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We consider the two-band double-exchange model and calculate the critical temperature in the ferromagnetic
regime �Curie temperature�. The localized spins are represented in terms of the Schwinger bosons, and two
spin-singlet Fermion operators are introduced. In terms of the new Fermi fields the on-site Hund’s interactions
are in a diagonal form and one accounts for them exactly. Integrating out the spin-singlet fermions we derive
an effective Heisenberg-type model for a vector which describes the local orientations of the total magnetiza-
tion. The transversal fluctuations of the vector are the true magnons in the theory, which is the base for Curie
temperature calculation. The critical temperature is calculated employing the Schwinger-bosons mean-field
theory. While approximate, this technique of calculation captures the essentials of the magnon fluctuations in
the theory, and for two-dimensional systems one obtains zero Curie temperature, in accordance with the
Mermin-Wagner theorem.
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I. INTRODUCTION

Manganites are prominent representatives of strongly cor-
related systems, where the effect of correlations among elec-
trons plays a crucial role. The growing interest in manganites
is mainly due to observation of resistivity changes by many
orders of magnitude upon the application of small magnetic
fields, an effect that is called colossal magnetoresistance.

The attempts to properly describe the physics of these
materials by means of simple perturbative methods typically
fail.1 One has to develop a technique of calculation which
capture’s the essential features of the compounds. The
double exchange model is a widely used model for
manganites.1–3 In isolation, the ions of Mn have an active 3d
shell with five degenerate levels. The degeneracy is pre-
sented due to rotational invariance within angular momen-
tum l=2 subspace. The crystal environment results in a par-
ticular splitting of the five d orbitals �crystal field spliting�
into two groups: the eg and t2g states. The electrons from the
eg sector, which form a doublet, are removed upon hole dop-
ing. The t2g electrons, which form a triplet, are not affected
by doping, and their population remains constant. The Hund
rule enforces alignment of the three t2g spins into a S=3/2
state. Then, the t2g sector can be replaced by a localized spin
at each manganese ion, reducing the complexity of the origi-
nal five orbital model. The only important interaction be-
tween the two sectors is the Hund coupling between local-
ized t2g spins and mobile eg electrons. A strong impact on the
physics of manganites has the static Jahn-Teller distortion
which leads to a splitting of the degenerate eg levels.

The double exchange model has a rich phase diagram,
exhibiting a variety of phases, with unusual ordering in the
ground states. The procedures followed to obtain the phase
diagram in one band model are different: numerical
studies,4,5 dynamical mean-field theory �DMFT�,6 and ana-
lytical calculations,7,8 but four phases have been systemati-
cally observed: �i� antiferromagnetism �AF� at a density of
mobile electrons n=1, �ii� ferromagnetism �FM� at interme-
diate electronic densities, �iii� phase separation �PS� between
FM and AF phases, and �iv� spin incommensurable �IC�

phase at large enough Hund coupling. The competition be-
tween spin spiral incommensurate order or phase separation
and canted ferromagnetism is also a topic of intensive
study.7–9 The phase diagram becomes more rich if the orbital
degeneracy is accounted for.10,11

The double exchange model is also used to calculate the
critical temperature in the ferromagnetic regime of mangan-
ites. Predictions about Curie temperature in the one-band
double-exchange model are made using the Monte Carlo
�MC� technique,4 high-temperature series expansion,12 dy-
namical mean-field theory,13 and a standard mean-field
approach.14 The most striking feature of the critical tempera-
ture as a function of fermion density is the symmetry with
respect to n=0.5. The Curie temperature is maximized at that
point, and the maximal value is different within different
approaches.

Very recently the critical temperature was calculated us-
ing a two-band model taking account of the Jahn-Teller
effect.15,16 Again the characteristic feature of the temperature
curves as a function of charge carrier density is the symmetry
with the respect to n=1. The new assertion is that the Curie
temperature increases with increasing interband hopping.15

It is impossible to require the theoretically calculated Cu-
rie temperature to be in accordance with experimental re-
sults. The models are idealized and they do not consider
many important effects: phonon modes, several types of dis-
order, Coulomb interaction, etc. Because of that it is impor-
tant to formulate theoretical criteria for the adequacy of the
method of calculation. In our opinion the calculations should
be in accordance with the Mermin-Wagner theorem.17 It
claims that in two dimensions there is no spontaneous mag-
netization at nonzero temperature. Hence, the critical tem-
perature should be equal to zero. It is well known that Monte
Carlo method of calculation does not satisfy this criteria, and
a “weak z-coupling” three-dimensional �3D� system is used
to mimic a 2D layer.1 It is difficult within dynamical mean-
field theory to make a difference between two- and three-
dimensional systems. DMFT is a good approximation when
the dimensionality goes to infinity. This made the analytical
methods important even for the assessment of the numerical
results.
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The paper is organized as follows. In Sec. II, starting from
two-band double-exchange model, we derive an effective
Heisenberg-like model in terms of the vector describing the
local orientations of the total magnetization. The transversal
fluctuations of the vector are the true magnons in the theory.
This is a base for Curie temperature calculation. Section III
is devoted to phase diagrams of the model in space of Hund’s
constant and charge carrier density. We calculate the spin-
stiffness constant as a function of density which is an impor-
tant step towards understanding the Curie temperature be-
havior as a function of charge carrier density. The results for
the Curie temperature are reported in Sec. IV. A summary in
Sec. V concludes the paper. Spin-stiffness constant calcula-
tions are presented in the Appendix.

II. EFFECTIVE MODEL

We consider a two-band double-exchange model, with the
Hamiltonian

H = − �
ll��ij��

�tll�cil��
+ cjl� + H.c.� − 2�

il

JlS� i · s�il − ��
il

cil�
+ cil�,

�2.1�

where l , l� are band indexes, i , j are site labels, � are the spin
indices, cil�

+ and cil� are creation and destruction operators
for mobile electrons, and � is the chemical potential. sil is
the spin of the conduction electrons and Si is the spin of the
localized electrons. The sums are over all sites of a three-
dimensional cubic lattice and �i , j� denotes the sum over the
nearest neighbors. We denote t11� t1, t22� t2, and t12� t21
� t�.

In terms of Schwinger-bosons ��i� ,�i�
† � the core spin op-

erators have the following representation:

S� i =
1

2
�i�

+ t�����i��, �i�
+ �i� = 2s �2.2�

with the Pauli matrices ��x ,�y ,�z�.
The partition function can be written as a path integral

over the complex functions of the Matsubara time �i����
��i�

+ ���� and Grassmann functions cil���� �cil�
+ ����:

Z��� =	 

i��

d�i�
+ ���d�i����

2�ı 

il��

dcil�
+ ���dcil����e−S

�2.3�

with an action given by the expression

S = 	
0

�

d���
i

��i�
+ ����̇i���� + cil�

+ ���ċil�����

+ h��+,�,c+,c�� , �2.4�

where � is the inverse temperature and the Hamiltonian is
obtained from Eqs. �2.1� and �2.2� replacing the operators
with the functions.

We introduce spin-singlet Fermi fields

�il
A��� =

1
2s

�i�
+ ���cil���� , �2.5�

�il
B��� =

1
2s

��i1���cil2��� − �i2���cil1���� �2.6�

which are U�1� gauge variant with charge −1 and 1, respec-
tively,

� jl�
A��� = e−i	j���� jl

A���, � jl�
B��� = ei	j���� jl

B��� . �2.7�

The equations �2.5� and �2.6� can be regarded as a SU�2�
transformation

�il� = gi���
+ cil�� ⇒ gi

+ =
1

2s
� �i1

+ �i2
+

− �i2 �i1
� �2.8�

with �il
A=�il1 and �il

B=�il2.
In terms of the new Fermi fields, electron creation and

destruction operators have the form

cil1 =
1

2s
��i1�il

A − �i2
+ �il

B� ,

cil2 =
1

2s
��i2�il

A + �i1
+ �il

B� ,

cil1
+ =

1
2s

��i1
+ �il

+A − �i2�il
+B� ,

cil2
+ =

1
2s

��i2
+ �il

+A + �i1�il
+B� �2.9�

and the spin of the conduction electrons sil is

sil
� =

1

2
cil�

+ ����
� cil�� =

1

2
Oi

�
�il�
+ ����



�il��, �2.10�

where

Oi
�
 =

1

2
Trgi

+��gi�

. �2.11�

It is convenient to introduce three basic vectors which de-
pend on the Schwinger bosons

Ti�
1 = Oi

�1, Ti�
2 = Oi

�2, Ti�
3 = Oi

�3, �2.12�

where Ti
3= 1

s Si. Then, the spin of the electrons can be repre-
sented as a linear combination of three vectors S j, P j =T j

1

+ iT j
2, and P j

+=T j
1− iT j

2

sil =
1

2s
Si��il

A+�il
A − �il

B+�il
B� +

1

2
Pi�il

B+�il
A +

1

2
Pi

+�il
A+�il

B.

�2.13�

The basic vectors satisfy the relations Si
2=s2, Pi

2=Pi
+2

=Si ·Pi=Si ·Pi
+=0, and Pi

+ ·Pi=2. Using the expression �2.13�
for the spin of itinerant electrons, the total spin of the system

Si
tot = Si + si1 + si2 �2.14�

can be written in the form
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Si
tot =

1

s�s +
1

2�
l

��il
A+�il

A − �il
B+�il

B��Si +
1

2
Pi�

l

�il
B+�il

A

+
1

2
Pi

+�
l

�il
A+�il

B. �2.15�

The gauge invariance imposes the conditions ��il
A+�il

B�
= ��il

B+�il
A�=0. As a result, the dimensionless magnetization

per lattice site ��Si
tot�z� reads

��Si
tot�z� =

1

s�s +
1

2�
l

���il
A+�il

A − �il
B+�il

B����Si
z� .

�2.16�

Let us average the total spin of the system �Eq. �2.15�� in
the subspace of the itinerant electrons �Si

tot� f =Mi. The vector
Mi identifies the local orientation of the total magnetization.
Accounting for the gauge invariance, one obtains the follow-
ing expression for Mi:

�Si
tot� f = Mi =

M

s
Si, �2.17�

where

M = s +
1

2�
l

���il
A+�il

A − �il
B+�il

B�� �2.18�

can be thought of as an “effective spin” of the system �Mi
2

=M2�. Now, if we use Holstein-Primakoff representation for
the vectors M j

Mj
+ = Mj1 + iMj2 = 2M − aj

+ajaj ,

Mj
− = Mj1 − iMj2 = aj

+2M − aj
+aj ,

Mj
3 = M − aj

+aj �2.19�

the Bose fields aj and aj
+ are the true magnons in the system.

In terms of the true magnons the Schwinger bosons �2.2�
have the following representation:

�i1 =2s −
s

M
ai

+ai, �i2 = s

M
ai. �2.20�

Replacing in Eqs. �2.5� and �2.6� for the spin-singlet Fermi-
ons and keeping only the first two terms in 1/M expansion
1− 1 � 2M ai

+ai�1− 1
4M ai

+ai+¯ we obtain

�il
A = cil1 +

1
2M

ai
+cil2 −

1

4M
ai

+aicil1 + ¯ , �2.21�

�il
B = cil2 −

1
2M

aicil1 −
1

4M
ai

+aicil2 + ¯ . �2.22�

The equations �2.21� and �2.22� show that the singlet fermi-
ons are electrons dressed by a virtual cloud of repeatedly
emitted and reabsorbed magnons.

An important advantage of working with A and B fermi-
ons is the fact that in terms of these spin-singlet fields the

spin-fermion interaction is in a diagonal form, the spin vari-
ables �magnons� are removed, and one accounts for it ex-
actly:

�
il

S� i · s�il =
s

2�
il

��il
+A�il

A − �il
+B�il

B� . �2.23�

Replacing all this into the action �2.4�, we can rewrite it
as a function of the Schwinger bosons and spin-singlet fer-
mions. The resulting action is quadratic with respect to the
spin-singlet fermions and one can integrate them out. The
effective Hamiltonian of the theory, in Gaussian approxima-
tion, is given by

heff = ��
�ij�

�ai
+ai + aj

+aj − ai
+aj − aj

+ai� , �2.24�

where � is the spin stiffness �A42�. Detailed calculation are
given in the appendix. Based on the rotational symmetry, one
can supplement the Hamiltonian �Eq. �2.24�� up to an effec-
tive Heisenberg-like Hamiltonian, written in terms of the
vectors Mi

heff = − J�
�ij�

Mi · M j , �2.25�

where J=� /M. The ferromagnetic phase is stable if the ef-
fective exchange coupling constant is positive J0.

It is important to highlight the difference between the
above effective theory �2.25� and Ruderman-Kittel-Kasuya-
Yosida �RKKY� theory. The RKKY effective Hamiltonian is
an effective Heisenberg-like Hamiltonian in terms of core
spins Si, obtained averaging in the subspace of the itinerant
electrons.8 The subtle point is that if we use a Holstein-
Primakoff representation for the localized spins Si, the cre-
ation and annihilation bose operators do not describe the true
magnon of the system.18,19 The true magnons are transversal
fluctuations corresponding to the total magnetization which
includes both the spins of localized and delocalized elec-
trons. Therefore the RKKY validity condition requires small
Hund’s coupling, and small density of charge carriers, which
in turn means that the magnetization of the mobile electrons
is inessential. In contrast of RKKY theory the effective
model �2.25� is written in term of vectors Mi which describe
the local orientations of the total magnetization, and the bose
operators in Eq. �2.19� are the true magnons in the theory.
This is essential when one calculates the Curie temperature.
The effective model �2.25� is obtained integrating out the
spin-singlet fermions �2.5� and �2.6�. In terms of these fer-
mions the Hund’s interaction is in a diagonal form and we
account for it exactly. Hence, the effective theory �2.25� is
valid for arbitrary values of Hund’s constants and for all
densities of charge carriers.

III. PHASE DIAGRAMS

Here we illustrate some of the features of our model,
namely, the phase diagrams and how they change when we
vary the model’s parameters. Since calculating Tc is closely
related to calculating spin stiffness �, we have examined the
behavior of � as a function of electron density in details.
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The physics of the model depends on dimensionless pa-
rameters J1 / t1, J2 / t1, t2 / t1, and t� / t1. Throughout this chapter
we fix the scale setting t1= t2=1, and use J1, J2, and t� as a
free parameters of the model. Also in this section t�=0.5, and
since we are describing manganite materials, we have set s
=3/2. The phase diagrams in Fig. 1 are constructed by plot-
ting the curve �=0 in coordinate system of carrier density n
and J2 / t1 for fixed ratio J1 /J2. Regions where �0 corre-
spond to the ferromagnetic phase �FM�, while those with �
�0 are denoted here simply as non-FM ones, since describ-
ing all possible phases is not the purpose of this paper.

We consider four different cases for the ratio J1 /J2,
namely, J1 /J2=15/15, where the bands are degenerated, and
three cases with increasing bands’ splitting J1 /J2=16.5/15,
J1 /J2=17.5/15 and J1 /J2=25/15. The values of those ratios
are chosen to compare our model with available results.15

When the bands are split, we observe an island of ferro-
magnetic instability around the line n=1. The lowest point of

the island is denoted by J2
*. Increasing the ratio J1 /J2 in-

creases the island by lowering the value of J2
* �see Fig. 1�.

This is a new aspect of the two-band situation compared to
the single-band one. For the degenerated bands �J1 /J2=1�,
we have not observed the island of ferromagnetic instability,
up to values as large as J2=300, and the boundary curve
resembles the one in the single-band model.

The value of the spin stiffness constant � depends on the
point �n ,J2� in the phase diagram, for fixed ratio J1 /J2.
When the point approaches the boundary of the ferromag-
netic phase, the value of � decreases and reaches zero on the
boundary �by the definition of the boundary�. We have cal-
culated the spin stiffness constant � as a function of n, for
fixed J2 at zero temperature. There are three distinctive
cases: J2J2

*, J2�J2
* and J2�J2

*.
For the first one, the presence of ferromagnetic instability

near n=1 results in a function ��n�, which consists of two
pieces, one for n in the interval �0, 1�, and another for n in

FIG. 1. Phase diagrams for the four cases under consideration at t�=0.5: �a� J1 /J2=1, �b� J1 /J2=16.5/15, �c� J1 /J2=17.5/15, and �d�
J1 /J2=25/15. White regions correspond to FM phase, grayed ones to FM instability.
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the interval �1,2�. For the ratio J1 /J2=25/15 �Fig. 2�, such
are the curves corresponding to J2=22, J2=15 and J2=10;
for J1 /J2=17.5/15 �Fig. 3� the curve corresponding to J2
=45; and for J1 /J2=16.5/15 �Fig. 4� the one corresponding
to J2=75. The important characteristic of all these curves is
the existence of two maxima, one within interval �0,1�, and
another one within interval �1,2�. The global maximum is
within the interval �0,1�, which is result of the presence of
two phase boundaries in the other interval. In the case of
degenerated bands, the absence of island of instability leads
to the absence of such type of function ��n�.

For the second one, J2 is very close to J2
*, hence near n

=1 the spin stiffness constant is very small. As a result ��n�
is a function with two maxima and one minimum. For the
ratio J1 /J2=25/15 �Fig. 2�, such is the curve corresponding
to J2=7; for J1 /J2=17.5/15 �Fig. 3� the curves correspond-

ing to J2=30 and J2=25; and for J1 /J2=16.5/15 �Fig. 4� the
ones corresponding to J2=60 and J2=50. The minimal value
of the function decreases when J2 approaches J2

*. Again, in
the special case of degenerated bands, there is no such a
curve.

For the third case, J2�J2
*, we are well below the island of

ferromagnetic instability, and the function ��n� has only one
maximum within the interval �0,1�. For the ratio J1 /J2
=25/15 �Fig. 2�, such is the curve corresponding to J2=5;
for J1 /J2=17.5/15 �Fig. 3� the curves corresponding to J2
=20 and J2=15; and for J1 /J2=16.5/15 �Fig. 4� the ones
corresponding to J2=30 and J2=15. In the case of degener-
ated bands, for all values of J2 the curves are of this type
because of the absence of instability island �Fig. 5�.

It is a widely known fact that near n=2 the system is
ferromagnetically unstable and the spin stiffness constant ap-

FIG. 2. �Color online� � as a function of n for the forth case
J1 /J2=25/15, corresponding to Fig. 1�d�.

FIG. 3. �Color online� � as a function of n for the third case
J1 /J2=17.5/15, corresponding to Fig. 1�c�.

FIG. 4. �Color online� � as a function of n for the second case
J1 /J2=16.5/15, corresponding to Fig. 1�b�.

FIG. 5. �Color online� � as a function of n for the degenerated
case J1 /J2=15/15, corresponding to Fig. 1�a�.
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proaches zero when the carrier density approaches 2. One
can see from the phase diagrams �Fig. 1�, that with decreas-
ing J2, ferromagnetic instability sets in for smaller values of
n. As a result we obtain that with decreasing J2, the value of
n for which ��n�=0 decreases. This is best observed in the
case of degenerated bands, where we have examined broader
set of values for J2. With increasing of J2, the point �=0 gets
closer to n=2 and the curve becomes more symmetric.

For all four ratios we have performed calculations for J2
=15 �red lines in the figures�, to compare our results with the
results in Ref. 15. Since the maximum value of the Curie
temperature corresponds to the maximum value of the spin
stiffness constant, it is important to see how this value de-
pends on the ratio J1 /J2 for fixed J2. Increasing J1 /J2 in-
creases the ferromagnetic instability �see phase portraits Fig.
1�, lowering the point J2

* which in turn leads to decrease of
the maximum value of � and qualitative changes in its be-
havior as a function of density n.

IV. CURIE TEMPERATURES

To calculate the Curie temperature we utilize the
Schwinger-bosons mean-field theory.21,22 The advantage of
this method of calculation is that for 2D systems one obtains
zero Curie temperature, in accordance with the Mermin-
Wagner theorem.17 So, while approximate, this technique of
calculation captures the essentials of the magnon fluctuations
in the theory.

To proceed, we represent the effective spin vector Mi by
means of Schwinger bosons �i� ,�i�

+ ,

Mi

 =

1

2 �
���

�i�
+ ����


 �i��, �i�
+ �i� = 2M . �4.1�

Next we use the identity

Mi · M j =
1

2
��i�

+ � j���� j��
+ �i��� −

1

4
��i�

+ �i���� j��
+ � j���

�4.2�

and rewrite the effective Hamiltonian in the form

heff = −
J

2�
�ij�

��i�
+ � j���� j��

+ �i��� , �4.3�

where the second term in Eq. �4.2� is equal to the constant
M2, because of the constraint �4.1�, and we drop it. To ensure
the constraint �4.1� we introduce a parameter ��� and add a
new term to the effective Hamiltonian �4.3�

ĥeff = heff + ��
i

��i�
+ �i� − 2M� . �4.4�

We treat the four-boson interaction within Hartree-Fock
approximation. The Hartree-Fock Hamiltonian which corre-
sponds to the effective Hamiltonian �4.4� reads

hHF =
J

2�
�ij�

ūijuij −
J

2�
�ij�

�ūij�i�
+ � j� + uij� j�

+ �i��

+ ��
i

��i�
+ �i� − 2M� , �4.5�

where ūij�uij� are Hartree-Fock parameters to be determined
self-consistently. We are interested in real parameters which
do not depend on the lattice sites, uij = ūij =u. Then in mo-
mentum space representation, the Hamiltonian �4.5� has the
form

hHF =
3J

2
Nu2 − 2�MN + �

k

�k�k
+�k, �4.6�

where N is the number of lattice sites and

�k = � − Ju�cos kx + cos ky + cos kz� �4.7�

is the dispersion of the �k boson �spinon�.
The free energy of a theory with Hamiltonian �4.6� is

F =
3J

2
u2 − 2�M +

2T

N
�

k

ln�1 − e−�k/T� , �4.8�

where T is the temperature. The self-consistent equations for
parameters u and � are

�F

�u
= 0,

�F

��
= 0. �4.9�

We obtain a system of two equations

u =
2

3

1

N
�

k

nk�cos kx + cos ky + cos kz� , �4.10�

M =
1

N
�

k

nk, �4.11�

where nk is the bose function

nk =
1

e�k/T − 1
. �4.12�

To ensure correct definition of the bose theory �4.6�, i.e.,
�k�0 when the wave vector k runs over the first Brillouin
zone of a cubic lattice, we have to make some assumptions
for the parameter �. For that purpose it is convenient to
represent it in the form

� = 3Ju + �Ju . �4.13�

In terms of the new parameter �, the Bose dispersion is

�k = Ju�3 − cos kx − cos ky − cos kz + �� �4.14�

and the theory is well defined for ��0.
We find the parameters � and u solving Eqs. �4.10� and

�4.11�. For high enough temperatures both ��T�0 and
u�T�0 and the excitation is gapped. It is the spinon exci-
tation in the theory in the paramagntic phase. Decreasing the
temperature leads to decrease of ��T�. At temperature TC it
becomes equal to zero and long-range excitation emerges in
the spectrum. Hence the temperature at witch � reaches zero
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is the Curie temperature. We set �=0 in the system of equa-
tions �4.10� and �4.11� and obtain a system of two equations
for the Curie temperature TC and the parameter u, which is
the renormalization of the exchange constant at Curie tem-
perature

u =
2

3

1

N
�

k

cos kx + cos ky + cos kz

e��u/MTC��3−cos kx−cos ky−cos kz� − 1
,

M =
1

N
�

k

1

e��u/MTC��3−cos kx−cos ky−cos kz� − 1
. �4.15�

To calculate TC we solve the above system of equations,
with M�T� and ��T� calculated from Eqs. �2.18� and �A42�,
respectively.

The results for the Curie temperature TC as a function of
charge density n are plotted in Figs. 6–9, for two different
values of interband hopping parameter t�. In all cases we
have set t1= t2=1, and consider a theory with s=3/2 for the
core spins. We want to compare our results with the results in
Ref. 15, so we have calculated TC for J2=15 and t�=0.5 as
well �red curves�. Since our method of calculating TC in-
volves ��T�, the resulting curves are very similar to the ones
in Sec. III �Figs. 2–5�, and bear their characteristics. As
above we have three different choices for the parameters J2
J2

*, J2�J2
*, and J2�J2

*. For the biggest ratio we consider
J1 /J2=25/15 �see Fig. 6�, we have a two-piece function,
since our chosen value J2J2

*. With decreasing the ratio, the
point J2

* moves to higher values and J2 becomes smaller than
J2

*. As a result the curves we obtained have only one maxi-
mum. It is important to note that even for the degenerated
case J1 /J2=1, the point at which TC reaches zero is smaller
than n=2 unlike the results in Ref. 15. This can be also seen
from the phase portraits �Fig. 1�, where the instability of
ferromagnetism near the charge carriers density n=2 is evi-
dent. One can also note that for t�=1 decreasing the ratio
J1 /J2 leads to increase in the maximum value of TC�n�, while

when t�=0.5 the TC�n� is maximal when J1=J2. Similar re-
sult was found in a two-band model applied to dilute
systems.22

The most important difference between our curves of
critical temperature as a function of n and the ones in Ref. 15
is the lack of symmetry with respect to n=1. This asymmetry
originates from asymmetry in the phase diagrams, which in
turn leads to asymmetry of the spin-stiffness curves. The
two-peak structure of TC�n� in Fig. 6 is a consequence of the
fact that the bands occupy different energy intervals �very
different couplings�. The asymmetry diminishes when the
partial overlap of the bands increases �the values of J�s are
close, see Figs. 7 and 8�, and the form of the TC�n� curve
becomes approximately semicircular �see Fig. 9� when the
overlap is maximal �J1=J2�. At t�=0.5 the curve in Fig. 9
resembles the result in Ref. 15.

FIG. 6. �Color online� Curie temperature TC as a function of
charge density n for J1=25, J2=15, with t�=1/2 and t�=1.

FIG. 7. �Color online� Curie temperature TC as a function of
charge density n for J1=17.5, J2=15, with t�=1/2 and t�=1.

FIG. 8. �Color online� Curie temperature TC as a function of
charge density n for J1=16.5, J2=15, with t�=1/2 and t�=1.
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We have also examined the effect of t�. Increasing its
value results in enlargement of the ferromagnetic instability
island around n=1. The value of J2

* decreases and the width
of the island increases. This in turn leads to both quantitative
and qualitative changes in TC�n� �see the black lines of Figs.
6–9�. An important conclusion is that Curie temperature in-
creases with increasing t� if the bands are strongly split �very
different J couplings, Figs. 6 and 7�, while for weakly split
bands �J1 /J2�1�, we obtained an opposite behavior, the
critical temperature decreases �Figs. 8 and 9�.

V. SUMMARY

In summary, we have calculated the Curie temperature in
two-band double exchange model. First we reduced the
model to an effective Heisenberg-type model for a vector
which describes the local orientations of the total magnetiza-
tion. Next, we use Schwinger-bosons mean-field theory to
calculate the critical temperature. This technique of calcula-
tion is in agreement with Mermin-Wagner theorem, which
means that employing our method of calculations for 2D
system one obtains TC=0.20,21

There are many quantitative and qualitative differences
between our results and the results obtained within dynami-
cal mean-field theory or Monte Carlo simulation approach.
Maybe the most significant difference is that DMFT and MC
calculations lead to temperature’s curves, as a function of
fermion density, symmetric with respect to n=1. This is not
the result in the present paper. The asymmetry of the TC�n�
curves with respect to n=1 is a characteristic feature in our
approach. This asymmetry is seen looking at the phase dia-
grams. It predetermines the asymmetry of the spin-stiffness
curves which lead directly to the asymmetric TC�n� curves.
The symmetry mentioned in the paper Ref. 15 is possible if
the two bands are degenerated and Hund’s constants are un-
physically large.

Another important result reported in previous papers is
that the critical temperature increases with increasing the in-
terband hopping. Our calculations show that this is true when
the band splitting is strong. If the bands split weakly, the
assertion is opposite. The Curie temperature increases when
the interband hopping decreases.
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APPENDIX: CALCULATION OF �

Here we present a detailed derivation of the spin stiffness
constant �. We start from the two-band Hamiltonian �2.1�
and rewrite it in terms of Scwinger bosons �2.2� and spin-
singlet fermions �2.5� and �2.6�.

The resulting action is quadratic with respect to the spin-
singlet fermions and one can integrate them out. To do so, it
is convenient to represent the action as a sum of three terms

S = Sf + Ss-f
�1� + Ss-f

�2�, �A1�

where Sf is the free fermion action

Sf = 	
0

�

d���
i�
��i1�

+ �

��
�i1� + �i2�

+ �

��
�i2�� + Hf�

�A2�

with free fermion Hamiltonian Hf

Hf = − s�
il

Jl��il
+A�il

A − �il
+B�il

B� − ��
il�

�il�
+ �il�

− �
�ij��

t1��i1�
+ � j1� + � j1�

+ �i1�� − �
�ij��

t2��i2�
+ � j2�

+ � j2�
+ �i2�� − �

�ij��
t���i1�

+ � j2� + � j2�
+ �i1� + �i2�

+ � j1�

+ � j1�
+ �i2�� . �A3�

We remind the reader of the notations �il1=�il
A and �il2

=�il
B, so that the sum over � in the above equation is a sum

over A and B. It is convenient to represent the term describ-
ing spin-fermion interaction as a sum of two terms

Ss-f
�1� = 	

0

�

d��−
t1

2s
�
�ij�

���i�
+ � j� − 2s���1i

+A�1j
A + �1j

+B�1i
B �

+ �� j�
+ �i� − 2s���1i

+B�1j
B + �1j

+A�1i
A �� −

t2

2s
�
�ij�

���i�
+ � j�

− 2s���2i
+A�2j

A + �2j
+B�2i

B � + �� j�
+ �i� − 2s���2i

+B�2j
B

+ �2j
+A�2i

A �� −
t�

2s
�
�ij�

���i�
+ � j� − 2s���1i

+A�2j
A + �2i

+A�1j
A

+ �2j
+B�1i

B + �1j
+B�2i

B � + �� j�
+ �i� − 2s���1i

+B�2j
B

+ �2i
+B�1j

B + �2j
+A�1i

A + �1j
+A�2i

A ��� , �A4�

FIG. 9. �Color online� Curie temperature TC as a function of
charge density n for the degenerated case J1=15, J2=15, with t�
=1/2 and t�=1.
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Ss-f
�2� = 	

0

�

d��−
t1

2s
�
�ij�

���i1
+ � j2

+ − � j1
+ �i2

+ ���1j
+A�1i

B − �1i
+A�1j

B �

+ ��i1� j2 − �i2� j1���1i
+B�1j

A − �1j
+B�1i

A ��

−
t2

2s
�
�ij�

���i1
+ � j2

+ − � j1
+ �i2

+ ���2j
+A�2i

B − �2i
+A�2j

B � + ��i1� j2

− �i2� j1���2i
+B�2j

A − �2j
+B�2i

A �� −
t�

2s
�
�ij�

���i1
+ � j2

+

− � j1
+ �i2

+ ���1j
+A�2i

B + �2j
+A�1i

B − �1i
+A�2j

B − �2i
+A�1j

B �

+ ��i1� j2 − �i2� j1���2i
+B�1j

A + �1i
+B�2j

A − �1j
+B�2i

A

− �2j
+B�1i

A ��� . �A5�

To diagonalize the free fermion Hamiltonian Hf we switch
to momentum space

Hf = �
lk

��kl
A�lk

A+�lk
A + �kl

B�lk
B+�lk

B � + �
k�

��k��1k�
+ �2k�

+ �2k�
+ �1k��� , �A6�

where the dispersions for A and B fermions are

�kl
A = − 2tl�

k

cos k� − sJl − � ,

�kl
B = − 2tl�

k

cos k� + sJl − � ,

��k� = − 2t��
�

cos k�. �A7�

The Hamiltonian is diagonalized by means of the transfor-
mation

�1k
A = uk

Af1k
A + vk

Af2k
A , �2k

A = − vk
Af1k

A + uk
Af2k

A ,

�1k
B = uk

Bf1k
B + vk

Bf2k
B , �2k

B = − vk
Bf1k

B + uk
Bf2k

B . �A8�

Solving the equations for u and v gives

uk
R =1

2
�1 + xk

R� ,

vk
R = sgn���k��1

2
�1 − xk

R� �A9�

with xk
R =

�2k
R − �1k

R

4�2�k� + ��2k
R − �1k

R �2
. �A10�

The resulting Hamiltonian is

Hf = �
k

�E1k
A f1k

+Af1k
A + E1k

B f1k
+Bf1k

B + E2k
A f2k

+Af2k
A + E2k

B f2k
+Bf2k

B �

�A11�

with dispersions for the quasiparticles

E1k
A =

�2k
A + �1k

A

2
−

1

2
4�2�k� + ��2k

A − �1k
A �2,

E2k
A =

�2k
A + �1k

A

2
+

1

2
4�2�k� + ��2k

A − �1k
A �2, �A12�

E1k
B =

�2k
B + �1k

B

2
−

1

2
4�2�k� + ��2k

B − �1k
B �2,

E2k
B =

�2k
B + �1k

B

2
+

1

2
4�2�k� + ��2k

B − �1k
B �2. �A13�

To write the spin-fermion interaction Ss-f in terms of the
new fermions we introduce the notations

fk1

+ = �f1k1

+A f1k1

+B f2k1

+A f2k1

+B �, fk2
=�

f1k2

A

f1k2

B

f2k2

A

f2k2

B
� . �A14�

Now we rewrite the action in the form

Ss-f = 	
0

�

d�1d�2�
k1k2

fk1

+ ��1�Wk1k2
��1 − �2�fk2

��2� ,

�A15�

where the matrix Wk1k2
��1−�2� is a sum of two terms

Wk1k2
��1 − �2� = Wk1k2

0 ��1 − �2� + Wk1k2

int ��1 − �2� .

�A16�

Wk1k2

0 ��1−�2� is the free fermion action

Wk1k2

0 ��1 − �2� = �k1k2
���1 − �2��

�

��2
+ E1k2

A 0 0 0

0
�

��2
+ E1k2

B 0 0

0 0
�

��2
+ E2k2

A 0

0 0 0
�

��2
+ E2k2

B

� �A17�
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while Wk1k2

int ��1−�2� is a sum of two matrixes, corresponding to Ss-f
�1� and Ss-f

�2�

Wk1k2

int ��1 − �2� = ���1 − �2��
Kk1k2

��2� 0 0 0

0 Lk1k2
��2� 0 0

0 0 Nk1k2
��2� 0

0 0 0 Ok1k2
��2�
�

+ ���1 − �2��
0 Ak1k2

��2� 0 Bk1k2
��2�

Ck1k2
��2� 0 Dk1k2

��2� 0

0 Ek1k2
��2� 0 Fk1k2

��2�

Gk1k2
��2� 0 Ik1k2

��2� 0
� �A18�

with matrix elements

Kk1k2
��2� = −

1

2s

1

N�
k
��

�=1

3
cos k�

3
��

�ij�
��i�

+ � j� + � j�
+ �i� − 4s��t1�uk

A�2 + t2�vk
A�2 − 2t�uk

Avk
A� ,

Lk1k2
��2� = −

1

2s

1

N�
k
��

�=1

3
cos k�

3
��

�ij�
��i�

+ � j� + � j�
+ �i� − 4s��t1�uk

B�2 + t2�vk
B�2 − 2t�uk

Bvk
B� ,

Kk1k2
��2� = −

1

2s

1

N�
k
��

�=1

3
cos k�

3
��

�ij�
��i�

+ � j� + � j�
+ �i� − 4s��t1�vk

A�2 + t2�uk
A�2 + 2t�uk

Avk
A� ,

Lk1k2
��2� = −

1

2s

1

N�
k
��

�=1

3
cos k�

3
��

�ij�
��i�

+ � j� + � j�
+ �i� − 4s��t1�vk

B�2 + t2�uk
B�2 + 2t�uk

Bvk
B� , �A19�

Ak1k2
��2� = −

1

2s

1

N�
�ij�

��i1
+ � j2

+ − � j1
+ �i2

+ ��e−ik1rj+ik2ri − e−ik1ri+ik2rj��t1uk1

A uk2

B + t2vk1

A vk2

B − t�uk1

A vk2

B − t�vk1

A uk2

B � ,

Bk1k2
��2� = −

1

2s

1

N�
�ij�

��i1
+ � j2

+ − � j1
+ �i2

+ ��e−ik1rj+ik2ri − e−ik1ri+ik2rj��t1uk1

A vk2

B − t2vk1

A uk2

B + t�uk1

A uk2

B − t�vk1

A vk2

B � ,

Ek1k2
��2� = −

1

2s

1

N�
�ij�

��i1
+ � j2

+ − � j1
+ �i2

+ ��e−ik1rj+ik2ri − e−ik1ri+ik2rj��t1vk1

A uk2

B − t2uk1

A vk2

B − t�vk1

A vk2

B + t�uk1

A uk2

B � ,

Fk1k2
��2� = −

1

2s

1

N�
�ij�

��i1
+ � j2

+ − � j1
+ �i2

+ ��e−ik1rj+ik2ri − e−ik1ri+ik2rj��t1vk1

A vk2

B + t2uk1

A uk2

B + t�vk1

A uk2

B + t�uk1

A vk2

B � , �A20�

Ck1k2
��2� = −

1

2s

1

N�
�ij�

��i1� j2 − � j1�i2��e−ik1ri+ik2rj − e−ik1rj+ik2ri��t1uk1

B uk2

A + t2vk1

B vk2

A − t�uk1

B vk2

A − t�vk1

B uk2

A � ,

Dk1k2
��2� = −

1

2s

1

N�
�ij�

��i1� j2 − � j1�i2��e−ik1ri+ik2rj − e−ik1rj+ik2ri��t1uk1

B vk2

A − t2vk1

B uk2

A + t�uk1

B uk2

A − t�vk1

B vk2

A � ,

Gk1k2
��2� = −

1

2s

1

N�
�ij�

��i1� j2 − � j1�i2��e−ik1ri+ik2rj − e−ik1rj+ik2ri��t1vk1

B uk2

A − t2uk1

B vk2

A − t�vk1

B vk2

A + t�uk1

B uk2

A � ,

Ik1k2
��2� = −

1

2s

1

N�
�ij�

��i1� j2 − � j1�i2��e−ik1ri+ik2rj − e−ik1rj+ik2ri��t1vk1

B vk2

A + t2uk1

B uk2

A + t�vk1

B uk2

A + t�uk1

B vk2

A � , �A21�
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where N is the number of lattice’s sites. Integrating the fer-
mions out we obtain the effective action Seff

Seff = − ln det W = − Tr ln W . �A22�

Using the properties of the logarithm

Tr ln W = Tr ln�W0 + Wint� = Tr ln W0 + Tr ln�1 + �W0�−1Wint�

�A23�

we rewrite the effective action in the form

Seff = − Tr ln�1 + �W0�−1Wint� , �A24�

where the term Tr ln W0 does not depend on the Schwinger
bosons and we have dropped it. Finally, we expand the ef-
fective action in powers of

Xk1k2
��1,�2� = �

q
	 d��Wk1q

0 ��1,���−1Wqk2

int ��,�2� .

�A25�

The result is

Seff = − TrX +
1

2
TrX2 + ¯ . �A26�

The inverse matrix �Wk1k2

0 �−1 is given by

�Wk1k2

0 �−1��1,�2� =�
�k1k2

S1k1

A ��1 − �2� 0 0 0

0 �k1k2
S1k1

B ��1 − �2� 0 0

0 0 �k1k2
S2k1

A ��1 − �2� 0

0 0 0 �k1k2
S2k1

B ��1 − �2�
� , �A27�

where Slk
� ���= 1

−i�+Elk
� ��=A or B, l=1 or 2�. Replacing Eq. �A18� into �A25�, we end up with two terms for Xk1k2

, one which

is diagonal Xk1k2

�1� , and one with zero diagonal elements Xk1k2

�2� . Hence, one obtains for the trace of the matrix X

TrX = TrX�1�, �A28�

where

Xk1k2

�1� ��1,�2� =�
S1k1

A ��1 − �2�Kk1k2
��2� 0 0 0

0 S1k1

B ��1 − �2�Lk1k2
��2� 0 0

0 0 S2k1

A ��1 − �2�Nk1k2
��2� 0

0 0 0 S2k1

B ��1 − �2�Ok1k2
��2�
� �A29�

and the first term in the effective action �A26� is

Seff
�1� = −

1

2s

1

N�
k
��

�=1

d
cos k�

d
�	

0

�

d��
�ij�

��i�
+ � j� + � j�

+ �i� − 4s��2t��uk
Avk

A�n2k
A − n1k

A � + uk
Bvk

B�n2k
B − n1k

B ��

+ t1��uk
A�2n1k

A + �vk
A�2n2k

A + �uk
B�2n1k

B + �vk
B�2n2k

B � + t2��uk
A�2n2k

A + �vk
A�2n1k

A + �uk
B�2n2k

B + �vk
B�2n1k

B �� . �A30�

To calculate the contribution of Seff
�1� to the spin-stiffness

constant � in Eq. �2.24� we use the Holstein-Primakoff rep-
resentation for the Schwinger bosons

�1i = �1i
+ =2s −

s

M
ai

+ai,

�2i = s

M
ai, �2i

+ = s

M
ai

+, �A31�

and keep the terms quadratic with respect to the magnons
ai ,ai

+. The result is

�1 =
1

2M

1

N�
k
��

�=1

d
cos k�

d
�„2t���uk

Avk
A�n2k

A − n1k
A � + uk

Bvk
B�n2k

B

− n1k
B ��� + t1��uk

A�2n1k
A + �vk

A�2n2k
A + �uk

B�2n1k
B + �vk

B�2n2k
B �

+ t2��uk
A�2n2k

A + �vk
A�2n1k

A + �uk
B�2n2k

B + �vk
B�2n1k

B �… . �A32�

Calculating the contribution of the second term in Eq.
�A26� to the effective Hamiltonian �2.24� we account for the
fact that X1 matrix is quadratic with respect to magnons,
hence it does not contribute. The contribution comes from
Ss-f

�2� �A5� which leads to the matrix X�2�:
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Xk1k2

�2� ��1,�2� =�
0 S1k1

A ��1 − �2�Ak1k2
��2� 0 S1k1

A ��1 − �2�Bk1k2
��2�

S1k1

B ��1 − �2�Ck1k2
��2� 0 S1k1

B ��1 − �2�Dk1k2
��2� 0

0 S2k1

A ��1 − �2�Ek1k2
��2� 0 S2k1

A ��1 − �2�Fk1k2
��2�

S2k1

B ��1 − �2�Gk1k2
��2� 0 S2k1

B ��1 − �2�Ik1k2
��2� 0

� . �A33�

After some algebra we arrive at the following representation of the second term in Eq. �A26�

Seff
�2� =	 d�1d�2�

k1k2

�S1k1

A ��1 − �2�Ak1k2
��2�S1k2

B ��2 − �1�Ck2k1
��1� + S1k1

A ��1 − �2�Bk1k2
��2�S2k2

B ��2 − �1�Gk2k1
��1� + S2k1

A ��1

− �2�Ek1k2
��2�S1k2

B ��2 − �1�Dk2k1
��1� + S2k1

A ��1 − �2�Fk1k2
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Switching from imaginary time � representation to frequency � representation we calculate the expressions in the small �
approximation. The result is a

Slk1

A ��1 − �2�Sl�k2

B ��1 − �2� � ���1 − �2� 	 d�

2�
Slk1

A ���Sl�k2

B ��� . �A35�

Next we make a change of wave vectors variables k1=q+ 1
2k, k1=q− 1

2k, and calculate the expressions in small wave-vector k
approximation. The expression �A34� calculated in small frequency and small wave-vector approximation has the form
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2�s2
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B�2� . �A36�

Our third step is to express the products of the Green functions, in the above equation, in terms of the Fermi function n�E�
=1/ �eE+1�

	 d�

2�
S1q

A ���S1q
B ��� =

n�E1q
B � − n�E1q
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A , �A37�

	 d�
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	 d�
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A . �A40�

Finally we use the representation of the Schwinger bosons �A31�. To calculate the contribution to the spin-stiffness constant it
is enough to keep only the quadratic terms with respect to magnons
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2
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The spin-stiffness constant in the effective action �2.24� is a sum of the expressions �A32� and �A41�
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