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A jellium-passivated cluster model is developed to study the energetics of short-range ordering in super-
cooled liquid and glass systems. Calculations for single atoms embedded in jellium yield results in good
agreement with bulk values for the cohesive energy, atomic volume, as well as angular-momentum-projected
electronic density of states. The energy difference between icosahedral clusters and fcc embryos in jellium is
found to correlate with the glass-forming ability of liquid Al alloys. The model will be useful for studying the
short-range order tendency with minor chemical additions in metallic glass formation, without the use of large
unit cell calculations.

DOI: 10.1103/PhysRevB.76.174209 PACS number�s�: 61.25.Mv, 61.43.Fs, 61.46.Bc, 71.15.Mb

I. INTRODUCTION

Short-range order in undercooled metallic liquids plays an
essential role in glass formation in these systems. Many ex-
periments using scattering and absorption techniques have
been employed to study this problem. Meanwhile, computer
simulations have also been widely used to track the atomic
structure evolution in liquid metallic alloys. As a result of
these efforts, local cluster structures for some model binary
systems have been demonstrated.1 Experimentally, it has
been observed that the glass-forming ability of various sys-
tems is quite sensitive to their chemical compositions. This
implies that the energetics and packing of local clusters may
be dominant factors in the glass-formation process. With the
fast development of computational capabilities, calculations
of isolated clusters are now a mature procedure. However,
the energies and local structures of clusters in supercooled
liquid or glass could be very different from isolated clusters
due to the different environments. For instance, the structures
of Si clusters with hydrogen passivation are tremendously
different from those of free Si clusters.2 In fact, the passiva-
tion of metallic clusters is still an unresolved problem.3

In this paper, we use a mean-field approach to calculate
the energetics of local clusters in supercooled metallic liquid
or glass by studying clusters embedded in an effective jel-
lium background. There are many studies on bonding prop-
erties of elemental metals using jellium approaches.4–9 The
difference of our present approach from previous jellium
studies �e.g., Puska’s atom-in-jellium model4,9� is that, in our
embedding scheme, we consider a volume around the atom
or cluster where the jellium background is excluded. The size
of the excluded volume is determined by minimizing the
total system energy. Our jellium-passivation calculations
yield good agreement with the cohesive energies and atomic
volumes obtained from bulk calculation. The site- and
angular-momentum-projected densities of states �PDOS�
from the jellium passivation approach are also in good agree-
ment with bulk results. Calculations for clusters with increas-
ing size show that jellium passivation gives good estimates
for the bulk limit of large clusters. We believe that the
jellium-passivation approach will be a promising method to
provide useful energetic information about the glass-
formation tendency of various liquid metal systems. It may

be further improved for incorporation in local molecular dy-
namics simulations which can concentrate on the evolution
of short-range or medium-range order in such systems while
maintaining a reasonable simulation size.

II. MODEL AND FORMALISM

A local cluster in supercooled liquid or glass is modeled
as a cluster surrounded by jellium corresponding to the liquid
metal environment in a mean-field approach, as illustrated in
Fig. 1�a�. The central circle represents the cluster, surrounded
by an empty space representing the optimized volume occu-
pied by the cluster. The most outside region is the effective
jellium background representing the electron sea coming
from the liquid metal environment. Following the notations
of the classic paper by Ihm et al.,10 the total energy for the
jellium-passivated cluster under density functional theory
pseudopotential framework in Rydberg units can be ex-
pressed as11

Etot = T + V +� Exc�r�d3r − m0� jel�n0� , �1�

where T is the kinetic energy of the whole system,

(a)

(b)

FIG. 1. �a� Schematic representation of the cluster-in-jellium
model. �b� Gray area: pair distribution function of liquid aluminum;
light gray area: uniform jellium as an approximation for the liquid
metallic environment.
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V is the electrostatic potential energy,
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and Exc is the exchange-correlation energy. Here, m0 is the
total number of electrons contributed by the jellium, � jel�n0�
gives the energy per electron in bulk jellium with density of
n0, which can be expressed analytically,12 and n is the index
for both wave vector k and band. Indices i and j run over all

the atomic lattice sites. �lUps,l�r−R��P̂l is angular-

momentum-dependent pseudopotentials, where P̂l is the pro-
jection operator on angular momentum l. Here, fn specifies
the occupancy of quantum state n. Moreover, v�r�=v0��r�,
where v0 is the constant electron chemical potential shift for
the jellium background and ��r� is a step function which is
one in jellium and zero outside. Furthermore, nb�r�=nb

0��r�,
nb

0 is the positive background charge density and nb�r� is
position dependent because of the excluded volume in our
model. ne�r�=�nfn�n

*�r��n�r� is the total electron density in-
cluding the contributions from the cluster and jellium, and
��r�=ne�r�−nb�r�. The first term in Eq. �3� describes the
interaction between total electron ne and ion cores. For sim-
plicity, the formalism is given for a single-element cluster. It
can be easily generalized to multielement clusters. Assuming
that the positive background charge does not overlap with
the pseudopotential’s core region where the Coulomb poten-
tial is smoothed, the expression for V can be written as

V =� Vion+jel�r�ne�r�d3r

+ �
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where Vion+jel=Vion
loc +v�r�, Vion

loc is the pure local pseudopoten-
tial, and Ups,l� denotes the angular-momentum-dependent
nonlocal part of the pseudopotential. The corresponding one-
particle Schrödinger equation is

�− �2 + �
i,l

Ups,l� �r − Ri�P̂l + Vion+jel�r�

+� 2�in�r��
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where �xc is the exchange-correlation potential. Based on the
solution of the Schrödinger equation, the total energy can be
expressed as a variational functional of the output electron
density only,13
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In the momentum space representation, the total energy is
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where VCoulomb=8���G� /G2. By the same argument as Ihm
et al.,10 finally, the total energy per unit cell can be expressed
as
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where V� indicates the term with G=0 set to be zero, which
is equivalent to a constant shift of the potential.

The above formalism is incorporated into our pseudopo-
tential mixed-basis code.14,15 Norm-conserving pseudopoten-
tials are generated with the Troullier-Martins method.16 For
transition metals, the localized character of d electrons can
be efficiently expressed by including truncated atomic
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pseudo-wave-functions in the basis set in addition to plane
waves. The exchange-correlation potential is based on the
generalized gradient corrections parametrized by
Perdew-Burke-Ernzerhof.17 The calculations are done in the
supercell approach with a cubic unit cell with length of
20 bohr. The plane wave cutoff energy is 20 Ry. A Gaussian
smearing width of 0.06 eV is used for the Brillouin zone
integration on a 6
6
6 Monkhorst-Pack grid. The jellium
boundary is smoothed by Fermi smearing with a width of
0.05 bohr to remove high Fourier components.

III. RESULTS AND DISCUSSION

A. Single atom embedded in jellium

The excluded volume occupied by an atom in our model
can be understood by considering the pair distribution func-
tion g�r� in liquid or glass. Figure 1�b� shows a typical pair
distribution function of liquid Al �gray area�, which describes
the average environment of an Al atom in the liquid. In a
mean-field approach, the environment can be approximated
as an effective jellium �light gray area�. The optimized atom-
jellium spacing raj

o , must be smaller than the first peak posi-
tion of the pair distribution function r1 from mass conserva-
tion.

The jellium density parameter could be obtained from the
average interstitial electron density from local-density ap-
proximation calculations.18 It was known that bare jellium
model failed qualitatively to describe the energetics of met-

als; e.g., the predicted surface energy could be negative for
large electron density.19 Utreras Diaz and Shore showed that
this shortcoming of the jellium model can be corrected by
adding a constant shift v0 to the electron potential of the
jellium background.5 We follow the simple procedure out-
lined in Refs. 7 and 8 to estimate v0 from jellium density,
v0=−n0���jel

/�n	n0
. In the case of aluminum, using the

chemical potential shift of −0.17 Ry from Ref. 8, we ob-
tained 2.92 bohr for the optimized atom-jellium distance.
This is fairly close to the Wigner-Seitz radius of bulk Al
�2.99 bohr�. Figure 2 shows a typical result of the total en-
ergy of an Al atom embedded in jellium with respect to the
atom-jellium spacing raj, which is well fitted by a third order
polynomial function. A good correlation between raj

o and
Wigner-Seitz radius RWS, for nine simple metals is shown in
Fig. 3. The cohesive energies of the simple metals from the
jellium-passivation approach Ej are also compared with the
bulk results EB, as shown in Fig. 4. A similar trend was
observed from another jellium approach.8,9 Such good agree-
ment suggests that the jellium background is a good approxi-
mation of the bulk environment for simple metals.

In order to gain deeper insight into jellium passivation, we
also compared the angular-momentum-projected density of
states �DOS� of Al in jellium-passivation approach with the
bulk result, as shown in Fig. 5. 2.99 bohr is selected to be the
radius of the atomic sphere for the integration of the wave
functions and yields 3.0 electrons in both cases. The fairly

FIG. 2. The total energy of Al atom passivated by jellium as a
function of the distance between the atom and the jellium boundary
raj.

FIG. 3. Correlation between the optimized atom-jellium dis-
tance raj

o and the Wigner-Seitz radius RWS for nine simple metals.

FIG. 4. Correlation between the cohesive energies of the simple
metals from the jellium-passivation approach Ej and those from
bulk calculation EB.

FIG. 5. �Color online� Angular-momentum-projected density of
states �PDOS� for Al in fcc crystal structure �solid line� and embed-
ded in jellium �dots�.
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good match reveals the essential physical justification of jel-
lium passivation for Al.

B. Clusters embedded in jellium

To generalize the treatment of single atom in jellium to
cluster in jellium, we need to determine the shape and posi-
tion of the jellium boundary. In the case of a single atom, the
shape of the jellium boundary is taken to be spherical. In our
calculations, we want the jellium to represent the embedding
environment and want the jellium background to be kept
away from the “inside” region of the cluster. The simplest
generalization of the treatment for single atom in jellium is
to empty a spherical region with optimized atom-jellium ra-
dius centered at each atom in the cluster. However, because
the volume per spherical region is similar to the volume per
atom and there are significant overlaps in the spheres cen-
tered on different atoms in the cluster, this approach does not
remove enough space from inside the cluster and allows
some pockets of jellium to persist inside the cluster, as
shown in Fig. 6�a�. Also, the resulting boundary exhibits
sharp cusps at the spherical intersections, leading to high
Fourier components not easy to remove. We found an ap-
proach which works better to follow a “push-pull” strategy,
which is physically motivated by the pair distribution func-
tion in Fig. 1�b�; jellium is first pushed outward to a nearest-
neighbor distance �corresponding to r1, the nearest-neighbor
peak position in g�r�	 from each atom in the cluster and then
pulled inward �r=r1−raj from the initial boundary, as
shown in Fig. 6�b�. The advantages of the push-pull strategy
are �a� smooth jellium boundaries good for Fourier trans-
form, �b� no jellium inside the cluster, and �c� jellium bound-
ary reflects the morphology of the cluster’s surface which is
desired physically.

Fivefold icosahedral local order has been linked with the
short-range and medium-range orders in metallic glass
system.1 Local icosahedral clusters may serve as competitors
against possible nuclei for crystallization. Thus, the interest-
ing questions are the relative stability of the icosahedral clus-
ter and a crystal nuclei inside an undercooled liquid metal
system and how well it correlates with the glass-forming
ability �GFA� of the metallic liquid. Here, we choose a series
of Al-X �X=Na, K, Mg, Ca, Sr, Al, Si, Ge, Sn, Ni, Mo, Zn,
Zr, Pt, Pd, Cu, Ag, and Au� binary alloys and examine the
energy difference of local icosahedral clusters and fcc em-
bryos in a jellium environment approximating liquid Al. The

local icosahedral cluster for Al-X liquid is an Al13 icosahe-
dral cluster with central atom replaced by a solute atom X.
Similarly, the fcc embryo is a pure solvent Al13 fcc fragment
with central atom replaced by a solute atom X. Figure 7
shows the energy difference between the icosahedral clusters
and fcc fragments of Al-X liquid with jellium passivation.
The energy differences for free clusters with one shell of Al
�Al12+X� and two shells of Al �Al54+X� are also shown.
Spin polarization effects are found to be negligible for the
systems studied in this paper. Good correlation exists be-
tween the jellium-passivation results, EI-F,jel, and those by
adding one more shell of Al atoms, EI-F,2-shell, as shown in
Fig. 8. The free cluster calculation results show that the be-
havior of the energy difference approaches the cluster-in-
jellium results as the free clusters increase in size. This sug-
gests that the jellium-passivated result is a good estimate of
the energy behavior of the cluster inside a liquid metal sys-
tem.

Looking at the trend of the energy differences for the
various choices of X, we found a good correlation with the
size of the center atom �Fig. 9�. This suggests that smaller

cusp pocket

1

r −r

(a) (b)

1

r
raj

aj

FIG. 6. �Color online� Schematic illustration of the jellium
boundaries for an Al trimer. �a� Simplest generalization of single
atom-in-jellium treatment results in pockets and cusps. �b� Push-
pull strategy for jellium boundary construction. Shaded �light blue�
area corresponds to the region where jellium is excluded.

FIG. 7. �Color online� Energy difference between icosahedral
clusters and fcc fragments of Al with central atom replaced by X
�Ni, Mo, …� with jellium passivation, which is a good estimate of
the bulk limit of nonisolated clusters as shown by the trend in the
energy differences for free clusters with one shell of Al �Al12+X�
and two shells of Al �Al54+X�. Solid star represents the system
where coexistent amorphous and crystalline phases have been ob-
served experimentally.

FIG. 8. Correlation between the energy differences of icosahe-
dral cluster and fcc fragment in jellium-passivation approach
�EI-F,jel� and those by adding one more shell of Al atoms
�EI-F,2-shell�. The solid line is a linear least squares fitting of the data.
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atoms allow for a more efficient packing for the icosahedral
cluster20 relative to the fcc embryo structure. Experimentally,
coexistent amorphous and crystalline phases have been ob-
served in Al-Si,21 Al-Ge,22 Al-Cu,23 Al-Ni,24 and Al-Pd,25

corresponding to a region of negative EI-F,jel in Fig. 7. Thus,
the energy difference between icosahedral cluster and fcc
embryos with jellium passivation may serve as an indication
for GFA of Al-rich liquid metallic alloys.

In many cases, the glass transformation of liquid metal
alloy systems is very sensitive to the addition of small
amounts of impurity atoms.26 A fundamental understanding
of the role of the small amount of added material is critical
for a successful theory of glass transformation. Our cluster-
in-jellium model could be further developed to study the

effects of low-concentration impurity atoms on the energet-
ics, structures, and dynamical behavior of important local
clusters without the use of large unit cell calculations.

IV. CONCLUSIONS

We have used a model of clusters embedded in jellium to
study short-range ordering in supercooled liquid and glass
systems in a mean-field approach. The model was first veri-
fied by the good agreement between the single atom-in-
jellium results and those from bulk calculations. The PDOS
of Al atom embedded in jellium matches very well with bulk
result. Application of the model to Al-X metallic liquid
shows that cluster passivated by jellium is a reasonable esti-
mate for the bulk limit. Furthermore, the energy differences
between icosahedral clusters and fcc embryos are related
with the GFA of the metallic liquids. The model may be
further developed to study a critical issue of glass
formation—the effect of minor addition of other chemical
elements on the glass behavior of liquid metal alloy system.
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