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Inelastic neutron scattering experiments were performed at intermediate and high momentum transfers, up to
85–90 Å−1, to study the proton momentum distribution in polycrystalline sodium hydrogen fluoride �NaHF2�
at low temperature �below 5 K�. The H mean kinetic energy was extracted and compared to the results from
hydrogen-projected density of phonon states derived from intermediate momentum transfer inelastic neutron
scattering and lattice dynamics simulations. A reasonable agreement between the two figures was found. In
addition, relevant aspects of high momentum transfer neutron scattering from NaHF2 were explored in detail,
ranging from an alternative evaluation of final state effects to the role played by the instrumental resolution and
to the possibility to reconstruct the potential felt by a proton from its momentum distribution.
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I. INTRODUCTION

Deep inelastic neutron scattering is an experimental tech-
nique giving access to information on the atomic momentum
distributions in condensed matter. Considering its analogy
with the deep inelastic x-ray scattering from core electrons
�i.e., the well-known Compton scattering�, it is now custom-
ary to name the aforementioned neutron technique neutron
Compton scattering �NCS�.1 The requisites imagined by
Gol’danski� for his idea of a “molecular neutronoscopy”2 are
expected to be fulfilled by the NCS technique and therefore
one might wonder if NCS has achieved a scientific status
similar to that obtained by quasielastic neutron scattering3 or
neutron vibrational spectroscopy.4 Unfortunately, the answer
is not yet fully positive. Just to mention an example, the
long-lasting problem of the anomalous deficit of the proton
cross sections in various compounds5 is still an open ques-
tion, despite several theoretical efforts6 and experimental
tests.7 The intrinsic interest of the anomalous cross-section
deficit and its potentially disruptive effect, which according
to some researchers could even shake the theoretical back-
ground of the standard neutron scattering theory,8 are not a
main obstacle to the use of NCS as a routine technique in
molecular applications. As a matter of fact, a reduction in the
intensity of the proton recoil peak is a quantitative phenom-
enon directly affecting absolute measurements only and is
drawn into the domain of standard spectroscopy merely by
comparing recoil peaks from different elements or isotopes.
In this respect, we have to note that other molecular spectro-
scopic techniques, such as infrared absorption and Raman
scattering, still exhibit a certain difficulty in an accurate pre-
diction of their feature intensities9 but, nevertheless, are ex-
tremely well established and commonly used.

Despite the original application of NCS to superfluid he-
lium and quantum liquids, the technique has now reached a
level of detail to tackle studies of molecular systems of in-
creasing complexity. Leaving aside a pioneering NCS experi-
ment on water,10 this development happened when new pow-

erful spallation neutron sources, such as LANSCE and IPNS
in USA, KENS in Japan, and ISIS in UK, became opera-
tional during the 1980s.11 In particular, a permanent NCS
instrument, named eVS �electron Volt Spectrometer�, was set
up at ISIS in 1988 �Ref. 12� and yielded a large number
experimental results until 2000, when it was disassembled to
be converted into the present epithermal neutron spectrom-
eter VESUVIO.13 Thus, it was natural, especially at the eVS
start, to make heavily use of the advanced theoretical ma-
chinery developed by many distinguished scientists14 to deal
with deep inelastic neutron scattering from quantum liquids
and anharmonic solids �and even with relativistic electron
scattering from nuclear matter�. So, concepts like “final state
effects,” “non-Gaussian momentum distribution,” “one-body
density matrix,” “West scaling” etc., got popular also in con-
nection with a large variety of systems totally remote from
the condensed noble gases, ranging from graphite to poly-
mers, molecular hydrogen and deuterium, zirconium hydride,
liquid lithium and sodium, ice, and others.1 Earlier ap-
proaches, in spite of being formally rigorous, were quickly
found not totally appropriate even in the case of scattering
from simple diatomic molecular systems �H2, D2, and N2�,
and slowly, step by step, some researchers reviewed and
updated15 the theory of deep inelastic neutron scattering from
molecules so brilliantly sketched in 1966 by Ivanov and
Sayasov,16 with the only addition of quantized rotations17

and y scaling �the latter being unknown in the 1960s�. A
closer look to this molecular approach to NCS, further de-
veloped in Refs. 7 and 18 so to cope with molecular crystals
and liquids too, showed that it is a simple extension of the
model successfully used in vibrational spectroscopy:4 a sort
of harmonic “Meccano/Erector” �i.e., springs and balls�,
which does not capture the full potential of an ultrafast tech-
nique such as NCS and so cannot be considered completely
exhaustive. Fortunately, the situation has recently changed.
Recent papers have started to consider various exciting as-
pects of NCS: the anharmonic character of the effective po-
tential felt by protons in some systems,19 the quantum-
indistinguishable character of nuclei on very short time
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scales,20 and the role of the electron dynamics beyond the
limit of the Born-Oppenheimer approximation.21 However,
as one can learn from the past, there is a clear need to bridge
the gap between NCS experts and the broader community of
researchers not directly involved in the development of the
deep inelastic neutron scattering theory.

All these considerations prompted the authors of the
present paper to elucidate some key concepts in NCS, to
present some original views on it, and finally to apply them
to a “model compound”: sodium hydrogen fluoride �NaHF2�.
This hydrogen-bonded system is simple enough to allow
easy and reliable ab initio and semiempirical simulations, but
already interesting from the molecular point of view �see
below�, and to study its NCS spectrum in comparison with
the simulation results. The rest of the work will be organized
as follows. Section II will be devoted to a quantitative com-
parison of calculation approaches for the estimate of the so-
called final state effects and the effective proton potential
reconstruction. Section III will deal with the sample and the
experimental procedure of the NCS and vibrational measure-
ments on NaHF2. Data analysis will be sketched in Sec. IV,
while Sec. V will report some details about the ab initio and
semiempirical simulations performed on this system. Finally,
Secs. VI and VII will contain the discussion of the results
and the conclusions, respectively.

II. FINAL STATE EFFECTS CALCULATION METHODS
AND DETERMINATION OF INTERATOMIC

POTENTIALS

As we have mentioned in the Introduction, a few aspects
of NCS deserve some clarifications, especially in connection
with its potential use as a standard molecular spectroscopic
technique. In this section, we are going to discuss two points
�in Secs. II A and II B� which concern the deep inelastic
neutron scattering theory, while a third aspect �on the effect
of the energy resolution function� more related to the experi-
mental procedure will be dealt with in Sec. IV.

A. Reaching the impulse approximation and correcting
for final state effects

The basic theory of deep inelastic neutron scattering is
accurately presented in Ref. 22 and also summarized in Refs.
1 and 14, where the physical rationale of the asymptotic limit
in the scattering process �also known as impulsive
approximation23� is shown. The basic tool used in this sub-
ject is the usual self-inelastic structure factor24 Ss�Q ,E�, a
function of the energy E and wave-vector transfers Q from
the neutron to the scattering nucleus �having a mass M�.
After operating the so-called West transform �or y transform�
by introducing the scaling variable y and the response func-
tion F�y ,Q�,

y =
M

�2�Q� �E −
�2Q2

2M
� ,

F�y,Q� =
�2�Q�

M
Ss�Q,E� , �1�

one obtains the aforementioned asymptotic limit J�y ,Q̂�
�with Q̂ being the direction of the wave-vector transfer Q�
simply by letting �Q� go to infinity while keeping y constant:

J�y,Q̂� = lim
�Q�→�; y=cost

F�y,Q� . �2�

For scattering nuclei interacting with the rest of the system
through a potential without strong short-range repulsion,25

the asymptotic limit J�y ,Q̂� exists and, moreover, is simply
related to the single-particle momentum distribution n�p� of
the unperturbed system:

J�y,Q̂� =� dp n�p���y − p · Q̂� . �3�

It is worth noting that in the rest of the paper, we will not
consider the problem of the anomalous cross section and the
possible excitation of electronic degrees of freedom via non-
Born-Oppenheimer effects. In fact, it is straightforward to
verify21 that the spectral features hypothetically related to the
excitation of electronic states would not follow the West
scaling. So, assuming, for example, the proton recoil in
NaHF2, one could locate the electronic excited part of the
spectrum at �y apart from the standard NCS proton response
function, where �y=45–90 Å−1, to be compared with an
intrinsic recoil peak width of about 9 Å−1 �see below in this
section for symbol definitions�. This means that the standard
NCS proton response would not be marred by electronic ex-
cited features, even in the hypothetical case of sizable non-
Born-Oppenheimer effects.

Given the experimental impossibility to attain the exact
asymptotic limit �i.e., �Q� and E are always finite�, it is a very
common question to wonder how far the measurement is
from its asymptotic limit. Or in other words, how large one
should select �Q� in order to satisfy Eq. �3� with a given
degree of accuracy. Here, the situation starts to become
slightly complex, since the exact answer to this problem has
been given very generally by Gersch et al.26 through a non-
perturbative power series in �Q�−1:

F�y,Q� = J�y,Q̂� + �
k=1

�

�Q�−kFk�y,Q̂� . �4�

Unfortunately, the expressions of the various Fk�y ,Q̂� terms
�known as final state effect �FSE� corrections	 are not easy to
evaluate. For these reasons, another form of FSE corrections,
due to Sears, is generally employed27 even though its accu-
racy is sometimes difficult to be rigorously assessed.28 If the
Fourier transform of Eq. �4� is taken, one writes

F̃�s,Q� = J̃�s,Q̂� + �
k=1

�

�Q�−kF̃k�s,Q̂� , �5�

with26
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J̃�s,Q̂� =� dr �1�r,r + sQ̂� , �6�

where the formalism of the one-body density matrixes
�1�r ,r+x� has been introduced. If a system composed of N
nuclei is described by a statistical mixture of many-body
wave functions �n�r1 , . . . ,rN� with statistical weights pn,
and the scattering nucleus is labeled, for example, by i, then
the one-body density matrix for the ith nucleus exhibits the
following definition:

�1
�i��r,r + x� = �

n

pn� dr1 ¯� drN �n
*�r1, . . . ,ri, . . . ,rN�

��n�r1, . . . ,ri + x, . . . ,rN���r − ri� . �7�

In order to include the FSE corrections F̃k�s ,Q̂�, the potential
energy of the system V�r1 , . . . ,rN� has to be specified. In the
simple case of an additive pair potential,

V�r1, . . . ,rN� = �
i=1

N

�
j	i

N

vij�ri,r j� , �8�

following Ref. 26 F̃1�s ,Q̂� reads

F̃1�s,Q̂� =
iMi

�2 �
i�j

N � dr� dx �2
�i,j��r,x;r + sQ̂,x�

��
0

s

dt�vij�r + sQ̂,x� − vij�r + tQ̂,x�	 , �9�

where the semidiagonal two-body density matrix �2
�i,j�

��r ,x ;r+y ,x� �for the nuclei labeled i and j� has been in-
troduced:

�2
�i,j��r,x;r + y,x�

= �
n

pn� dr1 ¯� drN �n
*�r1, . . . ,ri, . . . ,rN�

��n�r1, . . . ,ri + y, . . . ,rN���r − ri���r − r j� .

�10�

The following FSE correction F̃2�s ,Q̂� can be found explic-
itly in Ref. 26 and has been studied in detail in Ref. 29.

At this stage, it is useful to compare Eq. �9� to the corre-
sponding FSE correction �i.e., the term proportional to �Q�−1�
suggested by Sears,27 which in our notation writes

F̃1,S�s,Q̂� 
 i
Mi

2�2�
i�j

N ��

,�

Q̂


�2vij�ri,r j�
�ri,
�rj,�

Q̂�� s3

6
J̃�s,Q̂� ,

�11�

where the quantum average 
A�ri ,r j�� of a generic position-
dependent operator A�ri ,r j� has to be meant as


A�ri,r j�� = �
n

pn� dr1 ¯� drN �n
*�r1, . . . ,rN�

�A�ri,r j��n�r1, . . . ,rN�

=� dr� dx �2
�i,j��r,x;r,x�A�r,x� , �12�

making use of the fully diagonal elements of the two-body
density matrix �2

�i,j��r ,x ;r ,x�. So, as explained in detail in
Ref. 30, Eq. �11� is essentially an approximation of Eq. �9�
valid for small values of s. The proof is based on the formula
�2

�i,j��r ,x ;r+sQ̂ ,x���2
�i,j��r ,x ;r ,x��dr��1

�i��r� ,r�+sQ̂� in
conjunction with a second-order power expansion of inte-
grand containing the potential. An analogous situation is
found for the term proportional to �Q�−2 according to Sears:27

F̃2,S�s,Q̂� 
 �Mi
2

�2 �
i�j

N ���



Q̂


�vij�ri,r j�
�ri,


�2� s4

24

+
1

2� F̃1,S�s,Q̂�

J̃�s,Q̂�
�2�J̃�s,Q̂� , �13�

if compared to the F̃2�s ,Q̂� derived by Gersch et al.26–28

A quantitative comparison between the FSE corrections
proposed by Gersch et al. and those due to Sears will be
presented for NaHF2 in the following sections. In this re-
spect, it is worth mentioning that F̃1,2,S�s ,Q̂� are exact for an
ideal harmonic system,7 and, naturally, F̃1,2�s ,Q̂� and
F̃1,2,S�s ,Q̂� coincide. So, discrepancies between the two
forms of FSE can be seen as a mark of strongly anharmonic
interactions.

B. Single-particle momentum distributions and interatomic
potentials

As already reported in the Introduction, one of the most
interesting applications of NCS concerns the so-called recon-
struction of the Born-Oppenheimer potential felt by protons
in condensed matter,1,19 where a number of highly valuable
results have been recently obtained for various systems,
ranging from alkali dihydrogen phosphates19,31 to potassium
binoxalate,32 water and ice �both bulk33 and confined in car-
bon nanotubes34�, acid and base aqueous solutions,35 etc.
Thus, it is important in our view to clarify what kind of
“wave function” can be derived from NCS data and, more-
over, what kind of “potential” can be reconstructed from
these. This clarification is especially important if experimen-
tal data have to be compared to ab initio or semiempirical
simulations, since, as it will be made clear later, very differ-
ent approximations are implicit in the two data sets. Let us
start from the usual many-body Schrödinger equation de-
scribing our system composed of N nuclei:

− �
j=1

N
�2

2Mj
� j

2�n�r1, . . . ,rN� + V�r1, . . . ,rN��n�r1, . . . ,rN�

= En�n�r1, . . . ,rN� , �14�

where En is the energy eigenvalue corresponding to the sys-
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tem eigenstate �n�r1 , . . . ,rN�. Taking the Fourier transform
of both sides of Eq. �14�, representing the transformed func-
tions with a tilde over their symbols, and multiplying the
new equation by �̃n

*�p1 , . . . ,pN�, one can easily write

�
j=1

N
�2pj

2

2Mj
nn�p1, . . . ,pN�

+� dq1

�2��3/2 ¯� dqN

�2��3/2�̃n
*�p1, . . . ,pN�Ṽ�p1

− q1, . . . ,pN − qN��̃n�q1, . . . ,qN� = Ennn�p1, . . . ,pN� ,

�15�

where the many-body momentum distribution for the nth
eigenstate, nn�p1 , . . . ,pN�, has been introduced:
nn�p1 , . . . ,pN�= ��̃n�p1 , . . . ,pN��2. In the rest of this section,
we will focus for sake of simplicity on the ground state n
=0, i.e., we will consider our system as kept at zero tempera-
ture. It is worth recalling few simple properties of
n0�p1 , . . . . . ,pN�:

� dp1 ¯� dpN n0�p1, . . . ,pN� = 1,

� dp1 ¯� dpN n0�p1, . . . ,pN���p − pi� = n0
�i��p� ,

� dp1 ¯� dpN n0�p1, . . . ,pN�pi
2

=� dpin0
�i��pi�pi

2 =
2Mi

�2 
Ek��i�, �16�

where n0
�i��p� is the single-particle momentum distribution of

ith nucleus as seen in Eq. �3�, and 
Ek��i� is its mean kinetic
energy. In this way, a link between NCS and Schrödinger
equation begins to appear. However, in order to gain a deeper
physical sense of our formulas, it is useful to highlight the
properties of R0�r1 , . . . ,rN�, the multidimensional Fourier
transform of n0�p1 , . . . . . ,pN�, related to the system ground
state via

R0�r1, . . . ,rN� =
1

�2��3N/2 � dx1 ¯� dxN �0
*�x1, . . . ,xN�

��0�x1 + r1, . . . ,xN + rN� . �17�

That is to say that R0�r1 , . . . ,rN� is the ground-state autocor-
relation function, the analogous of the Patterson function
used in x-ray diffraction36 for describing electron density.
The properties sketched in Eq. �16� can now be transferred to
the autocorrelation function:

�2��3N/2R0�r1 = 0, . . . ,rN = 0� = 1,

�2��3N/2R0�r1 = 0, . . . ,ri = s, . . . ,rN = 0�

=� dxi �1,0
�i� �xi,xi + s�

=� dpeip·sn0
�i��p� ,

− �2��3N/2�s
2R0�r1 = 0, . . . ,ri = s, . . . ,rN = 0� =

2Mi

�2 
Ek��i�,

�18�

where we have also made the link between R0�r1 , . . . ,rN�
and the one-body density matrix for the ith nucleus in the
case of the system ground state �see Eq. �7�	 explicit. Now,
the Schrödinger equation of Eq. �15� assumes �for the ground
state� a third form, which singles out the selected ith nucleus,
making use of both the autocorrelation function
R0�r1 , . . . ,rN� and the wave function �n�r1 , . . . ,rN�. Let us
put i=1 to simplify the symbolism, but without any loss of
generality. One can write

− �2�s
2

2M1
R0�s,0, . . . ,0�

+ ��
j=2

N
− �2� j

2

2Mj
R0�s,r2, . . . ,rN��

r2=¯=rN=0

+� dx1

�2��3/2 ¯� dxN

�2��3/2�0
*�x1,x2, . . . ,xN�

�V�x1 + s,x2, . . . ,xN��0�x1 + s,x2, . . . ,xN�

= E0R0�s,0, . . . ,0� . �19�

So far, the result is exact. However, if we strive to derive a
simple Schrödinger-like single-particle equation concerning
the first nucleus with the aim of inverting it, so to “recon-
struct” the effective potential felt by this nucleus, we are
forced to introduce two rather demanding approximations:
�1� the kinematic uncorrelation between the first nucleus and
all the other nuclei and �2� the “frozen neighbor” �i.e., adia-
batic� approximation for the potential generated by spectator
nuclei from 2 to N.

The first Ansatz can be written, for any j
2, as

� dp2 ¯� dpN n0�p1, . . . ,pN�p j
2 
 n0

�1��p1�
2Mj

�2 
Ek��j�,

�20�

or, in the autocorrelation function formalism, as

�− �2

2Mj
� j

2R0�s,r2, . . . ,rN��
r2=¯=rN=0


 
Ek��j�R0�s,0, . . . ,0� .

�21�

It expresses the property that p1 is statistically uncorrelated
with all the other p j. Naturally, in a real molecular system,
this statement is, in general, false, since nuclear motions are
strongly correlated through precise vibrational normal
modes.4 Nevertheless, it is not impossible to consider that if
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the number of normal modes is large and M1 is quite differ-
ent from the masses of the neighbor nuclei, then the kine-
matic approximation becomes a sensible hypothesis surely
worth being tested.

The second approximation is conceptually simpler and
consists in replacing the potential energy in the integrand in
Eq. �19� with its value estimated at appropriate average co-
ordinates x2= x̄2 , . . . ,xN= x̄N of the spectator nuclei:

� dx2

�2��3/2 ¯� dxN

�2��3/2�0
*�x1,x2, . . . ,xN�

�V�x1 + s,x2, . . . ,xN��0�x1 + s,x2, . . . ,xN�


 V�x1 + s, x̄2, . . . , x̄N� � dx2

�2��3/2 ¯

�� dxN

�2��3/2�0
*�x1,x2, . . . ,xN�

��0�x1 + s,x2, . . . ,xN� . �22�

Clearly, the rationale behind this approximation is that V
does not vary too much on the typical lengths of the neighbor
nuclei vibrations. In general, this happens, once again, if M1
is lower than the neighbor nuclei masses. We will study in
detail these two Ansätze in the case of NaHF2 in the follow-
ing sections. Plugging Eqs. �21� and �22� into Eq. �19� and
exploiting the relationship of Eq. �18�, one finally writes an
integrodifferential single-particle equation for �1,0

�1��x1 ,x1+s�:

− �2

2M1
�s

2R0�s,0, . . . ,0� +
1

�2��3N/2 � dx1

�V�x1 + s, x̄2, . . . , x̄N��1,0
�1��x1,x1 + s�


 �E0 − �
j=2

N


Ek��j��R0�s,0, . . . ,0� , �23�

which can also be derived from a fictitious single-particle
Schrödinger equation, totally equivalent to Eq. �23�:

− �2

2M1
�2�0�r1� + V�r1, x̄2, . . . , x̄N��0�r1�


 �E0 − �
j=2

N


Ek��j���0�r1� , �24�

assuming the following definition for the pseudo-wave-
function of the first nucleus, �0�r1�:

�1,0
�1��x1,x1 + s� = �0

*�x1��0�x1 + s� . �25�

Equation �24� can be easily inverted to work out
V�r1 , x̄2 , . . . . , x̄N�, the effective potential felt by the first
nucleus, once �0�r1� is known from n0

�1��p� via a simple Fou-
rier transform �if the conditions mentioned in ref. �1	 are
satisfied�:

�0�r1� =
1

�2��3/2 � dp exp�ip · r1��n0
�1��p�	1/2. �26�

The single-particle momentum distribution can be efficiently
obtained from experimental J�y ,Q̂� data via the so-called
Radon-transform method as suggested by Reiter et al.19

However, it is very important to realize that �0�r� is by no
means the first nucleus wave function which is not defined at
all in a system of entangled particles like a molecular solid.
It is only a useful mathematical tool to solve Eq. �24�, which,
in turn, is a rather crude approximation of the true many-
body equations reported in various forms in Eqs. �14�, �15�,
and �19�. So, the actual physical meaning of the effective
potential obtained can be very important but has to be care-
fully checked considering the two caveats mentioned earlier
in this section.

III. SAMPLE DESCRIPTION AND EXPERIMENTAL
PROCEDURE

Strong H bonds are probably the most interesting and in-
triguing category of hydrogen bonds. Recently, H+

¯N-H
ions have been observed in the so-called proton sponges, and
there has been even some discussion on the possible role
played by strong hydrogen bonds in enzyme catalysis.37 The
prototype of this kind of bonding is surely the hydrogen
bifluoride ion �F-H-F	−, one of the first systems to have been
intensively studied through x-ray diffraction �1928�, infrared
spectroscopy �1941�, neutron diffraction from an isotopically
enriched sample �1952�, and NMR �1953�. However, for
quite a long time, some important aspects of this ion kept
their elusive character, such as the supposed centrosymmet-
ric position of the H atom, the exact value of the bond en-
ergy, and the extent and nature �i.e., whether mechanical or
electrical� of the anharmonicities in the �F-H-F	− internal
vibrations.38 Nowadays, also with the help of ab initio and
semiempirical calculations, the large amount of experimental
and simulated data has been largely reconciled, obtaining a
general consensus on a purely centrosymmetric ionic struc-
ture with a H-F distance dHF ranging between dHF
=1.132 Å and dHF=1.138 Å and a bond energy of about
Eb=163±4 kJ /mole in the gas phase.39 On the contrary, as
far as the study of the ionic vibrations is concerned, no ex-
haustive and comprehensive representation has been reached,
even though some relevant works on Raman,38,40 IR,38,40,41

and neutron40,42,43 spectroscopies have to be mentioned. Es-
pecially the last,43 a high-resolution inelastic neutron scatter-
ing measurement on polycrystalline NaHF2 pointed out be-
yond any doubt the existence of a large LO/TO splitting of �2
�bending� but also revealed conspicuous anharmonicity in
overtones and combinations. In practice, we have seen that in
several cases, hydrogen bifluoride ion has been studied using
sodium or potassium as counterions, namely, in NaHF2 or
KHF2. These compounds, however, exhibit two entirely dif-
ferent crystal structures at ambient conditions, namely, rhom-
bohedral �R-3m, Z�=1�44 and tetragonal �I4 /mcm, Z=2�,44

respectively. In addition, two phase transitions have been
reported45 for NaHF2 upon high pressure. The spectroscopic
relevance of the existence of these two ambient-condition
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crystalline structures lies in the number of HF2
− ions per

primitive unit cell: NaHF2 contains just one ion per primitive
unit cell. On the contrary, for KHF2, one has always to in-
teract with two crossed ions �moved 3.4 Å apart�. For this
reason, we have decided that it is largely preferable to make
use of sodium bifluoride.

We have performed deep inelastic neutron scattering mea-
surements on a sodium hydrogen fluoride �NaHF2� sample
formed by an array of small polycrystalline platelets placed
on a thin aluminum frame. Experimental details are summa-
rized in the Table I, where � represents the angle between the
perpendicular to the sample frame and the incident neutron
beam, IPC is the integrated proton current, and T is the
sample temperature. In the present arrangement, the axis per-
pendicular to the platelets forms an angle equal to �45°-��
with the incident neutron beam �because of “Venetian blind”
geometry used to fix the various platelets to the frame�. In
our measurements, the VESUVIO spectrometer was operated
in forward scattering only and was equipped with two sets of
Au filters, one cycled in and out of the scattered beams and
the other placed in front of four banks of yttrium aluminum
perovskite detectors, ranging between �=45.1° and �
=62.3° on both sides of the spectrometer. This method,
known as foiling cycling technique,46 combines the filter dif-
ference and resonance detector approaches and can guarantee
a reasonable counting rate together with a excellent energy
resolution. The raw neutron spectra recorded �see Fig. 1 for
an example� clearly exhibit two recoil peaks: a broad and
large hump on the left, produced by the hydrogen ions �H+�,
and a tall and narrow structure determined by all the heavier
elements, fluorine �F−�, sodium �Na+�, and also aluminum
�Al�, contained in the sample holder frame.

We have also performed incoherent inelastic neutron scat-
tering �IINS� measurements on the aforementioned NaHF2
sample �see Table I for experimental details� employing the
TOSCA-II vibrational spectrometer.47 Similarly to the NCS
experiment, in the present arrangement, the axis perpendicu-
lar to the platelets still formed an angle equal to �45°−��
with the incident neutron beam. The raw neutron scattering

spectra recorded �see inset of Fig. 1� clearly exhibited a low-
energy structure �for energies lower than 50 meV� due to a
number of NaHF2 lattice modes, then few strong fundamen-
tal peaks between 140 and 220 meV, related to the internal
vibrations �stretching and bending� of the �FHF	− ion, and
finally a series of overtones and combinations around
300 meV and beyond.

IV. EXPERIMENTAL DATA ANALYSIS

The difference between filter-in and filter-out VESUVIO
spectra yielded the experimental NCS time-of-flight profiles.
An example of these raw spectra C�t ,�� for a scattering
angle �=45.1° is shown in Fig. 1. The spectral contributions
given by Na, F, and the aluminum sample holder were care-
fully subtracted, making use of routines available on the
spectrometer48 and exploiting the wide gap existing, even at
the lowest � values, between the H recoil peak and that re-
lated to the heavier nuclei. Multiple scattering contamination
was estimated by comparing runs for the same detector �i.e.,
the same �� operated at different values of � to increase the
average sample thickness d��� according to the formula

d��� =
d0l0

l0�cos��

4
− ��� + d0�sin��

4
− ��� , �27�

where d0 is the actual thickness of the double layer made of
the NaHF2 platelets and the aluminum stripe �about 1 mm
thick each� and l0 is the aluminum stripe width �6 mm�. Ap-
plying Eq. �27�, we could characterize the NCS measure-
ments with the following values of average sample thick-
ness: d���=2.1, 2.0, 6.0, 1.9, and 2.9 mm for runs 1, 2, 3, 4,
and 5, respectively. So, multiple scattering was found to be
practically negligible, at least for runs 1, 2, and 4, grouped

TABLE I. Details of the neutron scattering measurements on
NaHF2, including spectroscopic technique �NCS stands for neutron
Compton scattering, while IINS for incoherent inelastic neutron
scattering�, label �numbers 1–5 for NCS and letters A and B for
IINS�, angle � between the perpendicular to the sample frame and
the incident neutron beam, integrated proton current �IPC�, and
sample temperature T.

Spectroscopic
technique No.

�
�deg�

IPC
��A h�

T
�K�

NCS 1 0.0 6327.6 4.49�1�
NCS 2 +45.0 4897.2 4.49�1�
NCS 3 −45.0 4187.9 4.49�1�
NCS 4 +22.5 4493.4 4.49�1�
NCS 5 −22.5 5569.3 4.49�1�
IINS A +45.0 1774.4 15.5�9�
IINS B −45.0 1535.3 11.5�7�
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FIG. 1. Main: example of a raw neutron Compton scattering
spectrum �time of flight� from NaHF2 recorded on VESUVIO in
forward scattering ��=45.1° � at T=4.49 K and �=0.0°. Inset: raw
neutron scattering spectra from NaHF2 recorded on TOSCA-II in
forward scattering at T=15.5 K and �= +45.0°.
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together and used in what follows. In particular, for run 2 at
�= +45° �i.e., with the aluminum stripes perpendicular to the
incoming neutron beam�, this finding was confirmed by the-
oretical calculations which estimated multiple scattering to
be only 3.7% of the total scattering in the case of epithermal
neutrons. Sample self-shielding was carefully evaluated for
all the � and � values of the present measurements in the
time-of-flight range 50 �s	 t	500 �s relevant to our ex-
periment. It was found to be essentially flat as a function of
t due to the lack of intense neutron absorbing nuclei, and for
this reason, no correction was operated on the experimental
C�t ,��.

The experimental time-of-flight spectra, named CH,1�t ,��
after removing the heavy nuclei signal and checking multiple
scattering and self-shielding effects, had to be related to the
proton double-differential scattering cross section and, as ex-
plained in Sec. II, to the H response functions F�y ,Q� �where
the dependence on Q̂ has been dropped dealing with a poly-
crystalline sample�. A detailed study on the relationship be-
tween time-of-flight spectra and response functions has been
presented in various works,7,49 and so here, it is enough to
quote the integral formula which links the two physical
quantities with each other in the case of the foiling cycling
technique:46

C1,H�t,�� = A�
−�

�

d��
0

�

d��
0

�

dL0�
0

�

dL1 P��,�,L0,L1�

��
0

�

dE0��E0��
0

�

dE1���E1��1 − TAu�E1�	

��E1

E0
�1/2F�y,Q�

Q

���t − � − L0� m

2E0
�1/2

− L1� m

2E1
�1/2� , �28�

where A is a constant depending on both the instrument and
the sample; � is the time delay due to the moderator width; �
is the actual scattering angle �whose mean value is the nomi-
nal scattering angle of the detector considered, ��, L0,1 are
the initial and final flight paths, respectively; P is the distri-
bution of the four aforementioned random variables; E0,1 are
the incoming �out-coming� neutron energies; ��E0� is the
incoming neutron flux; ���E1� is the gamma production and
detection efficiency; and TAu is the transmission of the gold
foil cycling in and out of the beam. Needless to say that Q
and y are also functions of the actual values of �� ,E0 ,E1�.
However, experimental data are usually transformed into ef-
fective Fexp

(�� �y ,Q�y�) spectra at constant angle via the mean
values of �� ,� ,L0 ,L1 ,E1�, namely, ��̄ ,� ,L0 ,L1 ,E1�, known
from the VESUVIO calibration:49

Fexp
���
„y,Q�y�… =

BMH

E0��E0�
QC1,H�t,�� , �29�

where the B is another constant depending on both the in-
strument and the sample, and MH is the proton mass. Now,
for fixed-angle spectra, y �and then Q�y�	 are considered as
functions of E0 only, �� ,E1� being fixed parameters, and

through the approximate time-of-flight equation

t 
 �̄ + L̄1� m

2Ē1
�1/2

+ L̄0� m

2E0
�1/2

, �30�

y and Q�y� become function of t. Thus, our experimental
time-of-flight data were transformed into y-space spectra us-
ing a routine available on the spectrometer,48 and focused to
increase the statistical accuracy to obtain fixed-angle data
Fexp

(�� �y ,Q�y�) spanning an interval ��=0.4° of the nominal
scattering angle � �see Fig. 2�. These data covered a � range
from 45.2° to 58.0° and from −49.0° to −62.2°. Plugging Eq.
�29� into Eq. �28�, one can explicitly write the effect of the
VESUVIO instrumental resolution on the proton response
function to be measured. If the double-differential neutron
cross section � d2�

d�dE
� is introduced,

� d2�

d�dE
��E0,E1,�� =

�H

4�
�E1

E0
�1/2 MH

�2Q
F�y,Q� , �31�

then one can write

� d2�

d�dE
�

exp
��0,Ē1,��

= D�
0

�

dE0�
0

�

dE1�
−�

�

d��
0

�

d�

��
0

�

dL0�
0

�

dL1P��,�,L0,L1�
��E0�
���0�

���E1�
L1

��E1

�0
�3/2

�1 − TAu�E1�	� d2�

d�dE
��E0,E1,��

���E1 − L1
2� L̄0

��0

−
L0

�E0

+
L̄1

�Ē1

− �� − �̄�� 2

m�−2� ,

�32�
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FIG. 2. Examples of the experimentally measured proton re-
sponse functions in sodium hydrogen fluoride at various scattering
angles: �a� +56.4°, �b� +50.4°, �c� +46.63°, �d� −54.9°, and �e�
−60.68°. Spectra are vertically shifted for graphic reasons.
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where m is the neutron mass and D is an appropriate instru-
mental constant. Obviously, given its complexity, Eq. �32�
has to be necessarily implemented via a computer code mak-
ing use of Monte Carlo sampling routines. In the following
sections, we will use this scheme to simulate NCS spectra for
NaHF2. Due to some numerical difficulties, this method is
not widely use in the NCS data analysis. It is generally pre-
ferred to relate Fexp

(�� �y ,Q�y�) to F�y ,Q� through a heuristic
resolution function R����y� �generally, but not always, chosen
in a Voigt form�:

Fexp
��� �y,Q� 
 � dy�� dQ�F�y�,Q��R����y − y����Q�y� − Q�� .

�33�

An assessment about the possible differences between Eqs.
�32� and �33� for NaHF2 will be done in Sec. VI.

In the IINS measurements, experimental backscattering
and forward-scattering time-of-flight data were transformed
into double-differential cross-section spectra, detector by de-
tector, making use of the standard instrumental routines of
TOSCA-II,50 and finally added together in two distinct data
blocks. These measurements were corrected for the
�E1 /E0�1/2 kinematic factor. At this stage, the important
evaluations of self-shielding attenuation and multiple scatter-
ing contamination were performed through the analytical ap-
proach suggested by Agrawal and Sears in the case of a flat
slablike sample.51 Both procedures were carried out in the
framework of the incoherent approximation, totally justified
by the preponderance of scattering from the H nuclei and by
the polycrystalline nature of the bifluoride sample. Making
use of the method explained in Ref. 51 and disregarding the
weak inelastic scattering from Al, Na, and F, the input
needed for these two corrections was essentially reduced to a
rough knowledge of the H-projected density of phonon
states, which was approximately set up using the procedure
reported in detail in Ref. 52. Multiple scattering contribu-
tions were evaluated in the case of �= +45° for the energy
transfer interval of interest �i.e., 3 meV	E	220 meV, the
zone of the fundamental bands�, amounting on average to
4.8% of the total scattering. However, the multiple scattering
component due to two or more inelastic events was found
much lower �as expected from Ref. 52� and so was not re-
moved from the spectra. On the contrary, the correction for
the sample self-shielding was applied to both backscattering
and forward-scattering sets, obtaining the so-called general-
ized self-inelastic structure factor ��Q ,E�.4 Data from the
�=−45° sample arrangement were disregarded because they
are too statistically inaccurate and probably plagued with a
high level of multiple scattering and self-shielding.

A preliminary extraction of the proton mean kinetic en-
ergy from the present NCS data was performed via a simple
fitting procedure: the asymptotic J�y� was assumed to have a
Gaussian shape and the FSE effects were included following
the Sears approach in a simplified form:48

F�y,Q� 
 �1 −
�3

3Q

d3

dy3 +
�6

6Q2

d4

dy4 +
1

2
� �4

3Q
�2 d6

dy6�J�y� .

�34�

Finally, the instrumental resolution was dealt with heuristi-
cally as in Eq. �33�, making use of Voigt functions whose
parameters were estimated through an additional calibration
measurement of polycrystalline ZrH2. The result of this fit-
ting procedure �reduced �2=1.27� was the following estimate
of the H mean kinetic energy: 
Ek�H=111.8±0.6 meV.

V. LATTICE DYNAMICAL SIMULATIONS

As already mentioned in the Sec. III, the sodium hydro-
gen fluoride structure in our experiments is rhombohedral
�space group R-3m� with one �FHF	− ion per primitive unit
cell. Thus, there are only two lattice parameters �a and c� that
have to be specified in order to determine the full crystal
structure. Ab initio calculations were carried out using plane-
wave density functional theory �DFT� as implemented by the
computer code ABINIT �Ref. 53� in conjunction with the
Hartwigsen-Goedecker-Hutter pseudopotentials.54 As for the
type of density functional employed, the generalized gradi-
ent approximation �GGA� has been preferred using the pa-
rametrization introduced by Perdew et al.55 The reasons for
this choice can be found in Ref. 56, where it is shown that
standard energy minimization methods using GGA give an
adequate lattice geometry although the computationally pro-
hibitive thermal and zero-point effects are not included. This
choice has also been confirmed by the recent DFT calcula-
tions on the same compound performed by Refson et al.57

through the CASTEP code. In addition, the 2s and 2p semicore
electrons for Na were treated as valence states. The conver-
gence achievement was verified with respect to both the
number of k points in reciprocal space and the energy cutoff
for the plane waves: the present electronic calculation was
performed using a mesh of 5�5�5 points in the k space
and a cutoff at 850 eV. In order to calculate a well-defined
density of phonon states for NaHF2, phonons were deter-
mined on a 16�16�16 grid of points in the first Brillouin
zone. However, a full electronic calculation on such a grid
was not necessary since an accurate interpolation procedure
through the ANADDB �Ref. 58� program was used. Finally,
the actual IINS spectrum was generated using the ACLIMAX

code,59 which takes exactly into accounts thermal and
powder-average effects, together with overtones and combi-
nations up to the tenth quantum event. Simulated generalized
self-inelastic structure factor ��Q ,E� is reported in Fig. 3
�together with its fundamental component�, following the
TOSCA-II backscattering kinematic path. As a comparison,
the vibrational frequencies obtained for an isolated �FHF	−

ion via DFT4 are also plotted.

VI. DISCUSSION

The first comparison to be made is between our experi-
mental IINS spectrum and the corresponding DFT simula-
tion. The two curves �both concerning the TOSCA-II back-
scattering kinematic path� are reported in Fig. 4, together
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with a previous IINS measurement43 obtained from the
TFXA spectrometer,60 the TOSCA predecessor, which exhib-
ited a kinematic path very similar to the TOSCA-II back-
scattering one. The agreement among the three spectra is
very good, especially in the bending region 140 meV	E
	160 meV, where the LO-TO band splitting is clearly vis-
ible through the existence of two peaks: at 151 meV and at
156 meV. Further details on this subject can be found in
Refs. 4 and 43. The adjacent zone �163 meV	E
	206 meV� is slightly more complex, since, as shown in
Fig. 3, it contains two contributions of different nature: the
asymmetric stretching mode peaked at 176 meV �fundamen-

tal� and the combination of the low-energy lattice modes
�E	37 meV� with the aforementioned bending ones, lying
around 166 meV and partially overlapped with the asymmet-
ric stretching band. In this region, a small disagreement be-
tween DFT and IINS is visible due to a slightly different
redistribution of the intensities, but this fact does not hamper
the overall good quality of the comparison.

After validating the DFT results by means of the IINS
measurements, we could exploit the former data to extract an
estimate of 
Ek�H through the formula


Ek�H =
3

4
�

0

�

GH�E�E coth� E

2kBT
�dE , �35�

where GH�E� is the hydrogen-projected density of phonon
states in NaHF2, obtained, in this case, through the simulated
phonon frequencies and eigenvectors. From this equation, we
worked out the DFT estimate of the proton mean kinetic
energy at T=4 K, namely, 
Ek�H=123.6 meV, which came
close to the NCS experimental value, but 9–10 % larger than
it. Naturally, one could try to explain this small, but not
negligible, discrepancy by various hypothetical reasons �e.g.,
H vibrational anharmonicity, non-Gaussian hydrogen re-
sponse function, etc.�, but at the present stage, we do not
think that these speculations would be solidly justified.

In Sec. II, three relevant problems arise, namely, �1� the
more appropriate form for the FSE corrections �i.e., either
according to Gersch et al. or following Sears� and their mu-
tual relationship, �2� the possibility to reconstruct an effec-
tive proton potential in the light of the approximations
needed for its extraction, and �3� finally the validity of the
convolution approximation expressed in Eq. �33� to deal with
the instrumental resolution effects in NCS. We are now in the
position to answer these three problems, at least in the case
of NaHF2.

A. Evaluation of the final state effects

Dealing with the issue of the final state effects, we imme-
diately face a tremendous task, even for the mere computa-
tion of F1�y�: together with a detailed knowledge of the vari-
ous interatomic potentials vij�ri ,r j�, the evaluation of the
semidiagonal two-body density matrixes �2

�i,j��r ,x ;r+y ,x� is
required. For this reason we decided to sketch the following
approximate scheme for evaluating F1�y� and F1,S�y�: �a� re-
straining our description of the FSE to the contribution
caused by the interaction between the recoiling proton and
the two fluorine nuclei belonging to the same �FHF	− ion; �b�
making use of a semiempirical potential energy function for
�FHF	−; �c� evaluating �2

�i,j��r ,x ;r+y ,x� �including its diag-
onal elements for computing F1,S�y�	 through the standard
normal mode analysis, which implies the harmonic approxi-
mation; and �d� operating a spherical average so to describe a
polycrystalline sample.

Points �a� and �c� surely deserve some comments: the de-
cision to limit the FSE calculation to a single �FHF	− ion
might appear as a somehow crude approximation; however,
we recall that most of the proton vibrational dynamics is
already captured by a simple single-ion description, as
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FIG. 3. Simulated generalized incoherent inelastic structure fac-
tor ��Q ,E� from the density functional theory calculations. The
total ��Q ,E� �full line� and its one-phonon component �dashed
line� are reported. The former spectrum is vertically shifted for
graphic reasons. Vertical bars represent the simulated vibrational
frequencies for an isolated �FHF	− ion �Ref. 4� Both spectra were
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shown in Fig. 3. As a matter of fact, the single-ion model
provides in the framework of the harmonic approximation,
by the way, a mean kinetic energy value 
Ek�H=115.9 meV,
not too distant from the experimental and the ABINIT ones. In
addition, it is useful to present a heuristic argument based on
a fictitious “contact” �i.e., very short ranged, like a billiard
ball� interaction to provide a deeper physical understanding
of the FSE and the approximations used to evaluate them: let
us consider the scaling variable conjugate to y, namely, the
proton mean “traveled” distance s=�QMH

−1t. One can imme-
diately compare the effect caused on the hit proton by the
presence of a neighbor fluorine nucleus placed at a distance
dH-F=1.13 Å �i.e., belonging to the same bifluoride ion� or at
distance dH¯F=3.82 Å �i.e., in the nearest bifluoride ion�, or
even the closest sodium nucleus, dH¯Na=2.82 Å.61 Using the
well-known Nyquist-Shannon sampling theorem, we can
transform these limiting s values for the proton free recoil
into y accuracies ��y=2� /s�: �y=5.56, 1.64, and 2.23 Å−1,
respectively, for H-F, H¯F, and H¯Na, to be compared
with the typical experimental resolution in the y space,
namely, �yres=3–6 Å−1. It is evident even from this simple
comparison how the role of the intraionic potential is far
more relevant than that of the interionic one. As for the use
of a harmonically approximate two-body density matrix to
compute the FSE, instead of the exact result, it is crucial to
stress that this procedure is not at all equivalent to the full
harmonic approximation of the FSE. The anharmonic char-
acter of the calculation is still contained in the semiempirical
potential energy function. On the contrary, if this potential
function is also taken as parabolic, then one has the complete
harmonic approximation of the FSE, for which, as we have
seen, the Sears approach is exact and coincides with that of
Gersch et al. In addition, since the two-body density matrix
is obtained �at zero temperature� only from the vibrational
ground state of a �FHF	− ion, its harmonic approximation
appears as thoroughly plausible, since it involves no excited
vibrational states, where anharmonicity generally plays a cer-
tain role. The anharmonic potential surface describing the
�FHF	− internal dynamics was assumed to be appropriately
described by a quartic form by Lohr and Sloboda62 fitted
from their ab initio results:

V�rF1,rF2,rH� = �
i=0

2

�
j=0

2

b2i,2j��xF1 − xH�2 + �yF1 − yH�2	i

��zH −
1

2
�zF1 + zF2��2j

, �36�

where z is the molecular axis direction. It is worth noting that
the symmetric stretching is not included in this potential sur-
face, which, in fact, has been calculated for a fixed value of
the F1-F2 distance �namely dF1-F2=2.292 Å�. However, this
lack is totally uninfluential here, since the symmetric stretch-
ing does not imply any dynamic displacement of the H
nucleus in the �FHF	− ion. The results of the implementation
of Eqs. �9� and �11�, respectively, for the Gersch-Rodriguez-
Smith and the Sears approaches, have been plotted in Fig. 5,
where in panel �A� the aforementioned quantities have been
represented in the Fourier-transformed space �i.e., as F̃1�s�

and F̃1,S�s�	, while in panel �B�, the same quantities have
been plotted in the direct space as F1�y� and F1,S�y�. It is
immediately seen that the two approaches do not coincide
exactly because of the anharmonic terms in Eq. �36�, namely,
those for i and/or j larger than 1. However, the observed
discrepancies between F1�y� and F1,S�y� are indeed very
modest in the �FHF	− system and surely below the level of
accuracy of the experimentally collected data.

B. Requirements for the extraction of the proton effective
potential

In this section, we aim to verify how the two requirements
of Sec. II B, namely, the kinematic uncorrelation and the
adiabatic approximation, are fulfilled in the case of sodium
hydrogen fluoride. Once again, we will approximate this sys-
tem focusing on a single �FHF	− ion. In addition, since for
both verifications only the vibrational ground state is needed,
we will proceed making use of a standard normal mode
analysis, which implies the harmonic approximation of the
nuclear wave function �0�rF1 ,rF2 ,rH�:

�0�rF1,rF2,rH� = �0�R��
i=1

6

�0
�i��qi� , �37�

with �0�R� being the center-of-mass ground-state wave func-
tion and �0

�i��qi� the ground-state wave function for the ith
normal mode qi, including two librations, two bending
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FIG. 5. Estimates of the first term of final state effects, F1�y�, for
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limit of the �HF2	− response function, J�y�, is also plotted as a
dotted line. In panel �A�, the aforementioned quantities are repre-
sented in the Fourier-transformed space �i.e., symbols with tilde,
functions of the s variable�, while in panel �B�, the same quantities
are plotted in the direct space as functions of the West scaling
variable y.
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modes, and two stretching modes �symmetric and antisym-
metric�. So, making use of a reasonable selection of the ex-
perimental vibrational frequencies in NaHF2,4,45,57 it is pos-
sible to construct a simple but realistic Gaussian model for
�0�rF1 ,rF2 ,rH�, which is needed for testing the adiabatic
approximation. As for the momentum distribution
n0�pF1 ,pF2 ,pH�, it is possible to prove17 that Eq. �37� implies
the following multiple convolution:

n0�pF1,pF2,pH�

=� dP� dq̇1 ¯� dq̇6 N0�P�n0
�1��q̇1� ¯ n0

�6�

��q̇6���pF1 − MF� P

MT
− �−1�

i=1

6

Ci,F1q̇i��
���pF2 − MF� P

MT
− �−1�

j=1

6

C j,F2q̇j��
���pH − MH� P

MT
− �−1�

k=1

6

Ck,Hq̇k�� , �38�

with N0�P� being the center-of-mass ground-state momentum
distribution, n0

�i��q̇i� the ith normal mode ground-state mo-
mentum distribution, C j,n the polarization vector relating the
jth normal mode to the nth nucleus, and MT the total ionic
mass. It is worth recalling that q̇i is the conjugate momentum
of the ith normal mode, which �in the coordinate representa-

tion� corresponds to the differential operator −i� �
�qi

. Exploit-
ing the properties of the multivariate Gaussian distribution,
Eq. �38� simply reads

n0�pF1,pF2,pH� =
1

�2��9/2 det Vn,m
exp�−

1

2�
n,m

9

pnVn,m
−1 pm� ,

�39�

where the simple convention �p1 , p2 , . . . , p9�= �pF1 ,pH,pF� is
used and the covariance matrix Vn,m is approximated �in the
T=0 limit�, after spherically averaging the small center-of-
mass contribution, by

�2Vn,m 

2MnMm

3MT

Ek�CoM��n,m + �l�n�,m + �k�n�,m	

+ MnMm�
i=1

6

Ci,n
* Ci,m

��i

2
, �40�

where 
Ek�CoM is the center-of-mass mean kinetic energy,
l�n�= ��n+2�mod 9	+1, k�n�= ��n+5�mod 9	+1, and the
same convention as above, namely, �Ci,1 ,Ci,2 , . . . ,Ci,9�
= �Ci,F1 ,Ci,H ,Ci,F2� and �M1 ,M2 ,M3 ,M4 , . . . ,M9�
= �MF ,MF ,MF ,MH, . . . ,MF�, applies. As for the frozen
neighbor �adiabatic� approximation, we have calculated, via
Eqs. �36� and �37�, the following effective potential W�s�, a
physical quantity sensitive to this approximation in the light
of Eq. �22�. Once the calculation was operated exactly,

W�s� =
� drH� drF1� drF2�0

*�rF1,rH,rF2�V�rF1,rH + s,rF2��0�rF1,rH + s,rF2�

� drH� drF1� drF2�0
*�rF1,rH,rF2��0�rF1,rH + s,rF2�

, �41�

and later implementing the adiabatic scheme,

W�s� 

� drHV�r̄F1,rH + s, r̄F2� � drF1� drF2�0

*�rF1,rH,rF2��0�rF1,rH + s,rF2�

� drH� drF1� drF2�0
*�rF1,rH,rF2��0�rF1,rH + s,rF2�

, �42�

where r̄F1 and r̄F2 are the fluorine atom equilibrium positions.
Numerical results are reported in Fig. 6 as a function of �s�
for selected values of �, the angle between the vector s and
the line joining the two F atoms. It is immediately evident
that in our system, the mentioned frozen neighbor approxi-
mation holds well in the range relevant for the extension of
the H one-body density matrix, i.e., ±1 Å. Dealing with the
“kinematic uncorrelation” between the H nucleus and the
other two nuclei, we have computed, through Eqs. �39� and
�40�, the following distribution C�pH�, a physical quantity

introduced in Eq. �20�. Once the calculation was operated
following exactly its definition �correlated�,

C�pH� =� dpF1� dpF2 pF2
2 n0�pF1,pH,pF2� , �43�

and later by assuming the aforementioned kinematic uncor-
relation,
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C�pH� 
 2MF�−2
Ek�Fn0
�H��pH� , �44�

where 
Ek�F is the fluorine-nucleus mean kinetic energy. Nu-
merical results are reported in Fig. 7 as function of �pH� for
two values of �: one ��=0� parallel to the molecular axis and
the other ��=90° � perpendicular to it. It is clear from this
figure that in our system, the mentioned kinematic uncorre-
lation between the H nucleus and the two F nuclei holds very
precisely, casting no doubts on the theoretical possibility to
reconstruct the potential felt by the H ion from its momen-
tum distribution.

C. Test of the convolution approximation of the resolution
function

The last aspect of the present discussion to be dealt with
concerns the treatment of the VESUVIO spectrometer reso-
lution known as “convolution approximation,” already intro-
duced in Sec. IV. Here, we would like to provide a full vali-
dation of the experimental procedure used to estimate the set
of resolution functions R����y� expressed as a modified Voigt
distribution with �-dependent parameters.46 As mentioned
above, an ancillary measurement on ZrH2 has been operated
on VESUVIO at room temperature. The choice of this com-
pound was not casual, since it exhibits some peculiarities
which make it the ideal VESUVIO calibrant for H scattering
experiments: a well-known value of the proton mean kinetic
energy �
Ek�H=107.3 meV �Ref. 63�	, in addition to isotro-
pic, harmonic, and almost undispersed H vibrations, even at
room temperature. Under these conditions, the NCS response
function F�y ,Q� is well described by Eq. �34�, so that a
fitting procedure of the experimental data can easily provide
the best estimates of the resolution functions R����y�, which,
convoluted with the response function �see Eq. �33�	, are
able to described the observed neutron spectra. The test con-
sists in verifying how good these R����y� are in describing the
resolution effect in the case of scattering from protons in
another compound, for example, NaHF2, exhibiting a
slightly different value of mean kinetic energy �
Ek�H

=111.8 meV as in Sec. IV� and a more complex H dynamics.
A number of NCS spectra Fsim

��� (y ,Q�y�) from ZrH2 and
NaHF2 as measured on VESUVIO have been simulated
through a dedicated Monte Carlo code,64 which numerically
implements Eq. �32�, including FSE in the form of Eq. �34�.
One example, close to the middle of the detector angular
range �namely, �=50.73°�, is reported in Fig. 8. It is worth
noting that this code employs the convolution approximation
in no stage of its routines. Subsequently, simulated NCS

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

250

500

750

1000

1250

1500

�=90o�=45o�=0

W
(s
,�
)
(m
e
V
)

s (Å)
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for its definition� felt by a H nucleus in an �FHF	− ion, as a function
of �s� and for selected values of the azimuthal angle �. Full lines
represent the exact calculations, while dotted lines stand for evalu-
ations making use of the adiabatic approximation for the fluorine
ions.

-15 -10 -5 0 5 10 15

0

2

4

6

10�

�=0 �=90o

C
(p
H
,�
)
(Å
)

p
H
(Å

-1
)

FIG. 7. Calculation of the distribution C�pH� �see main text for
its definition� shown by a H nucleus in an �FHF	− ion, as a function
of �pH� and for selected values of the azimuthal angle �. Full lines
represent the exact calculations, while dotted lines stand for evalu-
ations making use of the uncorrelated approximation for F nuclei.
The difference between the two calculations has also been plotted
as a dashed line after a ten times magnification.

-20 -10 0 10 20

0

2

4

6

8

F
(�
) (
y
,Q
(y
))
(a
rb
.
u
n
it
s
)

y (A
-1
)
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� F(y ,Q�y�), a calculated spectrum obtained through the convolu-
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spectra from ZrH2 were fitted through a convolution of
modified Voigt distributions times the expression of Eq. �34�,
with J�y� described by a Gaussian function ��=4.153 Å−1�.
In this way, a set of resolution functions for the simulated
data, Rsim

��� �y�, was determined. The last step of the present
test consisted in folding these resolution functions with an
appropriate NaHF2 response function �still as in Eq. �34�	
with J�y� described by another Gaussian function ��
=4.239 Å−1� and comparing the results, Rsim

��� �y� � F(y ,Q�y�),
to the simulated Fsim

��� (y ,Q�y�) for NaHF2, where the convo-
lution approximation was not applied. As clearly visible in
Fig. 8, the agreement between the two sets of NaHF2 spectra
is excellent, proving that the extraction of the experimental
R����y� from the ancillary ZrH2 measurements was a correct
choice.

VII. CONCLUSIONS

In the present paper, neutron Compton scattering and in-
coherent inelastic neutron scattering measurements from
polycrystalline sodium hydrogen fluoride at low temperature
�T	5 K� have been presented and analyzed in order to study
the proton dynamics in this strongly hydrogen-bonded sys-
tem. Such an analysis has been performed in three distinct
phases: �a� we set up a simple model for the short-time
NaHF2 response function, including deviations from the im-
pulsive approximation due to neighbor atoms, which enabled
the extraction of the proton mean kinetic energy through a fit
of the experimental neutron Compton scattering data; �b� this
estimate of the H mean kinetic energy was compared to an
analogous result obtained from the hydrogen-projected den-
sity of phonon states, calculated through an ab initio lattice
dynamics simulation making use of a well-assessed density
functional theory code; and �c� finally the spectrum obtained
from the vibrational neutron scattering measurements was
used to validate the aforementioned simulation results, which
turned out to be in excellent agreement with this spectrum.
Unfortunately, the polycrystalline character of the sample, in
conjunction with the limited statistical accuracy affecting the
present neutron Compton scattering data, hindered a deeper
data analysis, which, at least in principle, could shed light on
further important aspects of the short-time H dynamics in
NaHF2, such as the H recoil peak shape, the final state ef-
fects, and the potential felt by the proton in this ionic com-
pound. However, these aspects were studied in detail from
the theoretical point of view, clarifying three important is-
sues connected, more or less directly, to the H potential re-
construction: �1� the validity of the usual approach �essen-
tially due to Sears27� to corrected for the final state effects in
comparison with a more rigorous �and complex� procedure
devised by Gersch et al.;26 �2� the possibility to apply a
one-body Schrödinger-like equation to the H momentum dis-
tribution in order to extract the proton potential surface �ac-
tually this problem was divided into two subproblems,

namely, the validity of the adiabatic approximation for the
fluorine nuclei in an �FHF	− ion and the extent of the kine-
matic correlation between the H and F vibrations�; and �3�
the applicability of the so-called convolution approximation
to include the instrumental resolution effects in the model
response function used to analyze the NCS experimental
data.

The results obtained for the �FHF	− ion in the study of the
three aforementioned points were all substantially positive,
proving that the proton potential surface is, in principle, de-
rivable from neutron Compton scattering data on a NaHF2
single-crystal exhibiting good statistical accuracy and narrow
instrumental resolution. In detail, we have shown that in our
system, the two procedures to calculate final state effects
provide similar results �at least up to the 1 /Q order�, even
taking into account the large anharmonic effects in the ion
vibrational dynamics. Then, it has been proven that both req-
uisites �i.e., the frozen neighbor and the uncorrelated kine-
matic approximations� needed for the potential extraction
from the momentum distribution are satisfied. Finally, the
convolution approximation for the treatment of the instru-
mental resolution effects is totally justified if the ancillary
measurements are operated on ZrH2, whose H mean kinetic
energy does not excessively differ from the NaHF2 one. As a
possible future perspective for the topics of the present pa-
per, a suitable subject could be represented by the proton
dynamics in KH2PO4, where NCS data19 reveal a double-
well potential which is not found by accurate ab initio den-
sity functional theory simulations, at least keeping the
heavier nuclei �K, P, and O� fixed in their equilibrium
positions.65,66 In this case, the situation might be different
from that presented here for an isolated �FHF	− ion, where
both assumptions required to move from a many-particle pic-
ture to a single-proton one �namely kinematic uncorrelation
and frozen neighbor approximation� appear to hold satisfac-
torily. Given the theoretical importance of KH2PO4 �being a
classic paradigm for ferroelectricity�, simulation study on
this compound making use of the conceptual tools we have
introduced here would be surely of relevant interest, espe-
cially to understand what NCS can actually probe in
KH2PO4.
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