� , �2.14�

where f0�=�f0 /�� and the Fourier transformation of e1 is in
Eq. �2.8�. In equilibrium, we require �F /��=0.

We further simplify our free energy. In the isotropic elas-

ticity, w�k̂� is a constant independent of k̂ and e1=−�	 /C11.
Then, F is rewritten as

F =� dr� f0 +
C

2
����2 −

�

4
��2 − 
�2��2� , �2.15�

where 	 is explicitly written in terms of � and � is a positive
constant defined by

� = 2�2/C11. �2.16�

The presence of the space average 
�2� in F in Eq. �2.15� is
a unique aspect arising from elasticity.

In cubic solids with �a�0, w�k̂� is maximized along one
of the principal crystal axes say, along the 100� direction in

three dimensions �3D��.1 If �a0, it is maximized for k̂j
2

=1/d for all j �say, along 111� in 3D�. Let wM be the maxi-

mum of w�k̂� attained along these soft directions; then,

wM = �2/C11 ��a � 0�

= �2/K + �2 − 2/d�C44� ��a  0� , �2.17�

where K=C11/d+C12�1−1/d� is the bulk modulus. In 2D,

w���=w�k̂� is a periodic function of the angle � defined by
kx /k=cos � and ky /k=sin � with period � /2, as displayed in
Fig. 1. In phase ordering processes, the interface normals
tend to be parallel to these soft directions, resulting in cuboi-
dal domains.1,13,15,16 If the spatial inhomogeneity is mostly
along these soft directions except for the edge regions of the
domains, the free energy is approximately given by Eq.
�2.15� with

� = 2wM . �2.18�

C. One phase states

We start with the free energy in Eq. �2.15�. If the system
consists of a single ordered phase in equilibrium, we have
�2= 
�2� and the homogeneous � is determined by

f0� = �� + ū�2 + v�4�� − h = 0, �2.19�

where the elastic coupling disappears. The inverse suscepti-
bility �−1= ��h /���� is given by

�−1 = �2f0/��2 = � + 3ū�2 + 5v�4. �2.20�
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We may consider the structure factor Sk of the thermal
fluctuations of the Fourier component �k in the bulk region.
To calculate it, we superimpose plane wave fluctuations of �
on the homogeneous average. The increase of the free energy
in the second order yields Sk in the Ornstein-Zernike form

Sk = 1/C�k2 + �2� , �2.21�

where � is the inverse correlation determined by

C�2 = �2f0/��2 − 3��2 + �
�2�

= � + �3ū − 2���2 + 5v�4. �2.22�

In the second line, we have set 
�2�=�2 because of the ex-
istence of a single phase only. Note that C�2 in the second
line of Eq. �2.22� is smaller than �−1 in Eq. �2.20� by 2��2.
In cubic solids, � represents the inverse correlation length for
the fluctuations varying in the softest directions. Let � take a
small negative value at h=0 in the case ū0; then, �2

���� / ū from Eq. �2.19�, leading to C�2�2�1−� / ū���� from
Eq. �2.22�. The positivity of �2 is attained only for �� ū.
Obviously, the disordered phase with �=0 is unstable for �
�0. The ordered phase with �2=−ū /2v+�ū2 /4v2−� which
is the solution of Eq. �2.19� at h=0� becomes unstable for
��in. In particular, as h→0, we find

lim
h→0

�in = − ��2 − ū2�/4v . �2.23�

III. TWO-PHASE COEXISTENCE

A. Two-phase states

We show that two phases can coexist in a temperature
window �c−�w����c if the parameter

u = ū − � �3.1�

is negative4,5 and h is smaller than a critical field hc, where
�c, �w, and hc will be determined below. We of course have

u�0 if ū�0 or if the system undergoes a first-order phase
transition even without the elastic coupling. For 0�h�hc,
the two phases are characterized by �=�0 and �1 with �1
��0�0. As h→0, we have �0→0, while as h→hc, we
have �1−�0→0. We will show that the space average 
�2� in
the free energy �2.15� gives rise to two-phase coexistence. If
it were neglected, we would have the usual tricritical point at
�=u=0 �see the last paragraph of this section�.1,17

If the volume fraction of the phase with �=�1 is written
as �, we have


�2� = ��1
2 + �1 − ���0

2. �3.2�

The average free energy density 
f�=F /V is given by


f� = �f0��1� + �1 − ��f0��0� +
1

4
���1

2 − �0
2�2��2 − �� .

�3.3�

Here, the interface free energy is neglected. The last term
proportional to �2−� is the new term arising from the elas-
ticity coupling, leading to two-phase coexistence. The mini-
mization conditions of 
f� with respect to �1 and �0 are
given by

f0���1� − ��1 − ����1
2 − �0

2��1 = 0, �3.4�

f0���0� + ����1
2 − �0

2��0 = 0, �3.5�

which are equivalent to �F /��=0 at �=�1 and �0. We also
minimize 
f� with respect to � to obtain

f0��1� − f0��0� +
�

4
��1

2 − �0
2�2�2� − 1� = 0, �3.6�

which means that the two phases have the same free energy
density. Note that the quadratic term ���2� in 
f� in Eq. �3.3�
is positive for �1−�00. Thus, for small f0��1�− f0��0�, a
minimum of 
f� can be attained as a function of � in the
range 0,1�. These equations may be solved for the simple
free energy density �2.2�. By eliminating �, we derive the
equations for �1 and �0 as

h/v = �1�0��0 + �1�3/3, �3.7�

− u/v = �1
2 + �0

2 +
1

3
��0 + �1�2, �3.8�

where u is defined by Eq. �3.1�. The negativity of u is re-
quired by Eq. �3.8�. Thus, �1 and �0 are independent of �. As
h→0, we have �0=0 and �1=M, where

M = �3�u�/4v�1/2. �3.9�

It is convenient to express �1 and �0 as

�1 =
q

2
+�q2

4
−

3h

vq3 , �0 =
q

2
−�q2

4
−

3h

vq3 ,

�3.10�

where q satisfies
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FIG. 1. w��� /w�0� in 2D as a function of � /� for (�C11

−C12� /2K ,C44/K)= �0.5,1� �a�, �0.3, 1� �b�, �1, 0.5� �c�, and �1, 0.3�
�d�. The maximum of w��� is w�0� for �a�0 and w�� /2� for �a

0.
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h =
2v
9

q3�q2 − M2� . �3.11�

Then, q /M is a dimensionless function of h /vM5, tending to
unity as h→0. The difference �1−�0= �q2−12h /vq3�1/2 de-
creases with increasing h. A field-induced criticality is at-
tained for h=hc and �=�c, where

hc = �8/5�5/2vM5/12, �3.12�

�c = 4vM4/5 − 2�M2/5. �3.13�

The critical value of the order parameter is

�c = �2/5�1/2M = �3�u�/10v�1/2. �3.14�

For small positive hc−h, we obtain

�1 − �0 �
2

5
M�1 − h/hc�1/2. �3.15�

For hhc, we have a unique one-phase state where � is
determined by Eq. �2.19�. In Fig. 2, we show �1 /M and
�0 /M versus h /hc.

Next, the volume fraction of the more ordered phase � is
calculated. From Eq. �3.5�, it depends on � as

� = ��cx − ��/�w. �3.16�

This relation holds for � ū and h�hc with

�cx = − ū�0
2 − v�0

4 +
v
3

�1��0 + �1�3, �3.17�

�w = ���1
2 − �0

2� . �3.18�

In Fig. 2, the normalized window width �w /�M2 is also dis-
played as a function of h /hc. Since � is in the range 0��
�1, the two-phase coexistence is realized in the window
region

�cx − �w � � � �cx. �3.19�

For � below �cx, the more ordered phase starts to appear, and
�w is the width of the temperature window. As h→0, �cx and
�w tend to the following values:

lim
h→0

�cx = vM4/3 = 3u2/16v , �3.20�

lim
h→0

�w = �M2 = 3��� − ū�/4v . �3.21�

On the other hand, as h→hc, the upper and lower bounds in
Eq. �3.19� meet at �=�c and behave as �cx��c+��c��1

−�0� and �cx−�w��c−��c��1−�0�, where �1−�0 depends
on hc−h as in Eq. �3.15�. In Fig. 3, we show the phase
diagrams in the �-h plane for ū0 and for ū�0, separately,
where the coexisting curves, �=�cx and �=�cx−�w, and the

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

ψ

β M/ 2

ψ

/ M1

/ M0

h / hc

τw

FIG. 2. Normalized order parameters �1 /M and �0 /M and nor-
malized width of the temperature window �w /�M2 versus normal-
ized field h /hc in two-phase coexistence, where M and hc are de-
fined by Eqs. �3.9� and �3.12�, respectively.
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FIG. 3. Phase diagrams in the �-h plane with ū0 for � / ū
=1.5, 1.4, and 1.2 �upper plate� and with ū�0 for � / �ū�=1.5, 1, and
0.5 �lower plate�. The � and h are scaled by �0= ū2 /v and h0

=v��ū� /v�5/2= �6�� / ū−1� /5�5/2hc /12, so h /h0 is large around h
�hc for negative ū. The system is in two-phase coexistence inside
each coexistence curve �solid line�, while it is in a one-phase state
outside it. Instability curve �dotted line� merges each coexistence
curve at the critical point, inside which one-phase states are linearly
unstable.
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instability curves are displayed. The latter are obtained by
setting C�2=0 in Eq. �2.22� using � determined by Eq.
�2.19� see the discussions above Eq. �2.23��. These curves
meet at the corresponding critical point h=hc and �=�c given
by Eqs. �3.12� and �3.13�.

The usual theory of tricriticality1,17,18 starts with the free
energy density,

f =
�

2
�2 +

u

4
�4 +

v
6

�6 − h� , �3.22�

for systems with short-range interactions. For this model, a
first-order phase transition line19 appears in the �-h plane for
u�0. �i� The line starts from the � axis �h=0� at the transi-
tion point given by �=3u2 /16v, where �2=3�u� /4v in the
emerging ordered phase. These values coincide with those in
Eqs. �3.20� and �3.9� in our elastic model. �ii� The line ends
at a field-induced critical point, where �2=3�u� /10v, h
=8v�3�u� /10v�5/2 /3, and �=9u2 /20v. The critical values of �
and h coincide with those in Eqs. �3.14� and �3.12�. How-
ever, the critical value of � is higher than that in Eq. �3.13�
by 2�M2 /5.

B. Magnetization, susceptibility, and specific heat

In the two-phase states in the temperature window, the
average order parameter is given by20


�� = ��1 + �1 − ���0, �3.23�

which is continuously connected to the solution of Eq. �2.22�
in the one-phase states outside the window region. See Fig. 4
for 
�� as a function of � and h at � / ū=1.2. The effective
isothermal susceptibility �= ��
�� /�h�� is calculated from

� = ��1 − �0�
��

�h
+ �

��1

�h
+ �1 − ��

��0

�h
, �3.24�

where the derivatives are performed at fixed �. See Fig. 5 for
� as a function of � and h at � / ū=1.2. We can see that � is
discontinuous at the boundary of the window region. There is
no critical divergence in � at the field-induced criticality at-
tained. In particular, as h→0, it behaves as

� = �1 − 3�/4 + 2vM2/3��/�vM4/3� , �3.25�

where vM4 /3 is the value of �cx as h→0. For ��cx, we
have �=1/� at h=0. Figure 6 displays the behavior of � on
the axis in the limit h→0.

Next, we consider the specific heat at constant volume
CV=−T�2
f� /�T2 �per unit volume� arising from the spin de-
grees of freedom, where h is fixed. In the two-phase coexist-
ence with h�hc, we use Eqs. �3.3� and �3.16� to obtain

CV = TA0
2/2� , �3.26�

which is independent of h even for h0. In the one-phase
region, we have CV=TA0

2�2 / ��+3ū�2+5v�4�, where � is de-
termined by Eq. �2.19�. In particular, at h=0, CV=0 for �
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FIG. 4. Normalized average magnetization 
�� /M as a function
of h /hc and � /�w for � / ū=1.2 calculated from Eqs. �2.19� and
�3.23�, where M, hc, and �w are defined by Eqs. �3.9�, �3.12�, and
�3.18�, respectively.
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FIG. 5. Normalized susceptibility � /�c as a function of h /hc and
� /�w for � / ū=1.2, where �c=M /hc. It is calculated from Eqs.
�2.20� and �3.24�. It increases discontinuously at the phase bound-
ary from the one-phase region to the two-phase region.
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FIG. 6. Normalized average order parameter 
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� /�w for � / ū=1.2 in the limit h→0, where CV0=TA0

2 /2ū.
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�cx and CV=TA0
2 /2�ū2−4v� for ���cx−�w. In Fig. 6, we

show CV versus � at h=0.

C. Correlation length and surface tension

Starting with the first line of Eq. �2.22�, we may calculate
the inverse correlation lengths, �0 and �1, in the coexisting
two phases with �=�0 and �1, respectively. With the aid of
Eqs. �3.6�–�3.8�, some calculations yield

�0
2 =

v
3C

��1 − �0�2��1 + �0���1 + 4�0� , �3.27�

�1
2 =

v
3C

��1 − �0�2��1 + �0��4�1 + �0� . �3.28�

As h→0, we have �0→�00 and �1→2�00, where

�00 = �v/3C�1/2M2 �3.29�

is the inverse correlation length in the disordered phase at
�=vM4 /3 and h=0. As h→hc, the inverse correlation
lengths go to zero as

�0 � �1 � �4/5��00�1 − h/hc�1/2, �3.30�

from Eq. �3.15�. If the scattering amplitude is proportional to
Sk in Eq. �2.21�, it grows near the critical point at long wave-
lengths. In Fig. 7, we plot �0 /�00 and �1 /�00 versus h /hc. It
is worth noting that the inverse correlation length � in the
one-phase region also goes to zero at the criticality. In its
vicinity, relations �2.19� and �2.22� in the one-phase case
give

C�2 � �h − hc�/�c, �3.31�

where the term linear in �−�c vanishes.
We also calculate the surface tension � in the two-phase

coexistence. We suppose a one-dimensional interface profile

�=��x� changing along the x direction. It changes from �0 at
x=−� to �1 at x=�. From �F /��=0, we obtain

C
d2�

dx2 = f0���� − ���2 − 
�2��� . �3.32�

We integrate the above equation as 2�=C�d� /dx�2, where
���� is the grand potential,

� = f0��� −
�

4
��2 − 
�2��2 − C0. �3.33�

From Eq. �3.6�, the constant C0 in the right hand side can be
chosen such that � vanishes at x= ±� or for both �=�0 and
�1. Some calculations yield1

� =
v
3

�� − �0�2�� − �1�2�� + �0 + �1�2 + �0�1� ,

�3.34�

which turns out to be independent of �. The surface tension �
is a function of h only. It is of the form

� = �
−�

�

dx� + C�d�/dx�2/2� = �
�0

�1

d��2C���� .

�3.35�

In the limit h→0, it becomes

�0 = lim
h→0

� = �vC/24�1/2M4. �3.36�

On the other hand, as h→hc, � in Eq. �3.35� behaves as �
��u���−�0�2��−�1�2 /2 so that

�/�0 � �32/375��1 − h/hc�3/2, �3.37�

which rapidly decreases near the criticality. See Fig. 7, where
� /�0 is plotted.

IV. NUMERICAL RESULTS

We numerically study the dynamics of our model. We
may demonstrate the validity of our equilibrium theory in
steady states attained at long times. In our system, � is a
nonconserved variable obeying the relaxation equation

�

�t
� = − L0

�F

��
, �4.1�

where �F /�� is given in Eq. �2.14� and L0 is a constant. We
integrated the above equation in 2D under the periodic
boundary condition. We assume ū0 and � / ū=1.5. Then,
for h=0, our theory predicts �1=0.612M0, �0=0, �cx /�0
=0.047, ��cx−�w� /�0=−0.516, �0�=0.354, and �1�=0.596.
These values will be compared with those from our simula-
tions.

A. Isotropic elasticity

We first assume the isotropic elasticity. We measure �, h,
and � in units of �0, h0, and M0, respectively, where

0
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

h / hc

γ γ

κ
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/

/1

κ0

κ00

κ00

FIG. 7. Inverse correlation lengths �0 and �1 versus h /hc in the
coexisting two phases. They are divided by �00 in Eq. �3.29�. Nor-
malized surface tension � /�0 is also shown, where �0 is in Eq.
�3.36�.
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�0 = ū2/v, h0 = v�ū/v�5/2, M0 = �ū/v�1/2. �4.2�

Here, M /M0= 3�� / ū−1� /4�1/2 from Eq. �3.9�. Units of
space and time are

t0 = L0�0, � = �C/�0�1/2. �4.3�

The scaled time t0
−1t and the scaled space position �−1r are

simply written as t and r to avoid cumbersome notation. The
system size is 200�200 and the mesh length is �, so the
system length is 200�. In terms of the scaled order parameter
�=� /M0, Eq. �4.1� is rewritten as

��

�t
= ��2 −

�

�0
− �2 − �4 +

�

ū
��2 − 
�2���� +

h

h0
.

�4.4�

As the initial condition at t=0, � at each lattice point con-
sists of a homogeneous constant and a random number in the
range −0.01,0.01�.

In Fig. 8, we show the phase ordering process from a
disordered state to a coexisting state. At t=0, � was a ran-
dom number. For t0, we lowered � from 0 to −0.3�0 to
induce phase ordering. From our theory, this final � is in the
coexisting window �cx−�w ,�cx� and the predicted average
order parameter is 0.378M0 with �=0.617. Since h=0 and

��=0 at t=0, the two variants with �= ±�1 appeared in the
early stage, but the ordered domains with ��−�1 disap-

peared in this run when the domain size became of the order
of the system size. �In other runs, the variant with ���1
disappeared as well.� In the steady two-phase coexistence at
t=104 �lower panel in Fig. 8�, interfaces are horizontal �par-
allel to the x axis�, where �=0.612M0 in the ordered phase
and 
��=0.397M0. The former coincides with the predicted
value, while the latter is slightly larger than predicted.

In Fig. 9, we show the phase ordering process from a
one-phase state at �=−�0 to a coexisting state at �=−0.15�0
at h=0. That is, at t=0, � was the sum of the equilibrium
one-phase value 0.786 determined by Eq. �2.19� and a ran-
dom number. The final � here is higher than the lower insta-
bility value −0.313�0 in Eq. �2.23�. Hence, phase ordering
should take place into a coexisting state where �=0.350M0
and 
��=0.214M0 are predicted. In the simulation, regions of
the disordered phase appeared, while � in the ordered phase
changed to ���1. In the steady two-phase coexistence at t
=6�103 �lower panel in Fig. 9�, a circular ordered domain
was realized. There, we find �=0.594M0 in the domain and

��=0.232M0. These values are only slightly different from
those predicted.

In Fig. 10, we present a steady profile of � at h=0.9hc and
�=−0.13�0, where the system is close to the critical point in
Eqs. �3.12�–�3.14� and the interface thickness is much wid-
ened. For � / ū=1.5 and at this field, our theory gives
�1 /M0=0.461, �0 /M0=0.304, �cx /�0=−0.032, ��cx−�w� /�0

=−0.212, �0�=0.149, and �1�=0.164. For the � adopted, we
predict �=0.543 and 
��=0.389M0. In the simulation, the
maximum and the minimum of � are 0.457M0 and 0.302M0,
respectively. These values are very close to the theoretical
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FIG. 8. Time evolution of � after changing � from 0 to −0.3�0 at
t=0 �upper panel� and steady profile of � /M0 obtained at t=104

�lower panel� for � / ū=1.5 and h=0 in isotropic elasticity. Here, M0
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values of �1 and �0. Furthermore, the observed average

��=0.392M0 is also close to its theoretical average, though
the interface regions are very wide here.

B. Cubic elasticity

Next, we integrate Eq. �4.1� in 2D on a cell of 256
�256 assuming the cubic elasticity with C11−C12=C44=K,
where K= �C11+C12� /2. Then, �a=−1 from Eq. �2.11� and
the softest directions are 10� and 01�. As in the isotropic
case, space and time are measured in units of � and t0 in Eq.
�4.3� and we set �=2�2 /C11=1.5ū0. The mesh size of
integration is �. In terms of the scaled order parameter �
=� /�0, the dynamic equation in the two-dimensional cubic
case is written as1,13,15,16

��

�t
= ��2 −

�

�0
− �2 − �4 +

�

ū
G�� +

h

h0
. �4.5�

From Eqs. �2.8� and �2.14�, we express G�r� in the Fourier
expansion,

G�r� =
1

w�0�	k
w����keik·r, �4.6�

where �k is the Fourier component of �=�2− 
�2� and

w�k̂�=w��� in Eq. �2.13� depends on the angle � defined by
cos �=kx /k.

In Fig. 11, we lowered � from 0 to −0.3�0 at h=0 as in
Fig. 8. Here, the anisotropy of the domain structure arises
from the angle dependence of w��� in Eq. �4.6�. In the steady
state in the lower panel, the maximum of � is 0.613M0 and
the average 
�� is 0.393M0, in close agreement with the pre-
dicted values and those in Fig. 8.

In Fig. 12, we show a steady profile of � for �=−0.13�0
and h=0 as in Fig. 9. Here, a square ordered domain is
embedded in a disordered region in equilibrium. In the fig-
ure, the maximum and the average of � are 0.586M0 and
0.260M0, respectively. The former is slightly smaller than the
predicted value 0.612M0, while the latter is considerably
larger than the predicted value 0.214M0.

In Fig. 13, we show one-dimensional steady profiles
changing along the x axis near the critical point. The maxi-
mum, the minimum, and the average of � are �0.461, 0.305,
0.392� for h /hc=0.9 and � /�0=−0.13, �0.461, 0.308, 0.409�
for h /hc=0.9 and � /�0=−0.15, and �0.439, 0.336, 0.398� for
h /hc=0.95 and � /�0=−0.13. These values closely agree with
those from our theory. In these one-dimensional cases, the
profiles coincide with those in the isotropic case.

V. SUMMARY AND CONCLUDING REMARKS

We have examined the phase transition behavior of com-
pressible Ising models at fixed volume in the mean field
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theory. In our model, the order parameter � is isotropically
coupled to the dilation strain e1 as �2e1 in the free energy,
which is the simplest case. Nevertheless, complicated phase
behavior follows at constant volume. We summarize our
main results.

�i� We have found two-phase coexistence in a closed re-
gion in the �-h plane as in Fig. 3. The coexistence region
appears under the condition ū�� given in Eq. �3.1�. If ū
0 and � is not large, it can be satisfied near the tricritical
point. If ū�0, it can occur even away from the tricritical
point.

�ii� The order parameter values in the two phases, �1 and
�0, are determined by h only and are independent of � as in
Fig. 2. The average order parameter 
��=��1+ �1−���0 in-
creased smoothly as � is decreased in the window region
�cx−�w����cx for h�hc, since the volume fraction � de-
pends on � as in Eq. �3.16�. The average order parameter 
��
and the susceptibility �=�
�� /�h are displayed in Figs. 4–6.
The specific heat CV is a constant in two-phase coexistence
as in Eq. �3.26�.

�iii� At the field-induced critical point h=hc and �=�c, the
correlation length 1/� grows and the surface tension � goes
to zero as in Fig. 7, while � does not diverge.

�iv� We have integrated the dynamic equation, which is
Eq. �4.4� for the isotropic elasticity and Eq. �4.5� for the
cubic elasticity. A change of � from the one-phase region into
the unstable region induces phase ordering as illustrated in
Figs. 8–13. It can occur with decreasing � as in Figs. 8 and
11 and with increasing � as in Fig. 9. In the final two-phase
states, the values of � and its space average closely agree
with the theoretical values.

We make some further remarks.
�i� In many systems, global constraints can affect the

phase transition behavior. Well known is the case in which
the average order parameter 
�� is fixed.21 In our problem,

the order parameter is nonconserved, but we impose the glo-
bal constraint of fixed volume or equivalently the condition
that the space integral of the dilation strain e1 vanishes.
Mathematically, the two-phase coexistence in our system
stems from the fact that the free energy becomes quadratic
with respect to the volume fraction � due to the presence of
the space average 
��2− 
�2��2� see the last term of Eq.
�3.3��.

�ii� At constant pressure in our problem, two-phase coex-
istence occurs only on a line in the �-h plane as in the rigid
lattice case, but phase separation can be much affected by the
elastic coupling �see the Appendix�.22 It is worth noting that
the transition depends on the sample shape in hydrogen-
metal systems at constant pressure,1,23 where the proton con-
centration is linearly coupled to the dilation.13

�iii� We mention Monte Carlo simulations on a binary
alloy by Landau and co-workers.10–12 They assumed that a
mixture undergoing unmixing corresponds to ferromagnets
and that forming a superstructure to antiferromagnets. In
these cases, different results followed in the fixed volume
and fixed pressure conditions. However, the unmixing tran-
sition in the presence of the size difference1 is not isomor-
phic to the ferromagnetic transition. In the former, the linear
coupling13 appears between the concentration c and e1 in the
form ce1, while in the latter, the exchange interaction does
not break the invariance of �→−� and the elastic coupling
is quadratic as �2e1. At present, we cannot compare our
theory and their simulations.

�iv� Yamada and Takakura numerically solved a time-
dependent Ginzburg-Landau model for an order parameter
and a strain in one dimension. They found appearance of a
disordered region in a lamellar ordered region.24 Their find-
ing is consistent with our theory.

�v� In real metamagnets, there is no field conjugate to the
antiferromagnetic order and the tricriticality has been real-
ized by changing magnetic field or hydrostatic pressure. At
fixed volume, our theory predicts two-phase coexistence in a
temperature window near the tricritical point and near the
line of first-order phase transition. From Eq. �3.21�, the width
of the window sensitively depends on the coupling constant
� as �w /A0=3���− ū�2 /4vA0, where A0 is the coefficient in
Eq. �2.3� and �=2�2 /K.

�vi� In our mean field theory, we have neglected the renor-
malization effect near the critical point, which can be intrigu-
ing in the presence of the cubic elastic anisotropy.8,9 It
should be further studied together with the influence of the
global elastic constraint studied in this work.

�vii� We should generalize our theory to more complex
systems. At the ferroelectric transition,18 the polarization
vector is coupled to the strains. In binary alloys, phase sepa-
ration and an order-disorder phase transition can take place
simultaneously,1 where the concentration c and the structural
order parameter � are both coupled to e1 in the form ��1c
+�2�2�e1 in the free energy.25 There can also be a number of
anisotropic elastic couplings between the order parameter
and the tetragonal or shear strain. We will soon report on
phase transition including a Jahn-Teller coupling.26
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APPENDIX: FIXED PRESSURE CONDITION

We here eliminate the elastic field at fixed pressure.2,4,11

Under isotropic applied stress, we assume an isotropic aver-
age dilation change 
e1� caused by the order parameter
change. The average stress should be unchanged from that in
the reference state, so we require 
�ij�=0 in Eq. �2.6� to
obtain


e1� = − �
�2�/K , �A1�

in terms of the bulk modulus K. We impose the periodic
boundary condition on the deviation, �ui=ui− 
e1�xi /d,
whose Fourier component can be expressed in terms of 	k in
the same form as that of ui in the fixed volume case. The free
energy consists of F in Eq. �2.15� and

�F = − V�2
�2�2/2K . �A2�

The total free energy F�=F+�F is written as

F� =� dr� f +
C

2
����2 +

B

4
��2 − 
�2��2� , �A3�

where f = f0−�2�4 /2K and B is a positive coefficient,

B = 2�2/K − 2wM . �A4�

Here, wM is given by Eq. �2.17�. The positivity of B arises
from C11−C120 and C440. The one-phase ordered states
are determined by f . The same form of the free energy was
derived by Littlewood and Chandra22 for BaTiO3, who ar-
gued that the term proportional to B can much decrease the
nucleation rate from the paraelectric to the ferroelectric state.
In our problem, we draw the following conclusion in the
mean field theory. In the fixed pressure condition, there can
be two-phase coexistence only on a first-order coexistence
line in the �-h plane. In fact, 
f� in Eq. �3.3� would be mini-
mized for �=0 or 1 outside the coexistence curve if positive
� were replaced by −B.
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