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Fractal dimension of domain walls in two-dimensional Ising spin glasses
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We study domain walls in two-dimensional Ising spin glasses in terms of a minimum-weight path problem.
Using this approach, large systems can be treated exactly. Our focus is on the fractal dimension dy of domain
walls, which describes via (£)~ L% the growth of the average domain-wall length with system size LX L.
Exploring systems up to L=320 we yield d;=1.274(2) for the case of Gaussian disorder, i.e., a much higher
accuracy compared to previous studies. For the case of bimodal disorder, where many equivalent domain walls
exist due to the degeneracy of this model, we obtain a true lower bound dy= 1.095(2) and a (lower) estimate
dr=1 .395(3) as upper bound. Furthermore, we study the distributions of the domain-wall lengths. Their scaling
with system size can be described also only by the exponent d, i.e., the distributions are monofractal. Finally,

we investigate the growth of the domain-wall width with system size (“roughness”) and find a linear behavior.
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I. INTRODUCTION

In this paper we examine the scaling behavior of
minimum-energy domain wall (MEDW) excitations for two-
dimensional Ising spin glasses. Spin glasses are a prototypi-
cal model'* for systems with quenched disorder in statistical
mechanics. In general, despite more than two decades of in-
tensive research, many properties of spin glasses, especially
in finite dimensions, are still not well understood. The situa-
tion is slightly better for two-dimensional spin glasses, be-
cause it is now widely accepted that no ordered phase for
finite temperatures exists.”® For d=2 the behavior can be
described well by a zero-temperature droplet scaling (DS)
approach.'%-!2 Within this approach, the excitation energy of
domain walls and other excitations scales like AE~L?,
where L is the system size and 6 is referred to as stiffness
exponent. Within DS, @ is assumed to be universal for all
types of excitations. Furthermore, the surface of an excita-
tion is assumed to display a scaling that is characterized by a
fractal dimension d.

For Gaussian disorder of the interactions, prior investiga-
tions of domain walls resulted in estimates for the stiffness
exponent §=-0.287(4),”!3 and the values for the MEDW
fractal dimension listed in Table I. For this model, it was
recently indeed confirmed!*!> that the value of 6 is the same
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for d; are typically of order 1072 or larger, i.e., ten times
larger than our high-precision result. Also, we reach much
larger system sizes than previous work (also a bit larger than
the recent study in Ref. 18, which is anyway for a different
lattice type), which also reduces systematic errors due to
unknown corrections to scaling.

For the +J model it was found that the MEDW energy
saturates at a nonzero value for large system sizes,”>3 which
means 6#=0. It exhibits a high degeneracy of ground states
(GSs) and thus allows for numerous MEDWs, e.g., varying
in length, see Fig. 1. As a result, the concept of a MEDW is
not clear-cut. Referring to this model, the SLE scaling rela-
tion above cannot be adopted. Recent attempts to capture the
fractal properties of typical MEDWs arising from bimodal
disorder concluded with values d;=1.30(1) (Ref. 24) and
d;= 1.283(11).'8 Nevertheless, in these works there is still no
systematics concerning the selection of a representative

TABLE I. Previous results on the fractal dimension of MEDWs
arising from Gaussian disorder in two dimensions. From left to
right: reference, estimate value of the fractal dimension dy, geom-
etry of the system (sq: square lattice, tr: triangular lattice, hex:
hexagonal lattice), largest system studied, and numerical algorithm
used; for details, see cited references [M=matching approaches,

o . TM=(T=0) transfer matrix method, BC=branch-and-cut
also for other types of excitations. Recent studies suggested algorithm].
that such domain walls are governed by stochastic Loewner
evolution (SLE) p.rocesses.m’17 Within _conformal-field  peference d; Geom. System Alg.
theory, it seems possible to relate the MEDW fractal dimen-
sion dy to the stiffness exponent 6 via 19 1.25(1) tr 256 X256 M
20 1.26(3) sq 12X13 ™
dp=1=314G +6)]. (1) 21 1.28(2) sq 48X 48 M
Note that for a wide range of values of 6, one gets very 17 1.28(1) tr 720 X 360 M
similar results for the fractal dimension, e.g., d{6=-0.2) 5 1.34(10) sq 30X 30 BC
=1.268, while d/{(6=-0.3)=1.278. Hence, a high accuracy is 5 1.30(8) sq 30X 30 BC
needed to verify whether the proposed relation is compatible 18 1.273(3) hex 256X 256 M
with the data. Note that the error bars of the previous results
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FIG. 1. For the +J model, a high degeneracy appears. Hence, for
each of the GSs, many MEDWs separating the left and right borders
exist, having all the same minimum energy. Left: many MEDW:s for
a sample system of size L=80, middle (right): corresponding
+1-min (xJ-max) MEDW. The dashed lines denote free boundary
conditions, and the solid lines indicate periodic boundary
conditions.

MEDW, as mentioned in Ref. 18. The sampling of the do-
main walls is not controlled, hence different configurations
having the same energy do not contribute to the results with
the same weight. Currently, no fast algorithm is known
which allows us to sample the degenerate GSs and/or
MEDWs correctly. For a correct sampling, all degenerate
configurations must contribute to the results with the same
weight or probability. So far this can be done only for small
systems through enumeration of all GS configurations.?’
Some investigations use a scaling relation from droplet
theory,!! which quotes that the variance of the DW entropy
should also scale like a power law with the system size, with
the same exponent d;. In a recent investigation based on this
relation for square lattices of size up to L=256,2 a value of
d;=1.090(8) for 24=L=96 and d;=1.30(3) for L=96 was
reported. On the other hand, other studies on the scaling
behavior of the MEDW entropy®”-?® suggested that the be-
havior of zero-energy DWs is not consistent with the droplet
scaling picture. In this context it was proposed to treat
MEDWs of zero and non zero energies as distinct classes.
These findings were supported by calculations for square lat-
tices as well as for an aspect ratio different from unity.
Hence, due to these results, a direct determination of the
MEDW fractal dimension appears to be preferable.

So as to shed further light on their fractal properties, we
investigate MEDWs originating from bimodal and Gaussian
disorders. We use exact algorithms,29 which allows us to ob-
tain the domain walls with the true lowest energy. Here, we
describe an approach to the problem of finding MEDWs in
terms of minimum-weight paths, detailed in the forthcoming
section. It allows us to put a lower bound and an upper
estimate on the scaling behavior of MEDWSs and it might
further provide a sound basis to investigate the scaling be-
havior of typical MEDWs for the +J model, similar to the
random-field Ising model, where all ground states can be
represented by a certain graph,® which should allow for un-
biased sampling of ground states. Moreover, the correspond-
ing picture of minimum-weight paths on undirected graphs,
which allow for negative edge weights, leads to a percolation
problem that appears to be interesting on its own, i.e., seems
to be in a new universality class.>! For the bimodal system,
to avoid aforementioned problems of sampling correctly
equivalent MEDWs of different lengths, we ask for those
MEDWs with extremal lengths, bearing a true lower bound
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and an upper estimate 1.095(2) <d;<1.395(3) in case of
bimodal disorder. In addition, for the Gaussian system, we
study square lattices with a large number of samples and
much larger system sizes than previously studied in the lit-
erature, yielding a result for the fractal dimension d;
=1.274(2), which has an enhanced precision compared to the
results shown in Table I and compares well with the value
d}"*=1.2764(4) obtained via inserting §=-0.287(4) into Eq.
(1). Finally, we also study the scaling behavior of the
domain-wall roughness and of the distributions of domain-
wall length and width.

The paper is organized as follows. In Sec. II, we present
the details of the model and the numerical algorithms we
have applied. In Sec. III, we show all our results. We con-
clude with a summary in Sec. IV.

II. MODEL AND METHOD

In the framework of this paper, we present GS calcula-
tions of two-dimensional Ising spin glasses with nearest-
neighbor interactions. The model consists of N=L X L spins
o=(0y,...,oy) with g;=+1 located on the sites of a square
lattice. The energy is given by the Edwards-Anderson Hamil-
tonian

H(o) =~ 2, J,;0i0;, (2)
()

where the sum runs over all pairs of neighboring spins, with
periodic boundary conditions (BCs) in the x direction and
open BCs in the y direction. The bonds J;; are quenched
random variables drawn according to a given disorder distri-
bution. They can take either sign and thus lead to competing
interactions among the spins. Here, we consider two kinds of
disorder distributions: (i) Gaussian with zero mean and vari-
ance one, and (ii) a bimodal distribution J;;=+1 with equal
probability (+J model).

In this work, we study minimum-energy domain walls,
which are certain excitations that are defined, for each real-
ization of the disorder, relative to two spin configurations: o
is a ground state with respect to periodic BCs (x direction)
and 0*f, a GS obtained for antiperiodic BCs. One can realize
antiperiodic BCs by inverting the signs of one column of
spins, described by the Hamiltonian HAP(o). Considering
both spin configurations, MEDWs separate two regions on
the spin lattice: one, where the spins have the same orienta-
tion in both GSs and another, where the spins have different
orientations regarding the two GSs. In the above periodic-
antiperiodic setup, one domain wall will run through the in-
verted bonds. This straight-line domain wall is not of interest
to us. Instead, we are interested in the MEDW which consists
of those bonds that are fulfilled in exactly one of the two
GSs. Hence, the energy of the MEDW is given by
HAP(0AP)—~H(o) and this is the minimum energy among all
the system-spanning (top-down) DWs. This MEDW feature
is an integral part of our attempt to study the problem of
finding MEDWs in terms of a minimum-weight path
problem.

First, we will now outline the main steps of our algorithm
and elaborate on them afterward. The algorithm can be de-
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FIG. 2. (Color online) Construction of the dual of the spin lat-
tice. (a) spin lattice with periodic BCs in the horizontal direction
(denoted by black bonds at the left and right columns), and free
BCs along the top and bottom boundaries. The sites are denoted by
circles, and the bonds straight and jagged lines. For clarity, spins are
not drawn. (b) vertices and edges of the dual graph. Note that two
extra vertices on top and at the bottom are introduced to account for
the free BCs.

composed into the following four steps: For each given real-
ization of the bond disorder (i) find a GS spin configuration
consistent with periodic BCs in x direction, (ii) determine all
possible MEDW segments on the dual of the spin lattice, (iii)
map the problem to an auxiliary graph and find a minimum-
weighted perfect matching (MWPM), and (iv) interpret the
MWPM as minimum-weight path on the dual graph that rep-
resents a MEDW on the spin lattice.

Step (i). For the calculation of the GS o, we apply an
exact matching algorithm that works for planar systems
without external fields, e.g., a square lattice with periodic
BCs in at most one direction. For this purpose, the system
has to be represented by its frustrated plaquettes and paths
connecting those pairwise. Finding a minimum-weighted
perfect matching on the graph of frustrated plaquettes then
corresponds to finding a GS spin configuration on the spin
lattice. For a comprehensive description, see Refs. 29 and
32-34. This well established method yields the exact GS of
the frustrated spin-glass model and allows us to explore large
system sizes, easily more than 103 spins, within a reasonable
amount of computing time.
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FIG. 3. Construction of the auxiliary graph: Every connected
pair of vertices on the dual is replaced by a construct of six vertices
and seven edges. This transformation is illustrated for four edges
depicted on the left, with weights w1, w2, w3, and w4. After the
transformation the gray edges carry zero weight and the black edges
carry the same weight as the original edge on the dual. For illustra-
tive purposes, the vertices are divided into round and squared ones.

Step (ii). Once the GS is obtained we construct the dual of
the spin lattice as weighted graph G=(V,E, w). The vertices
V are given by all the distinct plaquettes on the spin lattice
and edges e € E connect vertices, where the corresponding
plaquettes have a bond in common, i.e., the edge crosses the
corresponding bond, see Fig. 2. Note that there are two “ex-
tra” vertices above and below the system. Furthermore, a
weight (or distance) w(e) is assigned to each edge of G,
equal to the amount of energy that it would contribute to a
MEDW, i.e., w(e)=2J;;0;0; for (i,j) being the bond crossed
by the edge e, o being the GS obtained in step (i). In this
sense, the dual graph comprises all possible MEDW seg-
ments. A DW is a path in the dual graph and the energy of a
DW is the sum of the weight of all segments being part of a
DW. The GS property of the spin configuration has an impact
on the weight distribution of G. There are negative edge
weights but one cannot identify loops with negative weight.
This will be of importance later. In summary, a MEDW is a
path with minimum weight joining the extra vertices of G.

Step (iii). Since G is an undirected graph that allows for
negative edge weights, it requires matching techniques to
construct minimum-weight paths.> Following this reference,
we therefore map the problem onto an auxiliary graph G4
obtained from the dual graph by the following procedure:
For every vertex i in the dual graph (except the two extra
vertices above and below the lattice) G4 contains a pair of
“duplicate” vertices i,i”) which are connected by an edge
of zero weight. Furthermore, for every edge e=(i,j) in the
dual graph, two additional vertices a’”) and b/ are intro-
duced which are connected by an edge [a",b")]. One of
these two vertices is connected to the duplicate vertices rep-
resenting i [e.g., via edges () ,i@) and (a7 ,i?))], and the
other one to the duplicate vertices representing j [via edges
(bW j@) and (b7, j))]. All edge weights are zero, except
for the edges connecting one of the additional vertices to the
duplicates it is connected to, which carry the weight of w(e),
see Fig. 3. We then apply an algorithm from the LEDA337
library to obtain a MWPM on G,.

Step (iv). The MWPM consists of a certain subset of the
edges of G4. In order to interpret it as a minimum-weight
path on the dual graph, one has®® to perform a partial inverse
transformation of step (iii). This means, we merge all adja-
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cent vertices with the same type, i.e., all pairs i@,i?) of
“duplicate” vertices and all pairs ), b of additional ver-
tices. The edges in the matching which are between vertices
of the same type disappear, while the other edges “remain,”
which means each edge (a/b"/,i/j@/®)) becomes an edge
(a/b'%D ilj). Thus, some of the edges contained in the
matching disappear, while the remaining ones form (for a
proof and further details, see Ref. 35) a path of minimal
weight, connecting the extra vertices of G. This path in turn
corresponds to the MEDW on the spin lattice.

One advantage of the above procedure, in comparison
with computing the GSs for periodic and antiperiodic bound-
ary conditions, is that it yields an explicit representation of a
MEDW. This allows us to determine quantities such as
length and/or roughness scaling exponents directly. The main
advantage is related to the +J model. There, it is possible to
lift the degeneracy among the MEDWs. One can obtain
MEDWSs with an exactly minimum and a maximal (i.e., not
maximum) number of segments, i.e., exactly shortest and
very long MEDWs.

First, the slight modification w(e) — w(e)+ €(e>0) repre-
sents a negative feedback for the inclusion of path segments;
hence, the MEDW will be among all MEDWs that one
which includes a minimal number of path segments, i.e., a
shortest MEDW. The value of € must be small enough to
maintain the minimum-weight path structure on the dual
graph, e.g., €<1/|E|. This modification is referred to as
+J-min. The modification w(e)— w(e)— € represents a posi-
tive feedback for the inclusion of path segments to the
MEDW. Hence, the MEDW obtained in this way will be,
among all MEDWs, one which will include a large number
of path segments. This is referred to as +J/-max. However, in
the latter case arises a serious difficulty: the weight distribu-
tion may allow for loops with negative weights now, and,
due to the nature of the MWPM problem, the algorithm re-
turns a minimum-weight path in the presence of loops with
negative weight. Hence, only the total number of segments
of the minimum-weight path together with all loops (of zero
energy in the unmodified graph) is maximized, not the num-
ber of segments of a minimum-weight path alone. So we are
only able to obtain a lower bound on the longest MEDWs via
using the +J/-max approach. Note that obtaining the true
longest minimum-weight MEDWSs is an NP (nondeterminis-
tic polynomial)-hard problem, which means that only algo-
rithms are known, where the running time increases expo-
nentially with the number N of spins.

Another drawback is the fact that the MEDW depends on
the spin configuration determined in step (i). To get really the
shortest MEDWSs (+/-min 2), we therefore allow the algo-
rithm to change the GS, if this leads to a shortening of the
MEDW. The basic idea is that different GSs differ by a finite
number of zero-energy clusters of reversed spins. We are
only interested in clusters, where part of the boundary coin-
cides with a MEDW, which lead to a different MEDW of the
same energy when flipping the cluster. Note that also the
edges connecting to the two extra nodes are considered here
as part of the MEDW; hence, a flip of one or several zero-
energy clusters might lead to another MEDW which has
nothing in common with the starting MEDW. Technically,
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FIG. 4. Extension of the algorithm: subpath ¢, replacement path
¢, and pivoting spin cluster S that might be flipped in order to
improve a MEDW regarding its length.

we look for the shortest MEDWs by finding replacement
paths for certain subpaths of the MEDW, depicted in Fig. 4.
Firstly, one has to find a subpath ¢; of the MEDW with
weight w(c;)<0. If there is a replacement path ¢, with
o(c,)=|w(c;)| and if len(c,) <len(c,) flip the cluster of spins
surrounded by ¢, and ¢, to yield a shorter path with mini-
mum weight. This is repeated until no such shortening of the
MEDW is possible any more. Since the flipping of the spin
cluster does not cost energy (the loops c; and c, are zero-
energy loop in the unmodified graph), the GS property of the
spin configuration is maintained. This latter elaboration of
the algorithm is computationally more expensive because we
have to consider all possible subpaths ¢; with w(c;) <0. This
means we can obtain the true shortest MEDWSs, considering
all possible GSs, only for small sizes L=< 32. For large sizes,
we study only the shortest MEDW for the given GS, which
was obtained in step (i).

III. RESULTS

In Fig. 1 we show several MEDWs for a system with +J
disorder, one long +/-max MEDW and one shortest +J/-min
MEDW, respectively. Already from these samples one can
expect an observable difference in their scaling behavior.

We expect the disorder-averaged MEDW length € to scale
with the system size according to (€)~ L%, where (...) de-
notes the disorder average and 1=<d,;<?2 denotes the fractal
dimension of the MEDW. Its roughness r, given by the dif-
ference in the coordinates of its leftmost and rightmost posi-
tions on the spin lattice, should display the scaling behavior
(ry~ L%, with a roughness exponent d,. To determine the
scaling behavior of the MEDWs, we have studied systems
with sizes up to L=320 and averaged over up to 40 000
realizations of the disorder, see Table II.

In Fig. 5, we show the result for (£) as function of system
size for the Gaussian disorder and the three cases studied for
the £/ model. The data can be fitted very well to power laws;
the results are shown in Table III. As an alternative method,
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TABLE II. Number of samples investigated for the different
system sizes.
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TABLE III. Scaling exponents of the mean MEDW length (d)
and its roughness (d,). Fits are restricted to L=26 (d;) and L=50
(d,). The value of Q gives a measure for the quality of the fit (Ref.

L<160 L=160 L=226 L=320 38).
Gaussian 40000 10000 2800 2000 df 0 d, 0
+J-min 40000 40000 20000 10000
+J-max 40000 20000 5000 5900 Gaussian 1.274(2) 0.45 1.008(11) 0.40
+J-min 1.095(2) 0.27 1.006(6) 0.78
+J-max 1.395(3) 0.16 0.993(8) 0.35

we also estimate the value of the scaling exponent d; using
the local (successive) slopes of the data points, see also Ref.
39. The results are compatible with the data given in Table
IIT; only this procedure leads to a more conservative estimate
of the numerical error, leading to the error bars as given in
Table III.

The estimate for the MEDW fractal dimension in case of
a Gaussian distribution of the interaction strengths is in good
agreement with earlier results, but has an enhanced precision,
see Table 1. Note that the treatment of large systems reduces
the influence of systematic errors due to unknown correc-
tions to scaling, hence providing a very reliable result for d;.
Furthermore, it is consistent with the result d;LE =1.2764(4)
predicted by the SLE scaling relation, where we considered
0=-0.287(4) from Ref. 13. For the +/ model we obtained a
lower bound d;=1.095(2) that is distinct from 1, indicating
that overhangs are still significant for MEDWs with minimal
length. Furthermore, the estimate of the upper bound d;
=1.395(3) points out that DWs with maximal length are not
space-filling. Note that using the past results,'$?* which are
based on an uncontrolled sampling of domain walls, one
could nor exclude these values dy=1 and d;=2.

As pointed out in the description of the algorithm, the
+J-min value actually overestimates the scaling behavior of
MEDWs with minimal length. Therefore we performed cal-
culations with the computationally more expensive algo-
rithm, which allows for a change of the GS spin configura-
tion. We considered system sizes L=<32 with up to 3000

oA hJ-max
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—— +J-min

om0 £J-min2
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FIG. 5. (Color online) Scale dependence of the average MEDW
length. Fits to the form (€£)~ L (dashed lines) yield the exponents
quoted in Table III. The inset shows the local slopes for the Gauss-
ian and +J-min(max) MEDWs as function of 1/L, providing com-
parable values for dy but with larger error bars (see text).

samples and subsequent fits were restricted to 12<L=<32.
Albeit affected by finite-size effects, we found d;= 1.080(5)
(0=0.40) for the +J-min2 DWSs, compared to a value of
d;=1.105(2) (©=0.43) when fitting the results for +J-min
MEDWs in the same interval. Hence, minimal-length and
true minimum-length MEDWs are very similar, which means
that the =/-min MEDWs, where we can obtain results for
large sizes, yield a reliable estimate of the behavior of short-
est MEDWs.

Also, we analyzed the scaling behavior of MEDWs of
different energies for the +J model, in particular, for those
which have energies Epw=0 or Epw=2 (which constitute
96% of all MEDWs, the remaining 4% are Epw=4,6,8,10).
In all cases we find again power-law behavior (not shown)
with (€) ~ L%; the resulting exponents are almost compatible
within error bars to the average result above. Note that in
recent studies?’-? of the DW entropy, contrarily, the behavior
of Epw=0 and Epyw #0 DWs was very different.

Also for the scaling of the domain-wall roughness with
system size, we find a power-law behavior, see Fig. 6. The
resulting roughness exponents are shown again in Table III.
The roughness exponents, obtained using local slopes, ex-
hibit again larger error bars. Hence, in all cases studied here
the roughness exponent appears to be compatible with unity,
showing that the width of the MEDWs scales like the exten-
sion in y direction, as predicted in Ref. 21. Regarding the
roughness, one finds stronger finite-size effects for small L,

el HJ-max ' A
Gaussian AT
102 b —v— xJ-min /\AVW _
&+ £J-min2 A g
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Vo0l E BT e L Sk
A 10 e
/_\‘ Y A e
. v e
Y e
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0 L 10° ! J
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10 102
L

FIG. 6. (Color online) Scale dependence of the average MEDW
roughness. Fits to the form (r) ~ L% for L=50 (dashed lines) yield
exponents listed in Table III. The inset shows the scaling of +J/-min
compared to the +J/-min 2 MEDWs.
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FIG. 7. (Color online) Scaling plot of the MEDW length distri-
bution P;(€) for Gaussian disorder, where the dashed line is a log-
normal distribution with mean w=1.06(1) and standard deviation
0=0.24(1), obtained from a fit to the data of L=160.

where we again have compared minimal-length and true
minimum-length MEDWs. Fits to the data in the interval
16<L=<32 yield d,=1.101(15) (Q=0.75) for the true
minimum-length +/-min 2 MEDWs and d,=1.070(2) (Q
=0.79) for the minimal-length +J/-min MEDWs. Hence,
minimal-length and true minimum-length MEDWs are again
very similar, which means that the +/-min MEDWs yield a
reliable estimate of the shortest MEDW behavior.

So far, we have analyzed the scaling behavior of mean
values; now we turn to the full distributions. The main result
is that the distributions P;(€) of the MEDW length for dif-
ferent system sizes can be related to each other via a simple
scaling relation. As can be seen from Fig. 7, rescaling of the
length distributions according to P, (€)=L"f({L~%) yields a
collapse to a master curve. A qualitative similar behavior was
found for the scaling of optimal paths in strong and weak
disorder,>*% the mass distribution of the backbone in critical
percolation,*! and regarding undirected minimum-weight
paths in two-dimensional (2D) lattice graphs, where the ef-
fect of isotropically correlated bond weights on the scaling
exponents was investigated.*? Note that the distribution is
peaked close to (€). This holds also for MEDWs subject to
+J disorder (not shown), where one can observe an addi-
tional even and/or odd deviation in the distribution of the
MEDW lengths. This deviation results in a preferential ap-
pearance of domain walls with even length, responsible for
defect energies Epw=0 mod(4).

As it turns out, the particular shape of the scaling function
is very simple for the case of Gaussian disorder. It is possible
to fit the distributions in this case satisfactory by use of log-
normal scaling functions.

Figure 7 shows an example, where the log-normal distri-
bution p(x)=exp{-[In(x/w)?/20?}/[xo|(2m)] with x
={L~% was fitted to the data (L=160), resulting in a mean
and standard deviation u=1.06(1) and o=0.24(1), respec-
tively. This scaling function does not suit the bimodal disor-
der case. Here, for MEDWs with minimal length, we observe
an exponential decay of P;(€) with increasing €=(€) and
estimated the decay exponent @=-5.9(2) from a fit to the
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PL(W)

FIG. 8. (Color online) Distribution P;(w) of weights w on the
MEDW segments for different system sizes L. The dashed line is a
Gaussian distribution with mean w=-0.0003(40) and standard de-
viation =0.552(3), obtained from a fit to the data corresponding to
L=320. Results were averaged over 103 samples.

data corresponding to L=320. The DWs with maximal
length somehow resemble the Gaussian case, but we could
not find a meaningful distribution to describe it.

Finally, we look at the distribution P,(w) of weights w
which comprise the segments along the obtained MEDW for
different system sizes, see Fig. 8. Since the segments avail-
able to the DWs are a result of a GS calculation, and because
each MEDW is the result of another optimization procedure,
the behavior is a priori not clear. Clearly, bonds with very
negative energy will not occur, because these bonds with a
large absolute value will be satisfied in the ground state with
high probability, hence yield a positive contribution to the
energy of a domain wall. This contributes to a decrease of
the width of the distribution P;(w), compared to the under-
lying disorder distribution. Apart from this effect, the result-
ing data compare well to a Gaussian with mean O and a
standard deviation close to 0.5: from a fit to the data at L
=320, we have obtained a mean u=-0.0003(40) and a stan-
dard deviation 0=0.552(3). Note that the distributions do not
seem to depend strongly on the system size.

IV. SUMMARY

In summary, we have performed GS and DW calculations
for 2D Ising spin glasses with short ranged interactions via
exact optimization algorithm. Exploring large system sizes,
we investigated the fractal properties of MEDWs arising
from Gaussian and bimodal disorders.

Our approach is based on a minimum-weight path ap-
proach for paths on undirected networks which can have
negative edge weights. This allows for a more direct calcu-
lation of MEDWs. Presently, in the case of the degenerate +.J
model, we are able to calculate the shortest and very long
paths, which allows us to obtain bounds on the fractal prop-
erties of the MEDWSs. We believe that this approach could
serve as a basis for the desired calculation of typical DW's for
the +J model.
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For the £/ model we found a lower bound d,;=1.095(2),
which is clearly larger than unity, and we estimated an upper
bound d;=1.395(3)<2. These exponents do not change
when we analyze the scaling behavior of MEDWs restricted
to certain energies. Our results for the length scaling expo-
nent in case of Gaussian disorder d;= 1.274(2) are in agree-
ment with prior results but with strongly enhanced precision.
Furthermore, it compares well to the result obtained from the
recently proposed SLE scaling relation. Furthermore, we
found that the full distributions of the MEDW lengths scale
with the same fractal exponent dy. This behavior was also
found for observables in a different physical context. Finally,
the width of the domain wall scales like its height, for all
cases considered here.

For later work, one could consider models with a 7=0
transition between a ferromagnetic phase and a spin-glass
phase, and study the behavior of the fractal dimensions
around this transition. Here, from Eq. (1), one would expect
to observe a discontinuous change of the exponents when
approaching the transition, because 6 is expected to be the
same everywhere in the spin-glass phase. Furthermore, it

PHYSICAL REVIEW B 76, 174411 (2007)

would be desirable to be able to sample GSs for the +J
model in equilibrium, hence each GS would contribute prov-
ably with equal weight and/or probability to all results. This
would allow us to determine a fractal dimension of the av-
erage domain wall. This value might be related to the energy-
scaling exponent 6 via a relation similar to Eq. (1).
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