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In the present study, we report inelastic neutron scattering measurements from para-hydrogen defects in solid
normal deuterium at three different concentrations �between 3% and 11%� using the time-of-flight spectrometer
TOSCA-II. The measured double-differential cross sections give access to the self-inelastic structure factors for
the H2 centers of mass. Corrected experimental data, analyzed through the Young-Koppel model and the
Gaussian approximation, are transformed into defect densities of phonon states, which come out to be broad,
structured, and nearly concentration independent. Two experimentally determined Bose-corrected spectral mo-
ments are found to be in agreement with independent estimates, providing a strong validation of our data
reduction procedure. Subsequently, experimental phonon spectra are compared to three calculations, namely, a
simple harmonic model at infinite dilution, a more advanced harmonic model with concentration effects, and
finally a lattice dynamics simulation based on self-consistent phonon and coherent potential approximations.
However, while the first part of the defect spectral density, attributed to the propagating modes, turns out to be
roughly explained, the localized part is properly described by none of these models, except for its mean
frequency position. The large overall width appears so far impossible to be reproduced, representing a chal-
lenge for the physicists involved in quantum dynamics simulations.

DOI: 10.1103/PhysRevB.76.174304 PACS number�s�: 63.20.�e, 67.80.Mg, 78.70.Nx

I. INTRODUCTION

The lattice properties of the so-called quantum crystals
�3He, 4He, H2, D2, etc.� have been the subject of a large
number of experimental investigations and theoretical
studies.1 However, despite the great advance in the under-
standing of these systems, some of their properties are still
unclear, as proved by recent neutron scattering results on bcc
4He.2 Moreover, if the theoretical point of view is consid-
ered, the achievements in describing quantum crystals appear
even less satisfactory. It is true that the static properties of
these solids �e.g., mean kinetic and potential energies, lattice
constants, bulk modulus, etc.� seem reasonably well de-
scribed by a number of quantum simulation methods, work-
ing either at zero temperature �such as diffusion Monte
Carlo3 and Green function Monte Carlo4� or at T�0 �such
as path integral Monte Carlo �PIMC��.5 However, as far as
the quantum crystal lattice dynamics is concerned �i.e., pho-
non dispersion curves and density of phonon states�, the sce-
nario looks rather incomplete: the well-known self-consistent
phonon theory is a pragmatic method to tackle these dynamic
problems,6 but it cannot be considered sufficiently general,
and it has been recently shown that its prediction on the
mean kinetic energy of high-density solid 3He is not very
accurate.7 On the other hand, the path integral centroid
dynamics8 and the ring polymer molecular dynamics9 are
relatively new and promising techniques, but surely need fur-
ther development and a more rigorous theoretical validation,
at least regarding the dynamic properties of quantum crys-
tals. For example, in a recent study on solid para-hydrogen,10

an accurate determination of the density of phonon states
�DoPS� was extracted from inelastic neutron scattering spec-
tra and compared to the most recent path integral centroid

dynamics calculations.11 An overall agreement was found,
but yet a number of spectral shape details were missing or
misplaced in the simulated data.

Given the aforementioned results on solid para-hydrogen,
it was decided to continue the experimental studies on the
self-dynamics of solid hydrogen isotopes, exploiting the in-
tensity and the intrinsic incoherence of neutron scattering
from para to ortho-hydrogen. In this scattering event, a para-
hydrogen molecule in its rotational ground state �J=0, total
nuclear spin I=0� is excited to an ortho-hydrogen molecule
still in its rotational ground state �J�=1, total nuclear spin
I�=1� through an inelastic collision with a neutron involving
its spin flip. However, together with the rotational jump, the
molecular center of mass can be either involved in no lattice
excitation �elastic line�, or in one lattice excitation �one pho-
non spectrum�, or even in more excitations �multiphonon
spectrum�. One topic of particular relevance in this respect is
the dynamics of H2 defects in a solid D2 matrix, where the
phonon properties of a quantum crystal �i.e., solid D2� are
affected by the introduction of substitutional hydrogen impu-
rities. Since the guest molecules are lighter than those of the
host, they are supposed to vibrate with a frequency greater
than any frequency of the D2 lattice.12 Such a mode cannot
propagate through the crystal and the lattice vibration tends
to be localized at the impurity site �localized modes�. This
situation, which is opposite to the one studied by Powell and
Nielsen13 �i.e., D2 impurities in a H2 crystal�, shows some
similarities with the problem of the 3He impurities in solid
4He.14 However, the interpretation of the future experimental
findings is simpler, since both the relatively high temperature
of the lattice �T�10 K� and the bosonic nature of both H2

and D2 rule out completely any effects of the interplay be-
tween two opposite quantum statistics. In this way, the only
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difference in replacing D2 with H2 consists in the molecular
mass �since the respective pair potentials are substantially
identical15� and, from this, in the de Broglie wavelength,
which measures the particle delocalization in the crystal lat-
tice. Nevertheless, given the strong anharmonic character of
quantum crystals, a simple mass substitution also produces a
change in the coupling with its neighbors since the particle
motions are strongly correlated and influence the effective
coupling. So far, this effect, which makes the usual defect
dynamics theories inapplicable to quantum crystals,16 has
been fully captured by the joint use of self-consistent phonon
calculation and coherent potential approximation.17 In this
respect, the same limitations mentioned for the self-
consistent phonon theory in pure systems apply to the diluted
quantum alloys too. As for the cited coherent potential ap-
proximation, it is worth spending few words on its rationale:
this is a quantum mechanical method devised to describe the
electronic or phonon structures of substitutionally disordered
solid systems.18 The main point then consists in adding a
suitable medium so that the “ensemble restricted average” of
a host atom plus the “ensemble restricted average” of an
impurity atom equal the average over the total ensemble.
Such an ensemble restricted average can be thought as a
configuration in which, e.g., a single host atom occupies a
site in a lattice composed of averaged atoms.

The rest of the paper will be organized as follows. The
experimental procedure will be described in detail in Sec. II.
In Sec. III, we will work out the self-inelastic structure factor
for para-hydrogen impurities in deuterium matrixes from the
experimental spectra. In addition, we will obtain the H2 den-
sity of phonon states by using the Gaussian approximation to
estimate the unwanted multiphonon contributions. In Sec. IV,
we will discuss the experimental results, and the physical
quantities derived from the experimental spectra will be
compared to their estimates obtained from the literature and
from the original PIMC simulations. Section V will finally be
devoted to conclusions and perspectives.

II. EXPERIMENT DESCRIPTION

Neutron scattering measurements were carried out on
TOSCA-II, a crystal-analyzer inverse-geometry spectrometer
operating at the ISIS pulsed neutron source �Rutherford
Appleton Laboratory, Chilton, Didcot, UK�.19 The incident
neutron beam spanned a broad energy �E0� range and the
energy selection was carried out on the secondary neutron

flight path using the �002� Bragg reflection of ten graphite
single crystals, five placed in backscattering around a scat-
tering angle of 137.7° and five in forward scattering around a
scattering angle of 42.6°. This arrangement fixed the average
Bragg angles on graphite to 47.7° and 47.4° �in backscatter-
ing and forward scattering, respectively�, corresponding to
scattered neutron energies of 3.32 and 3.35 meV. Higher-
order Bragg reflections were filtered out by 120-mm-thick
beryllium blocks, covered with cadmium and cooled down
below 35 K. This geometry allowed to span an extended
energy transfer range, even though the fixed positions of the
crystal analyzers and the small values of the final neutron
energy �E1� imply a variation in the momentum transfer, �Q,
which is a function of the energy transfer E. In this way, the
two parts of TOSCA-II �namely, the backscattering and for-
ward scattering sections� explore two narrow stripes in the
�Q ,E� kinematic space, starting at E=0, respectively, from
Q=23.61 and 9.20 nm−1, then both increasing approximately
as �2mnE /�2, where mn is the neutron mass. The resolving
power of TOSCA-II is quite good �1.5% ��E /E0�3% � in
the energy transfer region presently accessible by the spec-
trometer �3�E�500 meV�. The extended spectral range of
TOSCA-II makes this instrument a sort of neutron equivalent
of a Raman optical spectrometer, the main difference being
the momentum transfer assuming a value sensibly larger than
zero and monotonically growing along with the energy shift.

The neutron measurements were performed in two differ-
ent experimental sessions: the first was devoted to solid nor-
mal deuterium, pure, and mixed with para-hydrogen impuri-
ties �four thermodynamic points�, while the second to pure
solid para-hydrogen �one thermodynamic point�. A compre-
hensive description of the sample measurements �including
species, temperature, H2 concentration, total molecular den-
sity, and integrated proton current� can be found in Table I.

Pressure measurements are not reported since they were
ranging in all cases between the saturated vapor values and
the upper limit of p=0.11 bar, so their effect on the sample
densities was practically irrelevant. As far as the total mo-
lecular number density is concerned, the reported estimates
were obtained from a collection of highly reliable20 thermo-
dynamic data available in the literature: Ref. 21 for pure
para-hydrogen and Refs. 22 and 23 for pure normal deute-
rium, where the former study provided the �T=0, p=0� val-
ues and the latter the thermal expansion effect. Dealing with
the three solid mixtures, the quoted molecular density values
were obtained from the linear combination of the molar vol-
umes of solid normal deuterium and solid para-hydrogen at

TABLE I. Thermodynamic conditions of the measured solid samples, including species, temperature T,
H2 molar concentration c�H2�, total molecular density n, and integrated proton current IC.

Sample Species
T

�K�
c�H2�
�%�

n
�nm−3�

IC
��A h�

1 Pure n-D2 14.10�5� 0.0 30.03�1� 2312.8

2 n-D2+p−H2 13.15�1� 3.7�4� 29.91�2� 2971.8

3 n-D2+p−H2 13.68�9� 6.5�4� 29.74�2� 4145.3

4 n-D2+p−H2 13.63�8� 10.2�4� 29.56�2� 3666.6

5 Pure p-H2 13.5�3� 100.0 25.79�3� 1177.1
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the corresponding temperature �ideal mixture�, neglecting the
excess mixing volume, which at H2 concentrations between
4% and 10% can be estimated roughly as varying from
−0.4% to −0.1%.24 This is far below our level of accuracy on
the sample densities, which is 0.7% �see Table I�.

Another important issue is the total nuclear spin I of the
hydrogen and deuterium molecules composing the experi-
mental samples, which, due to the Pauli principle, is linked
with their rotational quantum number J. As it will be made
clear later in this section, normal deuterium �11.1% of the D2
molecules with I=0, 33.3% with I=1, and 55.6% with I=2�
and para-hydrogen �all the H2 molecules with I=0� have
been employed. While the former is obtained simply by
freezing room-temperature gas in the absence of microscopic
magnetic fields, the latter was prepared from liquid hydrogen
at T=20 K, where the equilibrium concentration of the para-
species is greater than 99.82%,25 the rest being composed of
a tiny fraction of I=1 molecules �ortho-hydrogen�. Neverthe-
less, even without paramagnetic impurities, the low-
temperature solid phases of H2 and D2 present a slow spon-
taneous conversion to the least energetic state from the
rotational point of view �i.e., J=0�. Since this state is con-
nected to I=0 in H2 and to I=0,2 in D2, one should observe
the para-hydrogen content �already very high� to increase,
and the normal deuterium fraction of the D2+H2 mixture to
transform into ortho-deuterium �i.e., 16.7% of the molecules
with I=0 and 83.3% with I=2�, progressively altering the
sample rotational composition. However, given the typical
time scale of this process �namely, the exponential constant
K�=6.0�10−4 h−1 at p=0 and T=4.2 K �Ref. 26�� and the
maximum acquisition time of the present neutron measure-
ments �between 22 h for sample 3 and 44 h for sample 1�,
the spontaneous conversion effect can be safely ignored.

The first measurement was carried out on pure normal
deuterium at T=14.10 K �i.e., on sample 1 as in Table I�.
After performing a background measurement of the empty
cryostat, we cooled the sample container to low temperature
�i.e., T�20 K� and we measured its neutron spectrum up to
an integrated proton current IC=703.7 �A h. Then normal
deuterium �99.995% chemically pure from Spectra Gases,
Inc.� was allowed to condense at a pressure of about p
=0.61 bar in the scattering cell kept at T=22 K. This was
made of aluminum �2.0-mm-thick-walls� with a circular-slab
geometry. The sample thickness was 2.5 mm and the cell
diameter �60.0 mm� was slightly larger that the beam cross
section �40.0�40.0 mm2�. After filling up the cell volume
with liquid, the sample was further cooled to the desired
experimental temperature and then we started recording the
scattering spectrum. The stability of the temperature during
this measurement was satisfactory, being estimated around
0.05 K.

The second sample �namely, sample 2 at T=13.15 K� was
a solid mixture of normal deuterium and para-hydrogen with
c�H2�=3.7% and was obtained in a different and more elabo-
rated way with respect to sample 1. Let us summarize the
main steps of the procedure followed to prepare this n-D2
+p-H2 alloy. Gaseous para-hydrogen �99.99% assay from
BOC Gases Plc� and normal deuterium were produced boil-
ing off the two liquids at 22 and 25 K, respectively, and then
mixed in a buffer volume at room temperature under a pres-

sure p=2.14 bar. The exact amount of gaseous mixture
needed to fill up the sample cell �identical to the can already
used for pure deuterium� with the corresponding liquid was
allowed to condense in it �at T=22 K and p=0.62 bar�.
Then, the cell was cooled down to 11 K, so as to decrease
the vapor pressure of the gas handling line to an extremely
low value �p�0.01 bar�. This step was regarded as very im-
portant in order to prevent an undesired separation of the
mixture,27 where the more volatile gas �i.e., p-H2� could con-
centrate in the buffer volume, with the less volatile �i.e.,
n-D2� condensed in the coldest point of the gas line, namely,
in the sample cell. This would have altered the mixture com-
position in a quite noticeable way. At the end, the sample can
was isolated from the rest of the gas handling line and
warmed up to the requested experimental temperature �i.e.,
T=13.15 K�. It is worth noting that the mixture was prepared
and condensed on a time scale of an hour, regarded as too
short to alter the c�p-H2� /c�H2� ratio in a significant way.
However, the possibility of small ortho-hydrogen contamina-
tions �c�o-H2� /c�H2��5% � during the mixing procedure
cannot be completely ruled out, and their effect in the narrow
spectral region considered in rest of the present study �essen-
tially between 14 and 35 meV� will be mentioned below.
Samples labeled with 3 and 4 in Table I, characterized by
c�H2�=6.5% and 10.2%, respectively, were prepared and
measured according to a procedure identical to that just de-
scribed for sample 2.

The second session of the measurements, aiming to have a
solid pure para-hydrogen measurement as a reference, was
much simpler. We cooled the sample container to low tem-
perature �T�40 K� and we shortly measured its neutron
spectrum up to an integrated proton current of 177.7 �A h.
Gaseous para-hydrogen �boiled off the liquid at T=22 K�
was allowed to condense in the scattering cell kept at T
=17 K. This was made of aluminum �1.0 mm thick walls�
with a circular-slab geometry. The sample thickness was also
1.0 mm and the cell diameter was 55.0 mm. Then, sample 5
�namely, solid p-H2 at T=13.5 K� was prepared simply by
freezing the condensed liquid. The solidification was verified
by monitoring the rotational line placed at E=14.5 meV
through a series of short subruns: in solid p-H2, this feature
becomes on TOSCA-II extremely sharp and one order of
magnitude higher than in the liquid, as clearly shown in Fig.
1 of Ref. 10. An integrated proton current of 1177.1 �A h
was finally collected. The temperature conditions of all five
samples were carefully chosen so that, even in the presence
of some para-deuterium species �i.e., I=1 and J=1� like in
samples 1–4, the crystal lattices always exhibited a hexago-
nal close-packed structure.20

All samples were in form of polycrystalline solid and
were carefully checked by comparing spectra taken at similar
values of the equatorial �scattering� angle 	, but at com-
pletely different azimuthal angles 
. No differences larger
than the data statistical uncertainties were ever detected.

III. DATA REDUCTION AND ANALYSIS

The experimental time-of-flight spectra were transformed
into energy transfer data, detector by detector, making use of
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the standard TOSCA-II routines available on the spectrom-
eter and including the appropriate Waller-Froman Jacobian.28

Then, the energy transfer spectra were focused in two dis-
tinct blocks: one including all the backscattering detectors
and the other all the forward-scattering ones. This procedure
was justified by the polycrystalline nature of the samples
�i.e., no variation with the azimuthal angle 
� and by the
narrow angular range �	� spanned by each set of detectors,
since the corresponding full widths at half maximum, �	,
were 8.32° and 8.82° for the backscattering and the forward-
scattering banks, respectively.19 In other words, all
TOSCA-II detectors were placed at various values of 
, but
only at two possible values of 	, namely, 	=43° ±4° and 	
=138° ±4°. In this way, we produced two double-differential
cross-section measurements along the TOSCA-II kinematic
paths �QF,B�E� ,E� for each sample of Table I �plus, of
course, background and empty cans�. Then, data were cor-
rected for the kinematic factor, �E1 /E0, and the modest
empty-can contributions were properly removed from each
spectrum, taking into account the sample transmission as ex-
plained below. These spectra concerning samples 1–4 from
forward-scattering detectors are reported in Fig. 1 before re-
moving the empty can, but after correcting for the kinematic
factor.

At this stage, the important correction for the self-
shielding attenuation was performed. This was applied to
experimental data through the analytical approach suggested
by Agrawal and Sears in the case of a flat slablike sample:29

no simplified model was employed for the deuterium total
scattering cross section, �t,D2

�E0�, which, on the contrary,
was obtained from the experimental results of direct mea-
surements on solid D2 at T=17 K up to E0=80 meV.30 As
for the total cross section of the D2+H2 mixtures, a proper
linear combination of the aforementioned quantity �t,D2

�E0�

with the total scattering cross sections of solid para-hydrogen
�at T=10 K� �Ref. 30� was assumed to be accurate enough
for the self-attenuation correction. The same total scattering
cross section of p-H2, �t,pH2

�E0�, was also used to evaluate
the self-attenuation in the pure solid para-hydrogen spectrum
recorded on TOSCA-II.

The extraction of the p-H2 DoPS in bulk solid and, as
impurity, in solid deuterium matrices made use of the experi-
mental data collected in forward scattering in the 14�E
�40 meV range. The preference for the forward-scattering
data is simply justified, keeping in mind the asymptotic
relationship31 between the DoPS, Z���, and the spherically
averaged self-dynamics structure factor, Ss�Q ,��, for a poly-
crystal with a cubic Bravaisian lattice, namely,

Z�����0 = lim
Q→0

�Ss�Q,��
4M�

�2Q2 exp�2W�Q��

��coth� �

2kBT
	 + 1
−1� , �1�

where 2W�Q� is the well-known Debye-Waller factor and �
denotes the center-of-mass energy �to prevent ambiguities
with the energy transfer E�. Of course, we are not able to
perform any direct Q→0 extrapolation in our experimental
kinematic conditions, and so we will need a more elaborated
procedure in order to work out Z���. However, choosing the
lowest Q values available is always a recommendable prac-
tice in the extraction of the DoPS, since at high Q values the
relevant one-phonon features are often masked and swamped
by multiphonon contributions.

Going back to the forward-scattering experimental data
for the nth sample �already corrected for �E1 /E0, container
scattering, and self-attenuation�, after normalizing them to
reference sample thickness and density, one notes that they
can be considered as proportional to the sum of a generalized
scattering law �n��Q ,E�, which simply reads

�n��Q,E� =�E0

E1
� d2�

d�dE1
	�n�

, �2�

plus M�n��Q ,E�, which contains all the various multiple scat-
tering contributions. It is worthwhile to remind that the de-
pendence on the Q orientation is neglected here �and it will
be also in what follows�, given the polycrystalline character
of all the samples involved.

At this stage, it is convenient to introduce the

D2-subtracted data, ̃�n��Q ,E�,

̃�n��Q,E� = �n��Q,E� − �1 − c�n��H2���1��Q,E� . �3�

Using the same approach employed in the study of liquid
hydrogen-deuterium mixtures,32 one can safely neglect all
the residual distinct and diffuse scattering terms and approxi-

mate ̃�n��Q ,E� as
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FIG. 1. Raw neutron scattering spectra from solid normal deu-
terium at T=14.1 K �sample 1� and from its mixtures with various
amount of para-hydrogen �samples 2–4�, ranging from 3.7% to
10.2%. Plotted data are from forward-scattering detectors and have
been vertically shifted for graphic reasons �0.5 arbitrary units�. Ver-
tical dotted line around E=14.5 meV marks the intense J=0→J�
=1 rotational transition, which is out of scale.
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̃�n��Q,E� � c�n��H2� 
J��0

J�
�n,pH2��Q,E� , �4�

where the various rotational self-contributions, 
J�
�n,pH2�

��Q ,E�, labeled with the final rotational quantum number
J�, have been made explicit. Looking at Fig. 2, where
c�n��H2�

J�=1
�n,pH2��Q ,E� has been plotted separately from the

sum of all the other terms included in ̃�n��Q ,E�, one can
conclude that in our kinematic range of interest, the only
relevant term is the J=0→J�=1 one,

̃�n��Q,E� � c�n��H2�J�=1
�n,pH2��Q,E� = c�n��H2�4

�i,H

4�

�exp�− 2Wv�Q��j1
2�Qre/2�Ss�Q,E − E0–1� .

�5�

In the last line of the above equation, the well-known
Young-Koppel33,34 model has been employed, where �i,H is
the H incoherent scattering cross section,31 exp�−2Wv�Q�� is
the intramolecular vibrational Debye-Waller factor for H2,33

j1�x� is the spherical Bessel function of first order, re is the
equilibrium intramolecular distance in H2, Ss�Q ,�� is the
self-inelastic structure factor for the H2 centers of mass31

�spherically averaged because of the polycrystalline
samples�, and E0–1 is the energy shift for the J=0→J�=1
transition.

Dealing now with the multiple scattering contamination,
first one has to note that the subtraction of the deuterium
contribution in Eq. �3� has also affected M�n��Q ,E�, which

has been automatically replaced by M̃�n��Q ,E�,

M̃�n��Q,E� = M�n��Q,E� − �1 − c�n��H2��M�1��Q,E� . �6�

This new multiple scattering spectrum was accurately simu-
lated through the analytical approach by Agrawal and
Sears,29 in conjunction with the incoherent approximation,35

the modified Young-Koppel model for both H2 and D2,33,34

and the Gaussian approximation for the molecular center of
mass dynamics.36 Following the various steps of the calcula-
tion, we can sketch the entire procedure in three main points.

�1� Use two model DoPS’s for the host �n-D2� and the
impurity �p-H2� to generate the respective self-center-of-
mass scattering laws in an appropriate portion of the kine-
matic plane �Q ,E� through the mentioned Gaussian approxi-
mation. It has been verified that the following rectangular
zone was sufficiently large for our purposes: Q�440 nm−1

and −3.3 meV�E�1 eV.
�2� Apply the modified Young-Koppel model to transform

the self-center-of-mass scattering laws into the sample
double-differential cross section including the rotational dy-
namics of both n-D2 and p-H2 through appropriate convolu-
tions. The first eight rotational levels of n-D2, 0�J��7,
have been considered in the calculation;

�3� Implement the cited formulas by Agrawal �double
scattering� and by Sears �higher order terms� in the case of a
flat slab, making use of the energy dependent self-attenuation
factors already evaluated. This final step has been accom-
plished through a computer code37 especially set up for
inverse-geometry machines such as TOSCA-II.

To sum up, the only needed input data were the DoPS’s
for bulk solid deuterium �taken from Ref. 38 and properly
scaled to the present sample density� and for para-hydrogen
embedded in n-D2 matrixes. The latter quantity, whose ex-
traction is actually the main aim of the present study, was
approximately obtained from a preliminary version of data
analysis in which the multiple scattering correction had been
operated in a cruder way. The stability of the simulation
results was checked by replacing these preliminary p-H2
DoPS’s by the final ones extracted from the present measure-
ments �see below� and observing no noticeable change in the
multiple scattering spectra. An example from sample 4 is
reported in Fig. 3 in the energy transfer range of interest.

It is evident that the multiple scattering contribution

M̃�4��Q ,E� was not at all irrelevant �being about 33% of the
total scattering between 14 and 40 meV after removing the
n-D2 signal�, but luckily it exhibits in this region a series of
corrugations quite smaller than the main single scattering
features, giving rise to a sort of background. In addition, the

ridges in the M̃�4��Q ,E� contribution corresponded almost
exactly to the peaks in the single scattering spectrum since
on TOSCA-II, a large portion of multiple scattering is gen-
erally originated by the combination of one single inelastic
event plus one �or more� elastic event�s�, as explained in Ref.
37. Appropriate multiple scattering contributions were finally
subtracted from samples 2–4 data sets, which in this way
became proportional to 

J�=1
�n,pH2��Q ,E�. These experimental

spectra were further corrected according to Eq. �5�, in order
to single out experimental estimates of Ss�Q ,E−E0–1�, re-
ported in Fig. 4, evaluated along the forward-scattering
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FIG. 2. Approximate simulation of the p-H2 incoherent contri-
butions to the generalized scattering law �assuming a para-hydrogen
concentration of 10.2% as in sample 4�. The sum of the p-H2 rota-
tional self-terms is plotted as empty circles and dotted line, while
the same quantity minus the term related to the J=0→J�=1 tran-
sition is also reported separately as dashed line.
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TOSCA-II trajectory Q=QF�E� and broadened by the instru-
mental resolution, �E�E�. Details about the energy shift E0–1

removal �i.e., �=E−E0–1� are given below.
The self-inelastic structure factor for the p-H2 centers of

mass was analyzed, making use of the Gaussian isotropic
approximation35,36 for Ss�Q ,��,

Ss�Q,�� = exp�− 2Wl�Q���
−�

� dt

2��
exp�− i�−1�t�

�exp�−
�2Q2

2M
�

−�

�

fp�����cos��−1��t�

+ i sin��−1��t��d��� , �7�

where M is the molecular mass, fp��� is the phonon spectral
density, and exp�−2Wl�Q�� is the lattice Debye-Waller factor
for the p-H2 centers of mass, which is simply related to fp���
via

Wl�Q� =
�2Q2

4M
�

−�

�

d�fp��� . �8�

It is to point out that, for a lattice, the previous equation
assumes its exact validity only in the cases of a polycrystal-
line �i.e., powder averaged� cubic and harmonic crystal. On
one side, no dependence on the Q direction was assumed

anywhere, and, on the other side, the well-known Bloch
formula31 was used. Actually, our p-H2 impurity sample is,
strictly speaking, neither polycrystalline cubic �having an
hcp structure� nor perfectly harmonic �being a quantum crys-
tal�. However, as for the first point, it is to note that the local
environment of an H2 molecule in an hcp D2 lattice is not
strongly anisotropic, being identical to an fcc one up to the
second neighbors’ shell. As for the harmonicity, it has been
shown by Horner39 and Glyde40 that Eq. �7� is still approxi-
mately applicable to a quantum solid, as experimentally con-
firmed in the case of solid para-hydrogen by Bickermann et
al.41 and Colognesi et al.10 In practice, in a quantum solid
one has to correct the link between the phonon spectral den-
sity, fp���, and the DoPS, Z���, counting of the phonons in a
certain � interval,31 by introducing anharmonic phonon
damping and renormalization. Following the approach out-
lined in Refs. 42 and 43, it is customary to write

fp��� =
1

6N

q,j

6N
A�q, j ;��

2����q, j�
1

1 − exp�− ���q, j�/kBT�
, �9�

where q is a phonon wave vector contained in the first Bril-
louin zone �FBZ� of the crystal, N the number of wave vec-
tors in the FBZ, j labels the six phonon branches of an hcp
lattice, ��q , j� is the phonon frequency, and A�q , j ;�� is the
so-called anharmonic one-phonon response function ap-
proximately expressed by

A�q, j ;�� �
8���q, j����q, j�

��2�2�q, j� − �2 + 2���q, j���q, j��2 + 2���q, j���2�q, j�
, �10�
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FIG. 4. H2 center-of-mass self-scattering law, Ss�QF ,��, from
mixtures with various amount of para-hydrogen �samples 2–4�,
ranging from 3.7% to 10.2%. The sharp peak around �=0 �out of
the plot range� represents the elastic line. In the inset, we have
reported the same quantity for pure bulk para-hydrogen �sample 5�
as a comparison.
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sample 4 �after subtracting the pure deuterium spectrum�. Full line
with error bars represents the uncorrected spectrum, dotted line

stands for the multiple scattering contribution M̃�4��Q ,E�, and their

difference, ̃
J�=1
�4� �Q ,E� �i.e., the single scattering contribution�, is

reported as full circles with error bars.
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where � and ��−1 are the phonon energy shift and lifetime,
respectively, due to anharmonicity. However, in the rest of
the paper, we will often make use of an effective anharmonic

density of phonon states �EA-DoPS�, Z̃���, defined for ��0
as

Z̃��� = fp�����1 − e−�/kBT�

=
1

6N

q,j

6N
�A�q, j ;��
2����q, j�

1 − exp�− �/kBT�
1 − exp�− ���q, j�/kBT�

, �11�

which coincides with the usual Z��� in the harmonic limit:

�→0 and �→0. In addition, it is possible to prove that Z̃���
is exactly equal to the spectral function �−1f���, defined by
Rahman et al.,36 which has a straightforward physical mean-
ing, being related to the Fourier transform of the imaginary
part of the time-velocity autocorrelation function. Moreover,
it satisfies various important sum rules, e.g., it is rigorously
normalized to the unity and its Bose-corrected first moment
is proportional to the single-particle mean kinetic energy,36

as we will see later.
Experimental Ss�QF ,�� data were subsequently removed

of the intense elastic line, fitted in the narrow energy-transfer

range −1.5���1.7 meV and then analyzed separately. Fits
were performed using a sum of two Gaussian curves �six free
parameters� plus a small linear background �other two free
parameters� to account for the onset of the inelastic part. This
procedure was performed on both forward-scattering and
backscattering data �the latter being processed in a similar
way as the former�, so as to obtain peak parameters at two
different wave-vector transfer values: QF�E0–1� and
QB�E0–1�.

Pure para-hydrogen data �i.e., sample 5�, reported in the
inset of Fig. 4, were also taken into account after a data
analysis identical to that reported in Ref. 10, where the DoPS
is extracted and compared to various simulations. Here, it is
not important to provide long details about the solid p-H2
phonon spectrum, but is worth mentioning the characteristic
strong peak placed at about �=5 meV, due to the intersection
of the transverse acoustic phonon branches with the bound-
ary of the first Brillouin zone.23 The importance of the pure
para-hydrogen measurements in the present context will be
made clear later.

From the best-fitted parameters, peak areas AF,B
�2–5�, means

mF,B
�2–5�, and variances vF,B

�2–5�, were easily estimated and used
for further analyses. Using the Debye-Waller factor for pure
p-H2 at low pressure and T=13.3 K �namely, �u2��5�

=0.53�2� Å2, as in Ref. 10�, the relative detector bank effi-
ciency � between forward-scattering and backscattering data
was evaluated using the formula

� =
AF

�5�

AB
�5�

exp�− 2Wl
�5��QB�E0–1���

exp�− 2Wl
�5��QF�E0–1���

= 0.95�7� , �12�

where the simple isotropic and pseudoharmonic approxima-
tion implied by Eq. �8� was assumed: 2Wl�Q�= �u2�Q2 /3.
Then, it was possible, from AF,B

�2–4�, to extract reliable esti-
mates of mean squared displacement of the H2 center of
mass, �u2��2–4�, listed in Table II. A similar approach was
used to study the broadening of the J=0→J�=1 lines caused
by the presence of para-deuterium neighbors �see Fig. 5�:
since the intrinsic broadening of this rotational line in pure
bulk para-hydrogen is really tiny ��0.01 cm−1�,26 vF

�5� was
assumed to be caused by the instrumental resolution alone
and then removed from the other variances: ṽF

�2–4�=vF
�2–4�

−vF
�5�, so as to obtain reliable intrinsic rotational broadening

values for samples 2–4, reported in Table II. Finally, the
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FIG. 5. Experimental determination of the elastic line in the
self-dynamic structure factor for the H2 centers of mass from
samples 4 �full line with full squares� and pure para-hydrogen
�sample 5� �dotted line with empty circles�. The latter spectrum has
been properly scaled to show the same height as the former.

TABLE II. Physical quantities related to the H2 impurity samples, including mean squared displacement
of the molecular center of mass, �u2�, derived from the elastic line; elastic line mean position �plus the E0–1

value� mF; elastic line intrinsic broadening �ṽF; mean squared displacement of the molecular center of mass,
�u2�in, derived from the experimental phonon distribution integral; center-of-mass mean kinetic energy,
�Ek�in, derived from the experimental phonon distribution integral; and center-of-mass mean kinetic energy,
�Ek�PIMC, derived from quantum simulations.

Sample
�u2�
�Å2�

mF

�meV�
�ṽF

�meV�
�u2�in

�Å2�
�Ek�in

�K�
�Ek�PIMC

�K�

2 0.41�2� 14.43�3� 0.41�4� 0.426�9� 86�4� 86.7�3�
3 0.46�1� 14.44�3� 0.42�4� 0.457�4� 84�2� 85.5�3�
4 0.45�1� 14.44�3� 0.38�4� 0.443�2� 85�2� 85.7�1�
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fitted values mF
�2–5� were used to operate an accurate energy

shift from E to �=E−E0–1.
Thus, the last stage before the extraction of the EA-DoPS

was the evaluation and the subtraction of the multiphonon
contribution, not totally negligible because of the Q values
attained by TOSCA-II in the 14�E�40 meV range
�namely, from 21.4 to 37.4 nm−1�. The inelastic part of
Ss�QF ,�� was processed through an iterative self-consistent
procedure44 in the range 0���25 meV, aiming to extract
the one-phonon component of the self-scattering law for the
p-H2 centers of mass, i.e., Ss

�1��Q ,�� �see Fig. 6�. All the
technicalities of this method can be found in Ref. 37.

Finally, from Ss
�1��Q ,��, the phonon spectral density, fp���,

was simply worked out via35

fp��� = exp�2Wl�Q��Ss
�1��Q,��

2M

�2Q2 , �13�

together with Eq. �8�, and then plotted in Fig. 7 in the form

of Z̃H���, the effective anharmonic density of phonon states
for the H2 defects.

IV. DISCUSSION

The first results to be discussed concern the width of the
elastic lines in Ss�QF ,�� �actually being the J=0→J�=1
lines in 

J�=1
�n,pH2��Q ,E��, which, as explained in the previous

section, have been fitted and then subtracted from the
Ss�QF ,�� experimental data. The elastic line intrinsic broad-
ening values, �ṽF

�2–4� �see Table II�, have to be compared
with the predictions coming from the theory of anisotropic
interactions in solid hydrogen,45 namely, the splitting effect
of the para-deuterium neighbors �with J=1� on the final state
�labeled with J�=1� of the H2 molecule hit by the neutron.

Following Refs. 26 and 46, one can write

ṽ�n� =
35

1250
� c�p − D2�

c�D2� 	�1 − c�n��H2�����H2���D2�

�Qe�D2�2Qe�H2�2�
j

Rij
−10� , �14�

where � c�p−D2�

c�D2� �=1 /3 is the relative abundance of J=1 spe-

cies in low-temperature normal deuterium, Qe is the perma-
nent quadrupole moment of a molecule, � jRij

−10� is the lat-
tice sum of the intermolecular average distances to the power
of −10, and � is the solid reduction factor, which takes ap-
proximately into account both the molecular dynamical cor-
relation in the lattice sum and the effects beyond the
quadrupole-quadrupole interaction �i.e., quadrupole–van der
Waals and quadrupole-valence�. Plugging the most recent es-
timates of the aforementioned physical quantities into Eq.
�14�, one obtains the theoretical values of the J=0→J�=1
intrinsic broadening in our samples, namely, �ṽ�2–4�=0.490,
0.478, and 0.464 meV, respectively, for samples 2, 3, and 4.
These figures show a fairly good agreement with the experi-
mental values in Table II, even though the theory exhibits an
overestimate of about 17% with respect to 10%-accurate ex-
perimental data. Before concluding this subject, it is impor-
tant to stress that this intrinsic rotational broadening due to
the splitting of the H2 final state with J�=1 is not limited in
Ss�QF ,�� to the elastic line, but, on the contrary, affects the
whole spectral function, behaving like a sort of additional
energy resolution to be added to the instrumental one, giving
rise to an effective value worse than the nominal TOSCA-II
one.

Moving to the phonon part of the measurements, i.e., Z̃���
�reported in Fig. 7�, one can immediately observe the strong
similarity among the three effective densities of phonon
states, which practically coincide within the error bars. This
is an important result showing that, at the present level of
effective energy resolution �i.e., full width at half maximum
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FIG. 6. Experimental self-dynamic structure factor for the H2

centers of mass in sample 4 �full line with error bars�, self-
consistent evaluation of its multiphonon contribution �dotted line�,
and their difference �dashed line�, i.e., the one-phonon component.
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FIG. 7. Experimental �effective anharmonic� densities of pho-

non states, Z̃���, from mixtures with various amount of para-
hydrogen �samples 2–4�, ranging from 3.7% to 10.2%. Plots have
been vertically shifted for graphic reasons �by 0.05 meV−1�.
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�FWHM�, �E�1 meV�, the localized phonon modes of H2
in a deuterium matrix do not show any relevant concentra-
tion effect from c�H2��4% up to 10% �with the possible
exception of the 14 meV���16 meV zone�. However,
given the elaborate data analysis procedure described in Sec.

III, it is useful to validate the extracted Z̃��� before proceed-
ing with a further discussion. Two physical quantities related
to the H2 center of mass vibrations can be used to this aim:
the mean squared displacement �u2� and the mean kinetic
energy �Ek�. An inelastic �“in”� estimate of the former was

obtained from Z̃���, using Eq. �8�, while the latter was given
by36

�Ek�in =
3

4
�

0

�

�Z̃���coth� �

kBT
	d� , �15�

where only the isotropic approximation �not the pseudohar-
monic one� has been assumed.36 Inelastic estimates of mean
squared displacements �u2�in and mean kinetic energies �Ek�in

are reported in Table II where can be compared with inde-
pendent evaluations of the same quantities: �u2� derived from
the elastic line in the previous section and �Ek�PIMC obtained
from original PIMC simulations. The agreement between the
two data sets, both for mean squared displacement and mean
kinetic energy, is totally satisfactory and represents a strin-
gent assessment on the reliability of the data analysis proce-
dure since these two physical quantities are mainly sensitive

to different parts of Z̃���, namely, to the low-� and to the
high-� portions of the phonon spectrum, respectively.

As for the PIMC calculations, it is worth spending a few
more words on the procedure employed to simulate solid
pure D2 and D2+H2 mixtures: an NVT �i.e., isochoric-
isothermal� PIMC code was used setting molecular density
�n=N /V� and temperature T to values identical to those re-
ported in Table I. As for the hydrogen concentration, the
c�H2� values were slightly altered according to the following

list: 3.645 83̄%, 6.25%, and 10.156 25%, respectively, for
samples 2, 3, and 4. Simulations were carried out using the
semiempirical isotropic pair potential derived by Silvera and
Goldman15 and still considered one of the most reliable for
para-H2 and ortho-D2 in low-temperature condensed phases.
The anisotropic pair potential components, present because
of the para-D2 population in n-D2, were actually neglected
because of their relative smallness with respect to the large
isotropic part.47 Hydrogen defects were inserted into the hcp
crystal lattice by replacing deuterium molecules through a
fully random distribution. The PIMC algorithm was then ac-
complished by extending the number of monomers �the so-
called Trotter number P� of N=384 ringlike polymers, which
in the PIMC isomorphism5 represent the quantum particles
of D2 �or H2�, from P=12 to 25 and 50. However, only tiny
differences were observed between P=25 and P=50 results
for both mean kinetic energy and virial coefficient, proving
the actual convergence of the algorithm at P=50. This code
has been already successfully employed in a number of
simulations on solid para-H2,48 on liquid ortho-D2,49 and liq-
uid mixtures of para-H2 and ortho-D2.32 Further details on

this kind of simulations can be found in the aforementioned
references on the code usage.

So far, we have basically discussed only some equilibrium
properties of the H2 defects embedded in solid D2 matrixes,
e.g., the mean squared displacement and mean kinetic energy
of the molecular centers of mass. Let us focus now on the
dynamical features captured by the experimentally extracted
EA-DoPS. In order to understand the physical meaning of
the curves reported in Fig. 7, it is useful to start from the
phonon distribution in pure bulk solid D2. Unfortunately, the
information on this physical quantity is very limited, since
deuterium exhibits a relevant coherent neutron scattering
cross section, which makes the direct extraction of the DoPS
an impossible task. However, a semiexperimental DoPS
evaluation has been obtained from the measured phonon dis-
persion curves fitted by a Born–von Kármán force constant
model, making use of the Gilat-Raubenheimer method.38

This estimate, slightly rescaled via an average Grüneisen
parameter50 ��=1.88 �Ref. 38�� to match our experimental
density �i.e., that of sample 1�, is reported in the inset of Fig.
8.

It is important to stress that this curve, which intrinsically
contains no phonon damping at all and an unknown quantity
of anharmonic phonon shift, has to be meant more as a

pseudoharmonic Z��� �Ref. 31� than as a fully EA-DoPS Z̃���
�see Eq. �11��. It exhibits a clear cutoff energy, �c−o
�10 meV. Unperturbed deuterium DoPS’s from Ref. 38,
once again slightly corrected for the effective sample densi-
ties, ZD

�n=2–5����, were then employed to evaluate the H2 de-
fect density of phonon states ZH

�n=2−5����, using the standard
harmonic theory12 based on a Dyson equation for the lattice
Green function. In its simplest version, strictly rigorous only
for a single impurity in a Bravaisian cubic lattice, one ob-
tains a ZH

�n���� which can be written51 as the sum of a propa-
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FIG. 8. Experimental �full line plus error bars� and theoretical
harmonic estimates of the hydrogen-defect density of phonon states
in a solid deuterium matrix for sample 4. Dotted line is obtained
from a simple single-impurity theory �Ref. 51�, while dashed line
represents the result of a more advanced calculation �Ref. 52�. The
inset �upper right corner� reports the pure solid deuterium density of
phonon states derived from Ref. 38.
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gating part �with the same range as ZD
�n�����, plus a single

localized energy value �l
�n� �always larger than �c−o�. It is

convenient to express the propagating part as the product of
the host DoPS, ZD

�n����, divided by a distortion function
D�n����, and finally rescaled by the ratio of the host mass to
the impurity one. The localized component is expressed by a
delta function centered in �=�l

�n� times a constant h�n� so to
normalize the total ZH

�n����. Putting the two terms together,
one writes

ZH
�n���� =

MD

MH

ZD
�n����

D�n����
+ h�n���� − �l

�n�� , �16�

where �l
�n�, D�n����, and h�n� depend only on ZD

�2–5���� and �
�with �=1−MH /MD�, and their definitions can found in de-
tail in Ref. 51 together with an efficient numerical method to
evaluate them. The calculation of ZH

�4���� �i.e., for sample 4�,
convoluted with appropriate instrumental resolution and in-
trinsic rotational broadening, is reported in Fig. 8 together
with the corresponding experimental data. A quick inspection

already reveals a poor agreement between experimental Z̃���
and simulated ZH

�4����, and this is not surprising at all given
the purely harmonic character of the theory,16 as we have
explained in the Introduction. However, a more careful ob-
servation of the aforementioned figure exhibits some inter-
esting features: the low-energy simulated DoPS portion �up
to 10 meV�, though less intense and slightly shifted to the
right, is not at all far from the experimental data and shows
the same Debye-like onset and double-hump structure caused
by the main acoustic and optical branches in the D2 DoPS
�see inset in Fig. 8�. In addition, the �l

�4� localized mode,
which in our simple theory is a single energy value, comes
spontaneously quite close to the maximum of the experimen-

tal Z̃���, being placed, respectively, at 10.88 and at
9.95 meV.

In the calculation we have just presented, the role of the
H2 defect concentration is explicitly absent, being indirectly
involved only in the small density corrections operated on
ZD

�n���� via the average Grüneisen parameter.50 However, a
more advanced theory dealing with finite defect concentra-
tions has been developed,52 although still in the framework
of the harmonic approximation. The calculations are far
more demanding since the well-known t matrix �describing
phonon scattering from impurities� has now to be evaluated,
at least within the isotropic approximation. The main quali-
tative difference between these two theories lies in the fact
that the single value �l

�n� in Eq. �16� is replaced by a narrow
band �l

�n��q , j� �always larger than the cutoff energy �c−o�,
which is a function of the unperturbed phonon wave vector
and branch. In other words, any phonon in the first Brillouin
zone of bulk solid D2, characterized by an energy ���q , j�,
gives rise to a slightly different localized lattice vibration,
provided with an energy �l

�n��q , j�. Implementing this ap-
proach to the conditions of sample 4, one can work out the
localized lattice vibration band �ranging from
10.40 to 11.19 meV�, and from this, a different version of
ZH

�4����, still reported in Fig. 8 after an appropriate broaden-

ing. It is easy to verify that the introduction of the method
has changed the simulated H2-defect DoPS in a very modest
way, leaving the disagreement between theoretical and ex-
perimental data almost unchanged. Calculations using hydro-
gen concentration values as in samples 2 and 3 produced
similar results.

Surely among the various deficiencies of the defect theo-
ries so far applied, the most relevant one appears to be the
total lack �in the single impurity calculation� or the strong
underestimation �in the finite concentration calculation� of
the anharmonic damping of the H2 localized modes. In prac-
tice, keeping in mind Eq. �11�, one of the missing part of the
calculations is the anharmonic one-phonon response function
A�q , j ;�� for the H2 defects, which, in a very coarse
picture,38 could be reduced in our case to a simple diagonal
form: A��−�l

�n��. Some rough information on this hypotheti-
cal response function can be obtained operating a heuristic
subtraction of the propagating part from the experimental

Z̃���, and deconvoluting the localized part of the calculated
ZH

�4���� from the rest of the experimental data, properly taking
into account the instrumental and intrinsic broadening of the
latter. In the case of sample 4, the theoretical localized
modes from the finite concentration theory need to undergo a
shift of about 1 meV �unphysically to the right� and a broad-
ening characterized by additional FWHM of 4.0–4.5 meV to
optimize the comparison with the experimental data. How-
ever, these results cast some doubts on the suggested inter-
pretation: the latter figure looks suspiciously large for an
anharmonic damping �e.g., bulk solid hydrogen at T=4 K
exhibits an equivalent damping of 0.95 meV at ��10 meV
�Refs. 38 and 41�� and, moreover, anharmonic renormaliza-
tion should lower phonon energies instead of increasing
them. So these remarks, together with the number of visible
peaks in the experimental data, suggest a different and more
complex interpretation of the structured phonon spectra of
hydrogen defects in solid deuterium, in which the existence
of some localized lattice vibrations placed in broad energy
interval, namely, 7–17 meV, plays a more important role
than the simple anharmonic damping itself. For example, if
the presence of two main peaks placed 5 meV apart is as-
sumed, then since the ratio between their areas is roughly
2:1, one could conjecturally attribute the higher energy peak
to the lattice vibrations along the c axis of the hcp crystal
�around 15 meV�, and the lower energy peak to those per-
pendicular to it �around 10 meV�. However, as mentioned
above, some caution is needed dealing with the spectral fea-
tures between 14 and 16 meV, which appear to vary with the
hydrogen concentration �see Fig. 7� and might have a com-
pletely different origin. For example, a small ortho-hydrogen
contamination present in the mixture in place of p-H2 could
give rise to a peak corresponding to the J=1→J�=2 transi-
tion �with E1–2=29.2 meV�, which, after subtracting E0–1,
would appear exactly in the spectral zone we are considering.
For this reason we are not going to speculate any longer on
the number of peaks present in the 7–17 meV interval of the

experimental Z̃���.
The last comparison to be established concerns our ex-

perimental data and the results of the combined use of self-
consistent phonon approximation and coherent potential ap-
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proximation, as implemented in Refs. 17 and 53. In the latter
of these studies, lattice dynamics calculations on pure ortho-
deuterium and on its mixture with 1% of para-hydrogen,
both at T=0 and assuming hcp lattices, have been performed.
The calculated density of phonon states for o-D2 �see inset in
Fig. 9� is characterized by a lattice constant a=3.606 Å and
a mean squared displacement of the molecular center of mass
�u2�=0.25 Å2, which compare well with the literature data,
respectively, in Refs. 20 and 54.

However, as for the detailed spectral features, we have to
observe that noticeable differences between the pure deute-
rium DoPS’s in the insets of Figs. 8 and 9 do exist. Dealing
with para-hydrogen defects in ortho-deuterium matrices, the
lattice dynamical calculation by Menn53 provides the follow-
ing values for the average lattice constant and the mean
squared displacement of the H2 center of mass: a
=3.592�2� Å �i.e., n=30.51 nm−3� and �u2�=0.325�1� Å2, re-
spectively. It is important to note that the present �u2� value
might seem largely dissimilar from those in Table II, but
some of this discrepancy is just due to the different values of
temperature and density considered. Thus, after a slight res-
caling through the average deuterium Grüneisen parameter50

��=1.88 �Ref. 38�� to match the experimental density of
sample 4, the calculated p-H2-defect DoPS exhibits a �u2�
=0.351�1� Å2 if evaluated at T=13.68 K. Similarly, one ob-
tains �Ek�=90.8�3� K. Both these figures, although not far
from the experimental and PIMC values in Table II, are al-
ready the mark of some imperfection. After including appro-
priate instrumental and rotational broadening effects, the cal-
culated �and corrected through the average Grüneisen
parameter50� DoPS is finally reported in Fig. 9. The agree-
ment with the experimental data �e.g., from sample 4� is still
unsatisfactory, since this calculated DoPS appears qualita-
tively rather similar to the two harmonic evaluations plotted
in Fig. 8. However, some differences among the three simu-

lated DoPS’s are indeed visible: the self-consistent phonon
estimate shows a localized mode peak broader than the har-
monic ones, in this respect a little closer to the experimental
data, but, on the contrary, the peak position is better repro-
duced in the harmonic cases. A similar conclusion can be
drawn for the propagating part of ZH

�4���� �say, for �
�10 meV�, where the self-consistent phonon estimate is less
precise. In any case, the problem envisaged after the com-
parison between experimental data and harmonic calcula-
tions �namely, the excess in the spectral width� is still present
and unsolved even after taking into account the self-
consistent phonon simulation.

Before ending this section, it is worthwhile to mention a
hypothetical alternative cause of the anomalous broadening

of the impurity spectrum Z̃���. One might think that the pres-
ence of a large number of imperfections in the D2 lattice
doped with H2, such as empty crystal sites adjacent to an H2
impurity, could give rise to a band blurring which spectro-
scopically could be confused with a large phonon damping.
Giving the lack of the present samples’ diffraction patterns,
we have to address this hypothesis indirectly. We think that it
is implausible for the following reasons.

�i� The spectral broadening appears to be largely
H2-concentration independent, so the hypothetical sample
imperfections should be related to the D2 polycrystals them-
selves, not to the fact that we are dealing with a quantum
alloy. However, in the literature on solid deuterium, the gen-
eral notion is quite the opposite: samples grown from a slow
cooling of the liquid at low pressure are reported to be good
quality and strain free polycrystals.55

�ii� Lattice imperfections should give rise to a spectral
broadening exhibiting similar values in the elastic line region
and in the defect density of phonon states, but, as seen
above, this is not the case.

�iii� As we have noted above looking in Fig. 8, one can
see that the first part of the defect density of phonon states
�i.e., the propagating part� is reasonably well described by
the Eq. �16�, making use of the solid deuterium density of
phonon states from Ref. 38 �inset in Fig. 8�. On the contrary,
the second part �i.e., the localized part� looks extremely
broader than the predictions of Eq. �16�. Once again, lattice
imperfections should give rise to a spectral broadening, ex-
hibiting similar values in the propagating region of the defect
density of phonon states and in the localized one. However,
as seen in Fig. 8, this is not the experimental result.

V. CONCLUSIONS

In the present study, we have measured incoherent inelas-
tic neutron scattering from para-hydrogen defects in solid
normal deuterium matrices at three different concentration
levels �between 3% and 11%� using the time-of-flight neu-
tron spectrometer TOSCA-II. The measured double-
differential cross sections have provided experimental access
�through an elaborated data analysis� to the self-part of the
inelastic structure factor for the centers of mass of the H2
defects in the samples under observation. The measured data
were corrected for the typical experimental effects, sub-
tracted of the deuterium signal, and then analyzed in the
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FIG. 9. Experimental �full line plus error bars� and self-
consistent phonon approximation estimate �dashed line� of the
hydrogen-defect density of phonon states in a solid deuterium ma-
trix �Ref. 53� for sample 4. The inset �upper right corner� reports the
pure solid ortho-deuterium �T=0, n=30.16 nm−3� density of pho-
non states derived from Ref. 53.
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framework of the modified Young-Koppel model to remove
the contributions coming from the rotational dynamics. On
the other hand, the Gaussian approximation has been as-
sumed for the low-energy spectral range, aiming to relate the
incoherent scattering law of the para-hydrogen defects to
their densities of phonon states. These spectral functions
have been subsequently obtained through an accurate self-
consistent procedure able to evaluate �and then remove� the
undesired multiphonon contributions. The final densities of
phonon states came out to be broad, structured, and essen-
tially concentration independent. In addition, two Bose-
corrected moments of these spectral functions were related to
important physical quantities concerning the molecular
center-of-mass dynamics �namely, mean squared displace-
ment and mean kinetic energy�. The former was compared to
an independent experimental estimate from the sharp rota-
tional line placed at E=14.5 meV, while the latter was simu-
lated through a path integral Monte Carlo code.

The results of these two comparisons turned out to be
very satisfactory, providing a strong validation of our de-
tailed data analysis, that, despite its complexity, produced
reliable densities of phonon states for the para-hydrogen de-
fects. Subsequently, processed experimental data were com-
pared to some calculations, gradually more and more ad-
vanced, starting from a simple harmonic model at infinite
dilution, then including concentration effects �always in a
harmonic framework�, and finally moving to a fully indepen-
dent lattice dynamics simulation,53 based on the joint use of
self-consistent phonon approximation and coherent potential
approximation. However, while the description of the first
part of the defect density of phonon states, attributed to the
modes propagating in lattice, turned out to be reasonably
acceptable for the first two calculations, the localized part of
the spectrum was properly described by none of them. The

position of the mean frequency value was approximately
well reproduced by all the three models, but as far as the
large overall width �about 4 meV /�� is concerned, experi-
mental data appear at this stage impossible to be fully ex-
plained. A tentative description of this finding could explain
it as an extremely severe localized-mode damping. Thus, our
final results can be said to represent a sort of challenge for
theoreticians and computational physicists involved in the
important task of implementing and improving quantum dy-
namic simulation techniques. In this respect, we have to
mention a very preliminary ring polymer molecular dynam-
ics calculation dealing with a system similar to sample 4,
namely, composed of 180 deuterium molecules plus 18 hy-
drogen ones.56 Despite the simulation work is still in
progress, it seems that the capability of this technique to
reproduce the main features of the experimental phonon
spectrum is much greater than that of the calculations re-
ported in Figs. 8 and 9. In addition, on the experimental side,
it would be very interesting to assess the action of the J=1
fraction of D2 molecules on the p-H2 defect dynamics, re-
peating the present experimental work with an ortho-
deuterium matrix replacing the normal deuterium one.
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