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We present a first-principles study to understand the phenomena of interlayer exchange coupling in Fe/Nb
multilayers using the linearized-muffin-tin-orbitals method within the generalized gradient approximation. We
find that the exchange coupling oscillates with both short and long periodicities, which have been examined in
terms of the Ruderman-Kittel-Kasuya-Yosida �RKKY� model as well as the quantum well �QW� model. We
have investigated the behavior of the exchange coupling by artificially varying moments of Fe atoms in
ferromagnetic layers. For a small moment of Fe, the coupling shows bilinearity in the magnetic moments,
implying its RKKY character. However, at higher moments close to that of bulk Fe, the saturation of long-
period oscillations is in accordance with the QW model. Quantum well dispersions around the Fermi level
demonstrate that the majority-spin bands contribute largely to the formation of quantum well states, which we
analyze quantitatively by making use of the phase accumulation model. Our analysis indicates that the quantum
well model gives a better description of the oscillatory behavior of the exchange coupling in Fe/Nb
multilayers.
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I. INTRODUCTION

Damped long-range oscillation of the interlayer exchange
coupling �IEC� as a function of the spacer thickness is a well
known phenomenon in magnetic multilayers.1–3 Several ap-
proaches have been proposed over the years in order to ex-
plain the oscillatory behavior of the IEC. Among these, the
two prominent models are �i� the Ruderman-Kittel-Kasuya-
Yosida �RKKY� model4 and �ii� the quantum well �QW�
model.5 The RKKY interaction stems from the spin polariza-
tion of the intervening conduction electrons in the spacer
layer. Bruno and Chappert6 have shown that the exchange
coupling within the RKKY theory is related to the topologi-
cal properties of the Fermi surface of the spacer material.
Since the magnetic atoms in multilayers are more immersed
in the spin sea of the conduction electrons of the spacer layer
near the interface, the RKKY interaction has the strongest
effect at the interfaces.7 However, the RKKY approach is not
so much effective4,6 in describing the correct amplitude and
phase of the coupling oscillations essentially because the in-
teraction between the ferromagnetic layers and the conduc-
tion electrons is not well captured in the RKKY approach. In
the quantum well model, the coupling arises due to the spin-
dependent confinement8 of electrons inside the spacer me-
dium as the size of the multilayer system is reduced to the
nanometer range. In the quantum well picture, each layer
thickness of magnetic as well as nonmagnetic �NM� kind in
the entire multilayer stack contributes significantly to the
coupling strength, implying that the IEC is not a sheer inter-
facial effect.9 The QW states are formed near the Fermi level
when spin-polarized bands are shifted away from the Fermi
surface because of the strong magnetization on both sides of
the spacer medium. Such states, which can be observed di-
rectly by photoemission measurements, shift in energy with
the spacer thickness and become closely spaced when the
spacer layer appears to be sufficiently thick. Though both the
models arrive at the same period of coupling oscillations due
to their origin in the shape of the spacer Fermi surface, they

differ in determining the coupling strength.10 It is because
the RKKY model originates from the second order perturba-
tion theory, whereas the QW model does not make any as-
sumption about the strength of the interlayer interaction. Fur-
ther, QW theory predicts additional possibilities like
oscillating density of states, quantum well dispersions, etc.,
especially when the spacer layer forms a multisheet Fermi
surface �FS�. Such is the case in Fe/Nb multilayers, where
the Nb spacer has three sheets of Fermi surface in the �100�
plane.11

Although many computational works exist already in the
literature2,4,12 on the exchange coupling phenomena in sys-
tems such as Fe/Cr, Fe/Au, Co/Cu, etc., where the spacer
layers are, in general, NM transition metals, not much theo-
retical understanding has been gained so far for the Fe/Nb
multilayer system. The experimental study on the sputtered
Fe/Nb superlattices as carried out by Mattson et al.13 re-
ported a weak coupling with an oscillation period of about
9 Å at room temperature. However, some ab initio band
structure studies14,15 on Fe/Nb multilayers demonstrated an
oscillation period of 4.6–6.0 Å. Neutron reflectometry data
of Rehm et al.16 for Fe/Nb multilayers have earlier sug-
gested an oscillatory RKKY kind of coupling for small Nb
layers. In another experimental development, Klose et al.17

have shown that hydrogen charging can modify the magnetic
coupling in these heterostructures through the alteration of
the electronic structure of the Nb interlayer.

Fe/Nb multilayers seem to be interesting systems to
study the interlayer exchange coupling in the sense that
Fe is a strong transition-metal ferromagnet, while the spa-
cer layer can be a superconductor �SC� at low temperatures.
Thus, apart from the phenomena of oscillatory exchange
coupling between ferromagnetic �FM� layers, Fe/Nb super-
lattices have another interesting phenomenon known as
the “proximity effect,” which paves the way for new
sources of magnetoresistance with potential applications in
magnetoelectronics.18 The presence of the internal magnetic
field in Fe layers weakens the phenomena of superconduc-
tivity due to the breaking of Cooper pairs. Among various
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FM/SC heterostructures, where superconductivity gets in-
duced in the ferromagnet by bringing it in contact with the
superconductor, Fe/Nb multilayers have been studied
experimentally16,19,20 to an appreciable extent. One such ob-
servation by Mühge et al.20 suggests that the thickness of the
SC interface mainly determines the actual shape of Tc versus
dFe �thickness of the FM layer� curve in Fe/Nb superlattices.
Since Nb is the element with the highest known Tc, its inter-
play with Fe continues to remain an active field in the study
of such heterostructures.

In the present work, we elucidate the coupling phenomena
in Fe/Nb multilayers within the domain of the density func-
tional theory.21 Previous calculation of Shukla and Prasad15

reported the IEC for the Fe/Nb multilayer system up to
seven monolayers of Nb spacer sandwiched between two Fe
layers. However, it could not shed light on the detailed
analysis of the coupling phenomena due mainly to the lack
of relatively large spacer thickness, which is necessary for
such kind of study. This work, thus, involves an Fe3Nbm
�m=1–16� system in order to understand the coupling be-
havior in Fe/Nb�001� multilayers. Our calculation shows
that QW states are, indeed, formed in such heterostructures,
and the QW model gives a better description of the oscilla-
tory exchange coupling in Fe/Nb multilayers.

The organization of the paper is as follows. In Sec. II, we
briefly outline the computational procedure adopted in the
present study. Section III, under several subsections, deals
mainly with our results that include simultaneous discus-
sions. We finally sum up our observations in Sec. IV.

II. METHODOLOGY

Total-energy calculations have been carried out for
Fe3Nbm �m=1–16� multilayers in the framework of the
linearized-muffin-tin-orbitals �LMTO� method22–24 within
the tight-binding representation. The atomic-sphere approxi-
mation �ASA� is used for the potentials determined self-
consistently in the generalized gradient approximation 25 of
the density functional theory.21 Various tetragonal supercells
are constructed out of Fe and Nb monolayers �ML�, where
the bcc Fe layers are stacked along the �001� growth direc-
tion �see Ref. 15� in ferromagnetic �FM� as well as antifer-
romagnetic �AFM� orientations. The IEC, denoted by J�m�,
corresponds to the energy difference between FM and AFM
configurations per unit cell structure so that

J�m� = Etot
↑↓�m� − Etot

↑↑�m� , �1�

where m is the number of spacer layers. We calculate the
total energies of all occupied states and minimize it between
the FM and AFM configurations in a self-consistent fashion
for each Nb thickness. The average lattice parameter with
reduced lattice mismatch is taken15 as 3.067 Å for the
present heterostructures. Linear tetrahedron method has been
used for the Brillouin zone �BZ� integration, with a maxi-
mum of 840 k points in the irreducible wedge of the surface
BZ. We use the same unit cell for the FM and AFM struc-
tures to obtain reliable energy differences between ferromag-
netic and antiferromagnetic orderings.

III. RESULTS AND DISCUSSION

A. Interlayer coupling oscillations

Initially, we compute the IEC as a function of the Nb
spacer thickness using Eq. �1� for FeNbm �m=1–7� system.
The results for J�m� are in good agreement with our earlier
calculation15 using the full-potential linearized augmented
plane-wave method. This gives us confidence in carrying out
the present LMTO-ASA based calculations, which provide a
reasonable estimate of magnetic moments and energy
differences.26 The IEC for Fe3Nbm �m=1–16� configuration
is then computed using Eq. �1�, which is shown in Fig. 1.
Rapid oscillations are observed up to 9 ML of Nb thickness,
after which the oscillatory exchange coupling becomes ap-
preciably weak. The coupling changes from ferromagnetic to
antiferromagnetic configuration at about 2, 7, and 10 ML of
Nb spacer, resulting in oscillation periods of 7.7 and 4.6 Å,
respectively. Note that 1 ML corresponds to the interplanar
thickness of 1.5335 Å.

To better understand the oscillation periods and the cou-
pling phenomena in Fe/Nb multilayers, we fit the calculated
variation of J�m� with m to the following asymptotic form:8

J�m� = �
k=1

2

Ak sin�qkm + �k�/m2 + �
l=3

4

Al sin�qlm + �l�/m3,

�2�

where Ak�l�’s describe the amplitudes, qk�l�’s yield the period-
icities Tk�l��=2� /qk�l��’s, and �k�l�’s the phases of the k�l�th
mode of oscillations. Our ab initio data for J�m� in Eq. �1�
yield a reasonably good fit to Eq. �2� with the following four
periods: T1=4.14 ML ��6.3 Å�, T2=5.05 ML ��7.7 Å�,
T3=2.86 ML ��4.4 Å�, and T4=20.28 ML ��31.1 Å�.
These values fall well within the previous results13,15 for the
FeNbm heterostructures. Multiple periodicities arise due to
the existence of the multisheet Fermi surface in the Nb
spacer layer. The Nb thickness periodicity of 7.7 Å comes
close to the experimental value of 9.0 Å. This discrepancy is
perhaps due to preasymptotic effects and the difficulty of

FIG. 1. The calculated oscillatory interlayer exchange coupling
�solid circles� as a function of the number of Nb spacer layers in
Fe3Nbm �m=1–16� multilayers. The solid line is the fitted plot �see
the text for details�. The thickness of one Nb layer is 1.5335 Å.
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including the true lattice structure in our calculations. Since
in the present study the total-energy calculations of the IEC
are limited by 16 ML of spacer thickness, which might still
be in the preasymptotic region, a slight discrepancy between
the experimental result and total-energy calculation is ex-
pected. However, the 4.4 and 6.3 Å periods are in fairly good
agreement with the available ab initio data.13–15,27The well-
fitted curve of Fig. 1 suggests that the interlayer exchange
coupling in Fe/Nb multilayers has significant 1 /m3 depen-
dence in addition to the conventional 1 /m2 dependence given
by the RKKY theory.

If we analyze the four periodicities that are obtained
upon a reasonably good fitting of Eq. �2�, the existence of
higher harmonics is observed in the coupling function. These
harmonics �denoted by n� add terms of the form
m−�2+i� sin�2�nm /T+phase�, with i=0, 1 , . . . ,n�2, and T
being the fundamental period. This way the fourth harmonic
�n=5� results in m−2 sin�5�m+phase�, with �=2� /T. Now,
if we express the 4.14 ML period T1 as 1 /T1=1/5+� /2�,
the effective period8 is obtained as Tef f =2� /5�=T1 / �5
−T1�=4.81 ML. This value is, however, a bit lower than the
fit value of 5.05 ML, which corresponds to T2. The slight
discrepancy may be attributed to the uncertainties in the fit
by Eq. �2�. Expressing similarly the 2.86 ML period T3 as
1 /T3=1/3+� /2�, the second harmonic �n=3� becomes
m−3 sin�3�m+phase�, which yields an effective period Tef f�
=2� /3�=T3 / �3−T3�=20.43 ML. This value is also quite
close to the fit value of T4 �=20.28 ML�, with a discrepancy
of about 0.7%. Both the long periods T2 and T4, thus, turn
out to be the “Vernier” periods of the respective short period
oscillations of T1 and T3. As pointed out by van Schilfgaarde
and Harrison,8 higher harmonics have significant presence in
the quantum well limit, where the RKKY description does
not hold well.

B. Fermi surface and the Ruderman-Kittel-Kasuya-Yosida
periods

In the RKKY approach, the oscillatory periods of the in-
terlayer exchange coupling are uniquely determined by the
stationary spanning vectors of the bulk Fermi surface of the
spacer material. Several spanning vectors in the FS give rise
to multiple periodicities, as we have already come across in
the previous section.

In Fe/Nb multilayers, the spacer layer Nb has five con-
duction electrons per atom that fill the first Brillouin zone
completely, while the second and third Brillouin zones
partially.28 The second zone is a closed octahedron �OCT�,
which contains a hole sheet centered at �. However, the third
zone has two sheets. One sheet contains an open surface of
holes, referred to as jungle gym �JG�, which extends from �
to H points along the �100� direction. The other sheet is a set
of distorted hole ellipsoids �ELL� centered at N points. The
OCT and JG sheets make contact at three points29 in the
�100� and �110� symmetry planes of the Fermi surface of Nb.

Simple square lattice planes of Fe and Nb with primitive
translations of �

a �100� and �
a �010� are stacked along the

�001� growth direction to form Fe/Nb multilayers. Since the
translational symmetry in the growth direction is broken,

multilayers behave like quasi-two-dimensional systems,
which are periodic only in two dimensions.30 Hence, the
Brillouin zone needs to be constructed in two dimensions to
deal with the in-plane coordinates.31 Figure 2 shows the
cross section of the spacer layer Fermi surface of Nb on the
basis of our self-consistent calculations in the central �100�
plane. The lines Q1, Q2, and Q3, as shown in Fig. 2, represent
the spanning vectors for the �100� crystalline orientation; Q1
spans the �-centered octahedron along the �100� direction,
while Q2 and Q3 span the outer and inner ellipses, respec-
tively, along the �100� direction. We find that the RKKY
periods of 4.1, 6.4, and 7.5 Å, as predicted from the Fermi
surface spanning vectors, turn out to be in good agreement
with the interlayer coupling periods of 4.4, 6.3, and 7.7 Å, as
obtained by fitting the self-consistent results to Eq. �2�. How-
ever, the Fermi surface topology of Nb is not able to predict
the periodicity of 31.1 Å. As we know from the preceding
section, the long-wavelength coupling period of 31.1 Å
originates from the higher order terms in the coupling func-
tion of Eq. �2�, which is also a higher harmonics of the short-
wavelength period of 4.4 Å.

C. Magnetization

To examine how the Fe magnetic moment at the interface
behaves as a function of the intervening layer thickness in
Fe/Nb multilayers, we plot the magnetic moment of the in-
terface monolayer of Fe vs the spacer layer thickness of Nb
in Fig. 3. There is good agreement between our calculated
results and the experimental observations as shown in the
inset. We find that the Fe magnetic moment gets saturated in
the asymptotic region, with reduction of about 25% of the
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FIG. 2. �Color online� Cross sections of the Fermi surface of Nb
in the �100� plane. � labels the center of the Brillouin zone, N
indicates the center of each face of the dodecahedron, and H labels
the corners of the fourfold symmetry on the zone boundary.
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bulk value. This reduction in the measured data is about
40%. Following the works of Holmström et al.,32 this kind of
discrepancy may be attributed primarily to the interface al-
loying.

The induced magnetic moments in the Nb spacer layer for
ferromagnetically ordered Fe3Nb16 superlattices are shown in
Fig. 4�a�. On the other hand, Fig. 4�b� displays the induced
polarization for the antiferromagnetic configuration. Fe lay-
ers are at positions marked by 0 and 17 �not shown in the
figure�. The induced magnetic moment �in absolute values�
in the Nb spacer layer decreases from about 0.28�B at the
interface to about 0.02�B further apart from the interface.
For a Nb layer of 16 atomic planes, the calculated induced
moment at the center of the Nb layer is about 10−3�B. The
period of oscillation of the induced moment in both the mag-
netic configurations turns out to be about 4.6 Å, which is in
fairly good agreement with the coupling period of 4.4 Å, as
determined by Eq. �2�. The bias in the magnetic ordering of
the induced moment �see Fig. 4�, which occurs only in the
ferromagnetic configuration, may be regarded as being due
to the onset of non-RKKY terms in the coupling function
when the Nb layer gets appreciably thicker. Mathon et al.33

have already shown analytically the presence of such non-
RKKY terms for the Co/Cu�001� system using the stationary
phase approximation.

However, to get a better understanding of the coupling
behavior, one needs to examine the influence of Fe magne-
tization on the coupling strength. For this, we adopt a proce-
dure similar to that of van Schilfgaarde and Harrison.8 A trial
density is constructed out of the charge densities of self-
consistently calculated bulk ferromagnetic Fe and paramag-
netic Nb in their respective atom-centered spheres. The
charge density of Fe is constructed as follows:8

nFe�r� = n0�r� ± 	
n↑�r� − n↓�r�

2
, �3�

where n0 denotes the density of bulk paramagnetic Fe, while
n↑ and n↓ represent the spin densities of the majority and

minority spins in ferromagnetic Fe, and 	 is a parameter
ranging from 0 to 1. The magnetic moment of Fe atom will
be proportional to 	, taking full value at 	=1 and 0 value
when 	=0. Since we are interested in obtaining J as a func-
tion of the Fe moment, we have used the trial densities in our
frozen-potential calculations pertaining to relevant super-
cells. To have a preliminary idea of how the coupling and the
moments are interrelated in Fe/Nb systems, we construct a
16-atom Nb supercell with two Fe atoms substituted such
that one Fe sits at �0 0 0�, while the other sits at 3a�1 1 1� /2.
For parallel and antiparallel alignments of two inequivalent
Fe atoms, the energy difference is calculated34 as a function
of the Fe moment parametrized by 	. According to the
RKKY theory, this energy difference should vary as 	2 �see
Fig. 5�.

Several superlattices out of the Fe3Nbm �m=1–16�
multilayer configuration are constructed subsequently to cal-
culate the energy difference J	�m�=E�Fe3

↑NbmFe3
↓Nbm�

−E�Fe3
↑NbmFe3

↑Nbm�, as function of 	. We determine the am-
plitudes Ak�l�’s for each 	 by fitting J	�m� to the functional
form as given by Eq. �2�. This way, we find two short-period
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FIG. 3. Variation of the Fe magnetic moment with Nb spacer
thickness in Fe3Nbm �m=1–16� heterostructures �see the text for
details�. The inset shows the experimental results by Mattson et al.
�Ref. 13�.

FIG. 4. The induced magnetic moment in Nb spacer layers for
Fe3Nb16 heterostructures in the �a� FM and �b� AFM orientations.
The thickness of one Nb layer is 1.5335 Å.
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amplitudes and two long-period amplitudes, which are illus-
trated in Fig. 5. In Fe/Cr multilayers, van Schilfgaarde and
Harrison8 found the coupling amplitudes �for small 	� of
both short and long periods to increase as 	2, while at larger
	, short-period amplitude continued its rise, though the long
period saturated completely. Here, we find that the initial 	2

dependence of the exchange coupling, as assumed in the
RKKY theory, at small 	 values is followed by two distinct
features at higher 	 values, viz. �i� stronger dependence on
the Fe moment as IEC shoots up for short-period oscillations
and �ii� complete independence of the Fe moment as IEC
gets saturated for long-period oscillations.

As a function of magnetization ���, the interlayer
exchange energy can be described as35

J� = J1��1 · �2� + J2��1 · �2�2, �4�

where J1 and J2 are respectively the bilinear and biquadratic
coupling constants, while �1 and �2 denote the magnetiza-
tions of the adjacent ferromagnetic layers. In order to fit the
calculated results for the 16-atom supercell data, we need to
expand the above expression in the following form:

J	 = J1	2 + J2	4 + J3	6, �5�

where � has been parametrized by 	, and J3 is an additional
triquadratic term appearing in the exchange coupling. Ini-
tially, we calculate the coupling energy, as a function of 	,
for the 16-atom Nb supercell with only two Fe atoms substi-
tuted. These are represented by asterisks in Fig. 5. While
fitting the data, we find that the coupling energy has biqua-
dratic and triquadratic terms in addition to bilinear terms in
	. In doing so, the coupling constants turn out to be in the
ratio of about 1:2:4. It may be noted that the RKKY theory
assumes only the bilinear terms in 	. The linear part of the

fitted curve in Fig. 5, thus, shows the RKKY kind of cou-
pling in the region of small magnetic moment of Fe. We then
calculate the interlayer exchange coupling for the Fe3Nbm
�m=1–16� multilayer configuration as a function of 	.
Short-period amplitudes of the Fe3Nbm �m=1–16�
multilayer configuration are found to follow the above phe-
nomenological expression for the interlayer interaction, but
the long-period amplitudes show a saturation behavior at
large 	. For a complete confinement, the coupling becomes
independent of the size of the magnetic moment,36 as dem-
onstrated by the long-period amplitudes. The saturation of
the long-period amplitudes with the ferromagnetic Fe mo-
ment, thus, favors a QW description of the exchange cou-
pling. Because of the incomplete confinement of states in
Nb, Fe/Nb multilayers exhibit a partial transition to the QW
character from the RKKY description, which is valid at small
moments �Fig. 5�.

D. Energy bands, density of states, and the quantum
well model

To study the nature of the electronic states in Fe/Nb mul-
tilayers, we resort to the bulk band structures �see Fig. 6� of
the ferromagnetic Fe �for both spins� and the paramagnetic
Nb along the �100� as well as the �110� direction. These
directions are important11 for multiple scattering, since the
respective 
2, �1, and �2 bands cross the Fermi level �EF� in
the spacer medium, contributing to the oscillations in the
interlayer coupling.

The Fe minority �12−
2−H12 band closely resembles the
corresponding Nb band, indicating that the Fe/Nb interface
will be more transparent to the minority-spin electrons than
to the majority-spin electrons. The vanishing overlap be-
tween the majority-spin bands �12−
2−H12 in Nb and Fe
creates spin-dependent gaps at the Fe/Nb interface, resulting
in energy barriers that confine electrons to the intervening
Nb layer. The electrons in the Nb band �12−
2�↑�−H12 can-
not pass into the Fe majority band since there are no avail-
able states of 
2�↑� symmetry from �12 �Fe↑ � to �12 �Nb�.
As a result, spin-up electrons with energies from
�EF−0.14� to �EF+3.15� eV experience multiple reflections
at the interface and get confined to the Nb spacer. Similar
phenomena happen along the �110� direction. The electrons
in the Nb band �25�−�1�↑�−N1� cannot pass into the Fe
majority band in the energy range from �EF−0.94� to �EF

+2.38� eV. Similarly, the Nb electrons in �25�−�2�↑�−N2

band cannot pass into the Fe majority band in the energy
range from �EF−2.29� to�EF+0.56� eV. The confinement of
electrons, thus, occurs in the spacer layer, resulting in the
formation of quantum well states. As Fig. 6 shows, bcc Fe
has mostly minority-spin states at the Fermi level, and this
gives rise to majority-spin quantum well states in Nb.

Figure 7 displays how the density of states at EF oscillates
with the spacer layer thickness, which is a characteristic fea-
ture of the quantum well model. According to the QW
model, the oscillatory behavior of the magnetic coupling in
Fe/Nb multilayers as demonstrated by Fig. 1 can be traced
back to the oscillations of the density of states �DOS� at the
Fermi level.5,27 During the formation of QW states, Fe/Nb

FIG. 5. �Color online� Interlayer exchange coupling in Fe/Nb
multilayers as a function of Fe magnetic moment parametrized by 	
�see the text for details�. The asterisks represent the results for the
16-atom supercell, while the solid line depicts the fitted curve ac-
cording to Eq. �5�. Note that the linear part of the solid line re-
sembles the RKKY kind of coupling. The triangles and diamonds
indicate the short-period amplitudes, while the circles and squares
represent the long-period amplitudes of the Fe3Nbm �m=1–16�
multilayer system.
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interfaces act as electron mirrors that induce standing waves
in the Nb spacer medium. As Fig. 7 suggests, the first two
maxima correspond to the oscillation period of about 4.6 Å.
The periodicity then enhances to about 6.1 Å. We notice that
the QW periodicities of 4.6 and 6.1 Å are in fairly good

agreement with the interlayer coupling periods of 4.4 and
6.3 Å as obtained from the self-consistent results for Fe3Nbm
�m=1–16� multilayers �see Sec. III A�. It implies that there
is a reasonable connection between the existence of the spin-
polarized QW states and the manifestation of magnetic cou-
pling in Fe/Nb multilayers.

Oscillations in the density of states at the Fermi level can
also be explained on the basis of the bulk band structures of
Fe and Nb, assuming the QW model. We know from the
previous discussion that the majority-spin energy bands of Fe
along the �100� and �110� directions provide the confinement
to Nb electrons in forming the QW states inside the spacer
medium. Figure 6 shows that 
2 and �1 bands lead to the
formation of QW states around EF inside the Nb layer. It is
because there are no propagating states of the same symme-
try at the same energy associated with the majority-spin elec-
trons upon crossing the Fermi level. We obtain a band offset
of 4.1 eV for the 
2 band in the �100� direction, and another
band offset of 3.3 eV for the �1 band in the �110� direction
�see Fig. 6�. Ortega et al.37 have shown for Co/Cu and
Fe/Cu systems that a large band offset between the band
edges of the magnetic and spacer layers gives rise to sharply
confined wave functions.

For z being the multilayer growth direction, the transla-
tional symmetry holds only in the x−y plane so that the wave
function of an electron in a quantum well can be expressed
as38

��,k�R� = Afk�z�ei�·�u�,k�R� , �6�

where A is a normalization constant, �= �kx ,ky�, �= �x ,y�,
and u�,k�R� is periodic in the lattice, while fk�z� is the enve-
lope function, which ensures that the boundary conditions
are met at the interfaces. Equation �6� shows that the wave
function of a QW state consists of a rapidly oscillating Bloch
function, which is modulated by a slowly varying envelope
function. For a single band edge, the modulation of the
Bloch wave �kedge� by an envelope �kenv� yields a total wave
vector37

ktot = kedge ± kenv, �7�

where only the normal components of the wave vectors are
considered since the boundary conditions for the components
that are parallel to the interface mimic the bulk. By drawing
an analogy with the simple interferometer model, we may
expect the interference maxima to appear at every half-
wavelength �env� of the envelope as the thickness of the Nb
spacer layer is increased so that QW states appear with a
period of env /2. For QW states at the Fermi level, the total
wave vector becomes the Fermi wave vector if the spacer
layer is thick enough to exhibit bulklike bonding.39 As Fig.
6�a� shows, the band edge for the �1 band in the �110� di-
rection is located at the zone boundary �kBZ� so that kenv
= �kBZ−kF�. The frequency associated with this kenv in real
space may be viewed as a beat frequency between the Fermi
wavelength and the atom spacing.10 The oscillation period,
thus, becomes

FIG. 6. The bulk energy bands of Nb and bcc Fe �↑ and ↓� along
the �a� �100� and �b� �110� directions. The bands with 
2 and �1

symmetries are displayed by solid lines, while the bands with �1

symmetry by dashed lines. Only majority-spin states in Nb exhibit a
quantum well character at the Fermi level since the minority-spin

2 and �1 states couple with the corresponding states in Fe.

FIG. 7. Oscillations in the density of states at the Fermi level,
EF, with the Nb spacer thickness, caused by the quantum well states
in Fe3Nbm �m=1–16� heterostructures.
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T = �/kenv = �/�kBZ − kF� . �8�

This way, we obtain a period of 5.8 Å due to the �1 band,
which is in fairly good agreement with the periodicity of
6.1 Å, as appeared in the oscillating DOS at EF �see Fig. 7�.
It may be noted that the wave vector determining the peri-
odicity of the envelope function along the �110� direction is
quite small, and thus, the wavelength is large. However, a
reverse situation occurs for the 
2 band in the �100� direc-
tion, where �kBZ−kF� is large as kF is small. The envelope
function should produce in this case a short-wavelength
weak modulation of the QW wave vector.38,40

E. Phase accumulation model

A simple way of predicting the energy for QW states is
the phase accumulation model, which is often used to de-
scribe the thickness dependence of QW energies and reso-
nances in thin films and other layered structures.40 According
to this model, the condition for a QW state is determined by
summing over all the phases accumulated by a propagating
plane wave inside a quantum well. The total phase accumu-
lated must be an integral multiple of 2�. For m monolayers
of Nb spacer, each of thickness d, the total spacer width
becomes dNb=md. Thus, the distance traversed by an elec-
tron in the spacer medium is 2md, resulting in 2mdk� phase
change, where k� represents the electron wave vector normal

to the layers. If the phase shift of the electron wave function
upon reflection at each interface is �I, the total phase in a
round trip within the spacer medium can be written as40

2k�dNb + 2�I�E� = 2n� , �9�

where n is an integer related to the number of half-
wavelengths that span the quantum well.

The phase shift at each interface in Eq. �9� can be calcu-
lated by making use of the following ansatz:40

�I�E� = 2 sin−1 � E − EL

EU − EL
− � , �10�

where EU and EL represent the energies of the potential well
taken from the upper and lower edges of the energy gap in
the Fe majority-spin band, which acts as a potential energy
barrier for the propagating electrons. The interface reflection
phase evolves across a band gap from 0 to −� in traversing
from the top to the bottom of the potential well.

In order to obtain k� in Eq. �9�, we make use of a two-
band nearly free electron �NFE� model, which approximates
the Nb electrons in the 
2 and �1 bands. According to this
model, the wave vector of a NFE band can be expressed
as9,41

k�/kBZ = 1 − �1 + �E − V0�/G − �4�E − V0�/G + �U/G�2�1/2,

�11�

where G=�2kBZ
2 /2m*, where m* is the electron effective

mass; V0 is a constant offset of the periodic potential; 2U is
the energy gap at the zone boundary; and E is the electron
energy with respect to the Fermi level. Equation �10�, thus,
needs three parameters to determine k� for a given energy E.
A fit to the self-consistently calculated 
2 band of Nb yields
U=2.05 eV, V0=−9.85 eV, and m*=1.08me, where me is the
electron mass. On the other hand, upon fitting Eq. �11� to the
�1 band of Nb, we have m*=1.05me, U=1.66 eV, and
V0=−5.5 eV.

The presence of a periodic atomic potential in the spacer
layer, however, ensures that in addition to two traveling
waves with wave vectors k and −k arising from reflections at
the interfaces, electron wave functions in the phase accumu-
lation model should be described40,42 by the combination of
two more waves with wave vectors �k−g� and −�k−g�,
where g is the reciprocal lattice vector. These additional
waves correspond to the Bragg scattering within the periodic
potential of the spacer layer. Since the reciprocal lattice vec-
tor normal to the interface within the first Brillouin zone is
g=2kBZ=2� /d, we have 2kBZdNb=2m�. Using this relation,
Eq. �9� can be rewritten as

2��dNb − 2�I�E� = 2�� , �12�

where ��=kBZ−k� and �=m−n. It follows from Eq. �8� of
the preceding section that �� is characteristic of the envelope
function that modulates the QW wave function.

As we know, states within Nb layers that do not coincide
in energy and momentum with those within Fe layers form
the quantum well states. With the increase in the Nb layer
thickness, the positions of the spin-polarized QW states vary
and, thus, exhibit regular dispersion through the Fermi level.

FIG. 8. The thickness dependence of the QW energies in Fe/Nb
multilayers generated by Eq. �12� of the phase accumulation model
with respect to �a� 
2 and �b� �1 bands.
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For n=1, Figs. 8�a� and 8�b� demonstrate the nature of QW
dispersions in Fe/Nb multilayers along �100� and �110� di-
rections as generated by Eq. �12� of the phase accumulation
model. We find that the 
2 band yields a weak dispersion as
compared to the �1 band of Nb due mainly to the weak
modulation of k� in the �100� direction. The oscillation pe-
riods of the quantum well states at the Fermi energy, as
shown by the dispersion curves of Figs. 8�a� and 8�b�, are
obtained to be about 5.5 and 7.3 Å. These values are close to
the fitted values of 6.3 and 7.7 Å, respectively.

IV. CONCLUSIONS

In this paper, we have explained the phenomena of inter-
layer exchange coupling in Fe/Nb�001� multilayers in terms
of RKKY as well as the QW model using the density func-
tional calculations. The RKKY periodicities arising out of
extremal spanning vectors of the multisheet Nb Fermi sur-
face have been found to be in favorable agreement with the
available experimental as well as calculated data. In the re-
gion of small magnetic moments of Fe, both the short and
long periods display the RKKY kind of coupling, since IEC
shows bilinearity in magnetization. However, the presence of
additional biquadratic and triquadratic coupling constants in
IEC at higher Fe moments signifies the onset of the non-
RKKY character, especially of the short-period oscillations.

We have found that at moments closer to the bulk value, the
long-period oscillations eventually become independent of
the size of the magnetic moments. The appearance of higher
harmonics in the well-fitted envelope of the oscillatory ex-
change coupling turns out to be responsible for the saturation
of long periods. The oscillatory nature of the density of states
at the Fermi level supports the QW description of the ex-
change coupling in Fe/Nb multilayers. It is because such
oscillations originate mainly from the spin-dependent con-
finement of the propagating electrons inside the quantum
well of the spacer medium. Quantum well dispersions around
the Fermi level illustrate that the majority-spin bands con-
tribute largely to the formation of QW states, which is sub-
sequently analyzed by making use of the phase accumulation
model. All these results show that magnetic quantum wells
are formed in Fe/Nb multilayers and that the oscillatory be-
havior of the exchange coupling in Fe/Nb multilayers is bet-
ter described by the quantum well model.
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