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Propagation of coherent waves in elastically scattering media
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A general method for calculating statistical properties of speckle patterns of coherent waves propagating in
disordered media is developed. It allows one to calculate speckle pattern correlations in space, as well as their
sensitivity to external parameters. This method, which is similar to the Boltzmann-Langevin approach for the

calculation of classical fluctuations, applies for a wide range of systems: from cases where the ray propagation
is diffusive to the regime where the rays experience only small angle scattering. The latter case comprises the
regime of directed waves where rays propagate ballistically in space while their directions diffuse. We dem-
onstrate the applicability of the method by calculating the correlation function of the wave intensity and its
sensitivity to the wave frequency and the angle of incidence of the incoming wave.
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I. INTRODUCTION

Characterization of statistical properties of coherent
waves propagating through an elastically scattering disor-
dered medium is relevant for a variety of physical situations,
ranging from propagation of electromagnetic waves through
interstellar space or the atmosphere, seismology, and medical
imaging by ultrasound or light to electron transport in disor-
dered conductors. When coherent waves propagate through
such media, their intensity exhibits random, sample-specific
fluctuations known as speckles. These fluctuations result
from the interference of rays traveling along different paths.
In this article, we study the statistics of speckles. For a re-
view of the field, see Ref. 1.

The problem can be characterized by several length
scales: The propagation distance of the ray through the me-
dium, Z, the elastic mean free path €, which is the typical
distance the ray travels between two scattering events, and
the transport mean free path €,,, which characterizes the typi-
cal distance for backscattering. In the limit of very thin
sample, Z<{, rays move almost ballistically through the
sample since scattering probability is small. This regime has
been extensively studied.” In the opposite limit of a very
wide sample, Z>¢,,, the rays propagate diffusively in the
system. This regime has been considered in Refs. 3-5. At
spatial scales exceeding the transport mean free path, the
statistical properties of speckles in the diffusive regime (ex-
cluding features associated with rare events) are character-
ized by the diffusion coefficient and are independent of the
details of the disorder. The crossover between the ballistic
and the diffusive regimes depends, in general, on the features
of the disorder. However, when the typical deflection angle
for a single scattering is small, and therefore the transport
mean free path €, is much larger than the mean free path €,
a third regime emerges. This regime, known as the directed
wave regime, is realized when the sample width is much
smaller than the transport mean free path while it is much
larger than the elastic mean free path, ¢,,>Z>¢. In this
case, the rays experience many small angle scattering events,
which result in a diffusive dynamics of the ray direction. The
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total change in propagation direction, however, remains
small.

The focus of our study is on directed waves, which are
important for many applications ranging from laser commu-
nications in atmosphere to propagation of acoustic or elec-
tromagnetic waves through biological tissues. Similarly to
the ballistic and the diffusive regimes, the directed wave re-
gime has also been studied in many papers (see, for example,
Refs. 6-9 and references therein). However, our results, in
many respects, differ substantially from those obtained in
previous studies. One of the main differences is the slow
power law decay of the intensity correlation function in
space and the change of its sign, see Fig. 1. This difference
affects the interpretation of any wave intensity measurement,
which uses a finite aperture apparatus.
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FIG. 1. The asymptotic behavior of the intensity correlation
function, C(p), in the directed wave regime. p is the distance be-
tween the observation points, N\ is the light wavelength, € is the
elastic mean free path, Z is the slab width, and 6, and @ are the
typical scattering angles of a ray traveling a distance € and Z,
respectively.
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In this article, we develop a general method for calculat-
ing speckle correlations over distances larger than the light
wavelength \. This method, which is similar (but not identi-
cal) to the Langevin scheme for the description of classical
fluctuations,!®!? enables one to treat both the diffusive and
the directed wave regimes on equal footing. We apply the
method to the case of directed waves to evaluate speckle
correlations and their sensitivity to various perturbations,
such as a change in the frequency of the wave, a variation of
the incidence angle, or a change of the refraction index. A
short version of these results was published in Ref. 13.

The paper is organized as follows. In Sec. 11 A, we
present the general method describing speckle statistics. In
Secs. I B and II C, we consider its limiting cases for angular
and spatial diffusion. The treatment of sensitivity of speckle
patterns to changes in external parameters is presented in
Sec. IID. In Sec. III, we apply our formalism to study
speckle correlations in the directed wave regime and spatial
diffusion. Finally, in Sec. IV, we present our conclusions.
The derivation of the formalism is deferred to the Appen-
dixes.

II. METHODS OF DESCRIPTION OF SPECKLE
STATISTICS

A paradigm model for propagation of coherent waves
through disordered media is the stationary wave equation for
a scalar field (r),

Kn*(r)i(r) + V2i(r) = 0, (1)

where k=27/\ is the wave number and n(r)=1+ dn(r) is the
index of refraction. For simplicity, we assume &n(r) to be a
random Gaussian quantity characterized by zero average and
isotropic correlation function

(n(r)on(r"))y=g(jr —r')). 2)

Here, the angular brackets (---) denote averaging over the
random realizations of n(r). We assume that the isotropic
function g(r) is characterized by a single correlation length,
E=[Sdrrg(r)13 [ d’rg(r)]".

The above model is studied below. The central object of
our approach is the ray distribution function,
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which may be viewed as the density of rays at the point r and
time ¢ propagating in the direction specified by the unit vec-
tor s. In particular, the intensity of the wave at the point r is
1(6) = | 9(r) = F s (x.5).

The ray distribution function f(r,s) is a random, sample
specific-quantity whose statistics can be characterized by its
moments. We focus on the first (f(r,s)) and second
(f(r,s)f(r’,s’)) moments of this quantity. These moments
quantify the main features of speckle patterns.

A. General approach to speckle statistics

In this subsection, we discuss a general approach to de-
scribe speckles of coherent waves that is valid both in the
ballistic and diffusive regimes and holds for a general angu-
lar dependence of the scattering amplitude at a single scat-
terer.

A general method for calculating moments of the ray dis-
tribution function is the disorder diagram technique.'* If ¢
>\ and on the length scale [r—r’| >\, this formalism can be
reduced to a set of equations for the average distribution
function, (f(r,s)), and the correlation function of the ray
distribution function fluctuations, (Jf(r,s)df(r’,s’)), where
S8f—f—(f). These equations describe speckles on various
length scales, from the ballistic regime to the diffusive limit,
and are similar, but not identical, to the Boltzmann-Langevin
equations in the kinetic theory of classical particles.!’"!%13
Thus, (f(r,s)) and (5f(r,s)Sf(r’,s’)) can be deduced from
the following set of equations:

Aes)
o= L)

I%W SN = (). (@)

5. 2s) - L {of(r.s)}=L(r.s), o

where the integral over the ray directions, s, is normalized to
unity, [d*>s=1, and the Langevin sources, £(r,s), have zero
mean and correlations of the form

<£(r,S)£(r’,S’)>=%T5(r—r’){&s—8’)0‘(r,8)>fdZFW(S =8)(f(r.5)) - (f(r,s))W(s - s"){f(r,s")) |. (6)

Here, W(s—s’) is the probability, per unit length, for scattering between propagation directions s and s’

. The mean free path

¢ and the transport mean free path ¢, are expressed in terms of W(s—s’) as
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€‘lzfds’W(s—s’), f,‘,l:fds’(l—ss’)W(s—s’).
(7)

In the Born approximation, the scattering probability can
be expressed in terms of the refraction index correlator [Eq.

(2)] as

4

W(s) = k; f drg(r)esT. (8)
The derivation of Egs. (4)—(6), using the standard impurity
diagram technique,'* is presented in Appendix A. On spatial
scales larger than € and €,,, it is possible to simplify Egs.
(4)—(6) reducing them to a diffusion-type equations. Another
simplification occurs if the scattering angle at a single impu-
rity is small. Then, at lengths greater than the mean free path,
the change of direction of the wave propagation is described
by diffusion in the angular space. The simplified form of the
general formalism in these two limits is considered in Secs.
IIB and II C.

Qualitatively, the form of the correlation function of the
random sources [Eq. (6)] can be understood as follows. In-
side the random medium, the propagating wave can be
viewed as a random superposition of plane waves arriving
from different directions. The relative phases of the different
plane waves are uncorrelated. Let us consider scattering of
this incident wave at a given impurity. Denoting the ampli-
tude of the wave incident in the direction s by i(s), we can
express the angular dependence of the the outgoing wave,
o(s), as

o(s)=i(s) + 2ikf ds'F(s,s)i(s’),

where F(s,s’) is the scattering amplitude. The intensity of
the outgoing wave in the direction s is

lo(s)> = |i(s)|* - 4kf ds’ Im[F(s,s")i"(s)i(s")]

2

+4k2 . 9)

st’F(s,s’)i(s’)

The flux into direction s due to scattering, j(s)=|o(s)|?
—|i(s)[?, is a random quantity. Since the amplitudes i(s) of
the incident wave are uncorrelated for different directions,
(i(s)i*(s")) ~ 8(s—s'){f(s)), the average flux is given by

HK(F(r.s.0))) s HK(F(r.s:0))
cot or
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(j(s)) = = 4k(f(s))Im[ F(s,5)] + 4k f ds'|F(s,s")X(f(s"))

= 41 f ds'|F(s,s")PL(f(s")) = (Fs)], (10)

in agreement with Eq. (4). The last equality in Eq. (10) fol-
lows from the optical theorem, Im[F(s,s)]=k [ds'|F(s,s")|*.

For a specific realization of the incident wave, the flux
scattered in direction s differs from its average. In the spirit
of the Boltzmann-Langevin approach, one has to evaluate the
fluctuations of microscopic fluxes in the s space and substi-
tute them into the kinetic equation as random sources L(s)
~ j(s) [see Eq. (5)]. Thus, for the correlation function of
these quantities, (L£(s)L(s"))~(j(s)j(s")), and using Eq. (9),
one gets the estimate

(L(s)L(s")) ~ 5(S—S')<f(S)>fd§|F(5,§)|2<f(§)>—

(F)Xf(s"DIF(s,8"),
in agreement with Eq. (6). Here, we took into account the
fact that in the limit € >\, F(s,s’), the main contribution to
the flux correlations comes from the middle term in the right
hand side of Eq. (9).

1. Comparison between Eqs. (4)—(6) and the Langevin
description of classical fluctuations

It is instructive to compare the method describing the
classical kinetics of particles'"'>!> with the description of
coherent wave propagating through a disordered media ex-
pressed by Egs. (4)—(6). Consider noninteracting particles
propagating in a scattering medium and let f(r,s,t) denote
their distribution function in phase space. The scattering pro-
cess of the particle is random in time and space. This ran-
domness leads to temporal fluctuations of the distribution
function f even when the incident particle flux is stationary.
It is, therefore, natural to decompose the distribution func-

tion f(r,s;7) into a sum of its average, ({f(r,s;7))), and fluc-
tuating part, 6f(r,s;t), characterized by the correlation func-
tion ((8f8f)). Here, {{---)) denotes the averaging over time,
or over the statistical ensemble.'®

When the elastic mean free path is much larger than the

disorder correlation length, €> ¢, the average distribution
function satisfies the Boltzmann kinetic equation

=I4f(r,s;0)} = J ds’[lﬁf)(s,s’) + IE,Z_)(S,S')]

= f d’s'W(s —s")((fr,s';0))) = (Fr,8:0)). (1
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where c is the particle velocity, Ig)(s,s’) denotes the particle

flux from s’ to s due to collisions, and Ii;)(s,s’) denotes the
particle flux from s to s’,

19(s,s") = W(s =3)f(r,s" ;[ 1 £ f(r,s;1)],

15)(s,s") == W(s —s")f(r,s,0)[ 1 = f(r,s";0)],

The = signs in front of f(r,s';1) correspond to boson (+)
and fermion (—) statistics. Notice, however, that the qua-

dratic terms in ({f(r,s,7))) cancel out in the Boltzmann equa-
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tion [Eq. (11)] and regardless of the particle statistics.

The statistical behavior of the fluctuations of the distribu-
tion function, 6f(r,s;t), may be deduced from the Langevin
equation'!

EE r,s,t ISF r,S,t ~ -
fr,s, ) +S- fr,s, ) =I{5f(r,s)} + I;(r,1), (12)
cot or
where 7,_ represents a random Langevin source with vanish-
ing expectation value and two point correlation function
given by

(I, (e, 01, (x',s", "))y = 8t — 1) S(r - r’){ os—s') J ds”[Ig;')(s,s”) + IE,,_)(S,S”)] - [If,f)(s,s') + IE,,_)(S,S’)]}. (13)

limit of this

((f(r,s,t)))< 1. In this case, particle statistics are irrelevant.
The description of the evolution of the average ray distribu-
tion function, by the Boltzmann kinetic equation of a classi-
cal particle, holds as long as €>¢&,N. The above formulas
have the following interpretation.'"'> The scattering pro-
cesses are instantaneous and local; therefore, the correlation
function of Langevin sources [Eq. (13)] is proportional to
S(r—r')8(r—1"). Thus, scattering events generate correlations
of Langevin sources that are nonlocal only in the space of the
particle directions. These are described by the four terms in
the curly brackets. The first two terms, proportional to &(s
—s'), describe self-correlation generated by flux of particles,
which scatter from the state s to an arbitrary state s” or vice
versa. The two other terms in the curly brackets correspond
to scattering events from s to s’, or back.

The set of Egs. (11)—(13) describing the kinetics of clas-
sical particle and that of Egs. (4)—(6) describing coherent
waves have a similar form. We would like to point out sig-
nificant differences originating from the different nature of
fluctuations. A stationary coherent wave propagating through
a disordered sample experiences no temporal fluctuations. In
this case, the spatial fluctuations of f(r,s) result from the
random nature of the interference processes associated with
different quasiclassical wave propagation paths. As a result,
the random sources [Eq. (6)] are & correlated in space and do
not depend on time. In contrast, in the case of classical par-

The classical equation corresponds to

ticles, f fluctuates both in space and in time, and conse-
quently the random classical sources [Eqgs. (12) and (13)] are
o correlated both in space and in time.

Another significant difference manifests itself in dramati-
cally different sensitivities of these two phenomena to small
changes of parameters, such as particle’s velocities (or wave-
length), frequencies, and configuration of the scattering po-

tential. In the case of classical particles, the correlators ((}7})

and (( 5]75]7'» are insensitive to these changes as long as the
scattering probability W(s—s') does not depend on the wave-

length or the energy of the particles. In contrast, the coherent
speckles exhibit a very strong sensitivity to these changes.
As a result, the form of the correlation functions of the ran-
dom sources describing these sensitivities [see Eq. (25)] is
very different from that in Eq. (13).

B. Angular diffusion

As mentioned above, the solutions of Egs. (4)—(6) provide
description of {f(r,s)) and &f(r,s)df(r’,s’)) on the resolu-
tion where |r—r’|>\. A simplified description is obtained
when the required resolution is over larger length scales.
Consider the case |[r—r’|>€#,, where 6,=\/¢ is the typical
scattering angle over a distance of the order of the mean free
path (notice that the Born approximation implies that €6,
>\). The reduction of Egs. (4)—(6), for this case, is similar
in spirit to the standard way by which the Boltzmann equa-
tion is reduced to the diffusion equation. It follows from the
assumption that f(s,r) changes slowly as function of s on the
scale of order 6. The resulting formulas, provided below,
describe the diffusive spreading of the rays in the space of
directions, s. Equation (4) reduces to

Hf(r,s )
s ——

po =D, Vf(r.s)), (14)

where
[
D0= Eetr (15)

is the diffusion constant in the space of angles, s, and

P

~ 0 J
Vi=60—+-— ¢ 9 (16)
36  sin(6) dp
is the gradient operator, with the unit vectors

A

¢=(—sin ¢,cos $,0) and  H=(cos ¢ cos 6,sin ¢ cos 0,
—sin ) (here, 6 and ¢ are the angles associated with polar
coordinates).
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The fluctuations of the ray distribution function in this
case are described by

d5f(r,s)

s — = ViDV,of(r.s) -jh(r,s)], (17)
where the Langevin current sources jX(r,s) are correlated as
Lo oy 2T s

(alrS)GF3) = == 70,50 ~Hdr =F), (18)

where the indices a and 8 denote the vector components in
the two-dimensional space of directions that is tangential to
the unit sphere |s|=1.

C. Diffusion in real space

If one is concerned with an even cruder resolution, where
[r—r’|>¢,,, the effective description of the system employs
the diffusion equation in real space. In this case, f(r,s) is
assumed to be a nearly isotropic function of s and a slow
function of r. Then, Egs. (4)—(6) can be reduced to the fol-
lowing set of diffusion-Langevin equations.>> Namely, ex-
pressing the wave intensity I(r) at point r as I(r)
=[d*sf(r,s), one can reduce Eq. (4) to the Laplace equation

VXI(r)y =0, (19)

while the correlator of the intensity fluctuations, 8I=1—(I),
can be deduced from the flux conservation condition

V-8J=0, (20)
with
8J=-DV 8 +J*~. (21)

Here, D=¢,,/3 is the diffusion constant in real space (notice
that according to our convention, the diffusion constant has
dimensions of length). The Langevin current sources J- have
a vanishing expectation value and are characterized by the
correlation function

<c<r,s;o>c<r',s';y>>=k—%(r—r')z

V=t

where f.(r,s) satisfies the equation

f.(r,s)
§. ==

or - Ist{fi(r’ S)} == i'}/f:(r,s) . (25)

At free boundaries, the boundary conditions for the functions
f+(r,s) coincide with the standard boundary conditions for
the Boltzmann equation. At the boundary with an incident
radiation, denoted by S, the functions f,(r,s) are determined
by the parametric correlations in the incident wave, i.e.,
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2D

(Jo0)g(r')) = ;(l(r)>25ag5(r -r’). (22)

The boundary conditions for these equations are the conven-
tional conditions for the diffusion equation 6/=0 at open
boundaries and J-n=0, with n being the normal to the
boundary, at closed boundaries.

D. Sensitivities of speckles to changes of external parameters

The interfering waves travel along different paths, and the
lengths of these paths are much longer than the wave length.
Therefore, the phases accumulated along each path are very
sensitive to changes of external parameters such as the wave
number k, the incidence angle of the incoming wave, or a
smooth change in the refractive index An(r). We will char-
acterize these changes by the control parameter y(r)=Ak
+kAn(r), where Ak denotes a change in the wave number k.
The formalism presented above may be straightforwardly
generalized to calculate the sensitivity of the speckle pattern
to various external perturbations. The sensitivity of the
speckle pattern can be characterized by the correlator of the
ray distribution functions at different values of the control
parameter, (5f(r,s,0)5f(r,s, y)). In order to evaluate it, Eq.
(5) should be replaced by two equations: one for &f(r,s,0)
and another for &f(r,s,y). The form of these equations is
precisely that of Eq. (5); however, the Langevin sources now
depend on the perturbation parameter . Namely,

dof(r,s;
S %—Isf{5f(r,s;7)}=E(r,s;y), (23)
where L(r,s; y) denotes the Langevin source associated with
the value y of the perturbation. The average of the Langevin
sources vanishes. Their correlation function, at different
points in space and different values of the control parameter,
is given by

|:5(S - Sl)fv(l',S) J dZSlW(S - Sl)f—v(r’sl) _fy(r’S)W(S - S,)f_y(r,S,):| s (24)

2 ’ ,
f+(r’s)|reS:f pz_if f dr,¢7<r_ %)l[fg(r-l— %)ei[)sr"
(26)

Here, the subscript of the wave amplitude ¢ denotes the
value of the parameter y. The corresponding equation for
f-(r,s) is obtained from Eq. (27) by interchanging the sub-
scripts: Yy« 0.

When the external perturbation is associated with a
change in the incidence angle of the incoming wave, Eq. (25)
still holds; however, both f,(r,s) and f_(r,s) satisfy Eq.
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(14). The difference between f,(r,s) and f_(r,s) arises from
the boundary conditions [Eq. (27)]. We shall elaborate on
this issue in Sec. IIT A 2.

The above formulas describe the speckle sensitivity on the
resolution scale larger than the wavelength. As discussed in
the previous section, the formalism simplifies for lower reso-
lution. We conclude this section by providing the relevant
formulas for the case of angular diffusion, and diffusion is
real space.

1. Sensitivity in the case of angle diffusion

If the typical scattering angle at a single impurity is small
and the wave propagation length exceeds the mean free path
€, the equation for the fluctuations in the ray distribution
function is

s SV G D% sfte s -itwsipl, @)

where the Langevin current sources j(r,s; y) depend on the
perturbation . These have zero mean and correlation func-
tion given by

(jh(r.5:0)j5(F.5: )

27D of ((r,8)f_(r,8)

8,505 -)Sr-¥), (28)

where f.(r,s) satisfy the equation

aft(ra S)
§ —

or = D0V3 L(r,s) iyf.(r,s). (29)

2. Sensitivity in the case of the real space diffusion

Finally, on spatial scale larger than the transport mean
free path ¢,,, the sensitivity of the speckle pattern may be
described by the current conservation condition

V- 8J=V-(-DV8I+J5=0, (30)

where the Langevin current sources, at different values of the
perturbation parameter v, are correlated as

\2D

(Jer:0)T5(r";9)) = B

L(r)I(r)6,50(r =), (31)

and I,(r) satisfies the equation

DV?I(r) + iyl (r)=0. (32)

III. EVALUATION OF SPECKLE CORRELATION
FUNCTIONS AND SPECKLE SENSITIVITIES TO
CHANGES OF EXTERNAL PARAMETERS

In this section, we shall illustrate the use of the formalism
developed in the previous section. To this end, we will con-
sider the correlation function of speckles and their sensitivity
to various perturbations in the regimes of directed waves as
well as for diffusion in real space.

PHYSICAL REVIEW B 76, 174204 (2007)

A. Speckles in the regime of directed waves

Consider a situation in which a wave of intensity I, is
incident on a disordered slab of thickness Z, as shown in the
inset of Fig. 1. The slab thickness is assumed to be much
smaller than the transport mean free path and much larger
than the elastic mean free path, €,.>Z> €. Thus, rays diffuse
in angle, but their total change of direction is small. In this
regime of directed waves, it will be convenient to choose the
coordinate system r=(p,z), where z is the direction of the
wave propagation in the absence of disorder [ dn(r)=0] and
p denotes a two-dimensional vector in the plane perpendicu-
lar to the z axis. Similarly, we decompose the vector of the
ray direction as s=(s,),s., where s. denotes the component
in the z direction, while s | is a two-dimensional vector in the
perpendicular plane. The rays of directed waves are almost
parallel to the z axis and therefore s.~1, i.e., s=(s ,1). If
we denote by 6 the typical ray angle at z=Z, then the latter
approximation holds as long as §<<1. The results which we
present below are calculated to leading order in the small
parameter 6.

It is instructive to start with understanding the classical
evolution of the average ray distribution function in the re-
gime of directed waves. For this purpose, we solve Eq. (14)
for the case where a single ray moving in the z direction
impinges upon the slab at the origin r=0. The assumption
that s= (s, , 1) allows one to reduce Eq. (14) to

K oK) _Dgﬁz(f(l;s» _0. (33)
z ap s
The boundary conditions are
(f(r,8))|.z0=io8(p) &(s 1), (34)

where the amplitude i, denotes the incident ray intensity. The
solution of the above problem takes the form

P o3sip st

DHZZ B Dy

{f(r,s)) = W exp| — ;f + . (35)
It demonstrates the diffusive behavior of the ray direction as
it propagates in the slab, |s | |>~ D . It also shows that de-
viations in real space grow in a superdiffusive manner,'” p?
~Dez3.

After this preliminary consideration, we turn to study in-
tensity correlations of directed waves. To be specific, we
consider a plane wave (not restricted by a finite aperture)
incident on the disordered slab in the z direction. In this case,
the average ray distribution function is independent of the
perpendicular coordinate p and can be easily obtained by
integrating Eq. (36) over p,

, 2
lo S1
,S)) = - . 36
(f(zs)) ImD CXP{ 4D0J (36)
The intensity correlation function
C(ér) = (S8I(r)dSI(r + or)), (37)

where 8I(r)=1I(r)—(I(r)) is independent of the transverse co-
ordinate and depends only on the propagation distance Z and
the difference coordinate or. The behavior of this correlator
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as a function of &r=(p, dz) is strongly anisotropic. Consider
first the case where the observation points are located along
the z axis (i.e., p=0) near the point z=Z. In this case, we
obtain

2

oz

(38)

where 6=\D,Z is the accumulated scattering angle and the
condition € <<5z<<Z is assumed. This formula, which also

12 zZ—t dg
Clp) = 4D9k2j -7

where g(p)=[dzg(\p*+z%)/[dzg(z) and Jy(x) is the Bessel
function of zeroth order.
The integral in Eq. (40) contains a term proportional to a

o function &(p). This term represents the rapidly de-

> 2D 2Z
caying (at p~ g)li/ ) part of the correlator. It results from the
semiclassical approximation employed in the derivation of
Egs. (4)—(6), which limits the spatial resolution to p>X\. In
order to resolve the spatial structure on smaller scales, some
of the diagrams discussed in Appendix A should be calcu-
lated more accurately. The result of this calculation shows

that the & function contribution to the correlator C(p) is, in

fact, a contribution of the form I%e‘z(k{”’)z, where =D Z.

As we show below, C(p) contains also a slowly decaying
term. The latter, which has been overlooked in previous stud-
ies, clearly has important consequences. In order to under-
stand this term, it will be instructive to explain, first, the
origin of the short ranged contribution to C(p). As we show
now, it arises from a superposition of statistically indepen-
dent contributions of waves moving in all possible direc-
tions. Let us assume that the wave function at a given point
on the screen is a sum of plane waves. The distribution of
directions of these plane waves is dictated by the diffusive
nature of the rays in the system; thus,

Yp) =2 AP, (40)

where s , denotes the direction of the vth contribution and
A, is the corresponding amplitude. We shall assume that A,
are statistically independent variables, with zero mean and
fluctuation strength given by

oIS LD (41)

2
)=
The average (|A,|?) may be interpreted as the “classical”
probability to find a plain wave moving in direction s, ,. It
may be obtained from the solution of Eq. (34) with boundary
conditions which correspond to an impinging plane wave of
density 1y, {(f(r,s))|,.o=1o8(s ).
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approximates the behavior for nonzero p as long as &z
> p/ §, matches the results for the diffusive case,™ Z>¢,,
when 6 is of order unity.

A more complex behavior of the correlation function
appears when 8z<<p/#, i.e., when the observation points
are located essentially in the plane perpendicular to the z
axis. A general formula for C(p), in this case, is derived in
Appendix B. The expression takes the form

dgqJy(gp)— exps —— | dn|1-8|+ , 39
. qq o(qp)dge p{ ), 7 1-8\ 7 (39)

The above assumptions imply that, at a given point in
space, y{(p) is approximately a Gaussian random variable, as
a result of the central limit theorem. Moreover, the wave
function at two different points, (p) and ¢{(p’), are also
described by a joint Gaussian distribution function, provided
that the distance between these points is sufficiently small
such that one may assume that the same set of wavelets
arrives to both points.

Assuming the observation points p and p’ to be suffi-
ciently close to each other, consider the ensemble average
I(PI(p" )= p) (P)Y(p") )’ (p')). Using the fact that
within a small vicinity of space #(p) may be considered as
a random Gaussian function, one deduces that (y(p)¢/(p))
X(p" ) (p")+ () (p")XH(p") ¢ (p)), and hence the

density correlation function is given by

K(p) (p' )] (42)

Now, from Eq. (41) and the statistical independence of the
amplitudes A,, we see that

(PP (p)) = (X A A, erapsiuph)

!
/87

= > (A, [elsralpr?), (43)

Clp-p')=

The replacement of the above double sum by a sum over one
index is equivalent to the assumption that the interference
terms of different amplitudes average out to zero. This tradi-
tional procedure in semiclassical analysis, known as the “di-
agonal approximation,” leaves only the classical contribu-
tion. Thus, substituting Eq. (42) into Eq. (44) and replacing
the sum over v by an integral over s, we obtain an expres-
sion for (¢(p)'(p')), and from Eq. (43), we conclude that
Clp-p') = L2000 =0, (44)

This expression, which shows a very fast decay of corre-
lations on a scale of order A/ 6, has a rather limited range of
applicability. The reason is that the description of the wave
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function in the sample, using the superposition of indepen-
dent plane waves [Eq. (41)], gives reasonable approximation
only when the observation points are very close. At larger
distances, diffraction and quantum impurity scattering give
rise to correlation of rays, which manifest themselves in a
slow decay of the intensity correlations, as well as a change
of sign. These effects are described by Eq. (40) and illus-
trated in Fig. 1. At various spatial separations p, one can
obtain the following asymptotic expressions for the intensity
correlator:

p
2kop)® if p~ an/6
by if aNO<p<€8
—_— ] a < <
C( ) k292€00p p 0
—f ~{ b,DP , (45)
I 2o, if €0, <p<6Z
— bsyp? 76
%6_3’)2/89222 if0Z<p<—o,
K26z 6o

where a?=log(k{ 8/ ), b, = [{dxg(x)/ & is a constant of or-
der unity, b,=3"°T'(5/3)/8~=0.163, and b3=27/128=0.21.
The qualitative form of the function C(p) is shown in Fig. 1.

In order to clarify the connection between the ray diffrac-
tion and the slow decay of the density correlations, let us
focus on the regime €6, << p<< 6Z. Consider two points sepa-
rated by a distance p. The correlations of the wave intensity
in these points emerge from coherent waves, which simulta-
neously arrive to the two points. These can be generated by
diffraction, which acts as a beam splitter and modeled by the
Langevin sources in Eq. (5). Now, the superdiffusion nature
of the ray dynamics in the sample implies that the relevant
points where diffraction takes place should be located at a
distance of order Az from the screen, where p?=DyAz>. The
wave intensity emitted from these diffraction points decays
as 1/Az?, and therefore the correlations which they generate
are proportional to D3>/ p*3.

The above crude argument explains the power law decay
of C(p), in the regime € 6,<<p<< 6Z. Yet, a closer examination
of the integrals leading to these results shows that the con-
tributions from diffraction points (or Langevin sources) that
are closer to the screen than Az:(Dgpz)” 3 generate anticor-
relations, while those that are at larger distances provide
positive correlations. This behavior may be expected since
diffraction points located too close to the screen generate
rays which may arrive to either one of the observation points
but not to both of them; therefore, they lead to an anticorre-
lated behavior. On the other hand, coherent waves generated
by diffraction that took place at distances larger than Az get,
in general, to both points and therefore generate positive cor-
relations.

From this picture and the finite width of the slab, it fol-
lows that for sufficiently large distance between the observa-
tion points, p>> D ,Z>=(Z#)?, diffraction events can generate
only anticorrelations. Thus, C(p) must experience a sign
change in the vicinity of p=6Z.

Finally, we mention that the tail of the correlation func-
tion (the regime p>Z6?/6,) is also described by Eq. (40).
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However, it depends on the precise form of the disorder cor-
relation g(r) since this limit is dominated by rare scattering
events.

The power law nature of the density correlations of di-
rected waves has important consequences regarding the sta-
tistics of the signal measured by sensors with large apertures
compared to the wavelength. Let

P:fdzpdzsn-sf(r,s) (46)

denote the signal measured by the sensor, where n is a unit
vector perpendicular to the sensor surface and p is a two-
dimensional vector which parametrizes the sensor surface. If
the sensor aperture is circular, with radius R, and its surface
is perpendicular to the propagation direction, i.e., s-n~1,
then the integrated power measured by the sensor may be
approximated by an integral over the wave density

P(R) = d*pl(r), 47)
lp|<R

where r=(p,z). The random fluctuations of I(r) imply that
P(R) is also a random quantity. Its average may be expressed
as an integral over (I(r)), while the variance of its fluctua-
tions is given by

((oP(R)?) = d*pd’p'C(r—r'), (48)
lol.lp"|<R

where C(r—r’) is the density correlation function [Eq. (40)].

Clearly, the fluctuations of P(R) strongly depend on the
slow power law tails of the correlation function as well as its
sign change. The asymptotic behavior of the variance of
these fluctuations, for a circular sensor with aperture radius
R, is given by

.
T bR a\ <R <00
— + y —_—<< <
262 K266, 0 0
([(5P(R)» 7 by(D4R)*?
=~ + , {0, <R<0OZ
RaR> < W K 0
v/ 76
b32—, 0/<R<—,
| KR 6o

(49)

where b|=2b,m/3, b,=3*T'(5/6)mw/2'"*['(7/6), and b}
=\3/2m.

1. Speckle sensitivity to change of the wave frequency

Consider the sensitivity of the speckle patterns of directed
waves to a change in the wave frequency, Aw=cAk, where ¢
is the speed of the wave and k is the wave number. Using
Egs. (24)—(26), with the appropriate control parameter, y
=Ak, treated on a perturbative level, one may identify the
scale of the change in the control parameter, where the new
speckle pattern essentially lost its correlations with the initial
one (i.e., the speckle pattern at y=0). For the wave fre-
quency perturbation, this scale is found to be
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® Cc

w =62_.

A qualitative explanation of the scale w" is similar to that
given for the sensitivity of the conductance fluctuations.'®!”
Let us estimate the characteristic change in the phase of a
typical orbit due to the frequency change Aw. The typical
length spread of the orbits, in the directed wave regime, as
follows from their superdiffusive nature, is of order 7.
Therefore, the phase difference between a given orbit and the
same orbit different frequency is of order AkZ¢*, where Ak
=Aw/c is the change in the wave number. Thus, a complete
change of the speckle pattern occurs when the phase
AwZ/c is of order 1, namely, Aw~c/ZF~ ", in agree-
ment with Ref. 9.

(50)

2. Sensitivity of speckles to change of the angle of incidence

Consider the case where rays propagate through a disor-
dered slab whose one edge is located at z=0. A plane wave,
moving in direction approximately parallel to the z axis, im-
pinges the slab, at z=0. The speckle pattern formed on the
second edge of the slab, at z=Z, will be sensitive to the
precise angle ¢ of the incoming wave. The latter takes the
form =1, exp[ikz cos ¢+ ikp sin ¢].

As mentioned in the previous section, the sensitivity in
this case is characterized by the correlation function [Eq.
(25)] of the Langevin sources (L£(r,s;0)L(r’,s’; ¢)), where
both f,(r,s) and f_(r,s) satisfy the same equation

afi(r7s)
§.———

PR sif(r,8)}=0. (51)

However, their boundary conditions are different. They are
determined by the Wigner transforms of a product of the
incoming wave parallel to the z axis, by the complex conju-
gate of an incoming wave at angle +¢ (evaluated at z=0).
Thus, the boundary conditions for Eq. (52) are

fo(prz=0) = L™ 1P §(s — 5, (52)

where sy=(cos ¢,s,)~(1,s,) denotes a unit vector in the
direction of the incoming wave and |s | | =sin ¢= ¢, assum-
ing ¢<<1. Solving the above equations, one can identify the
characteristic scale for the change in the incidence angle,

1

¢ 256. (53)

This result has a simple interpretation. Consider a given
point on the screen. The wave intensity at this point is deter-
mined by the interference of all the rays which originate at
z=0 and reach the same point. The nature of the ray dynam-
ics, in the directed wave regime, implies that the original
distance between two rays which reach the same point at the
screen is of order of Z6. Now, if we change the incidence
angle by some small amount ¢<<1, the phase difference be-
tween two such rays is of order kZ6¢, where k is the wave
number. The interference of these rays will be completely
different when this phase difference is of order 1, i.e.,
kZ6O¢" ~ 1. From here, we obtain Eq. (54).
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B. Speckle statistics in the diffusive regime, Z>¢,,

In what follows, we complete the picture of speckle sta-
tistics by presenting the well known results of speckle corre-
lation functions and sensitivities for the diffusive regime, Z
> {,,.. For simplicity, we consider the situation where €¢=4¢,,
and set the resolution scale to be larger than the wavelength
\. Furthermore, as in the previous section, we shall consider
the infinite slab geometry shown in Fig. 1 and assume that
plane wave, moving in the z direction, impinges the system
at z=0.

1. Intensity correlation function

Our first step is to solve Eq. (20) for the average intensity.
The boundary conditions in this case are I(r)|,.,=0 and
dl(r)/dz|,.o==Jy/ Z, where J, is the flux of the incoming
wave and D is the diffusion constant. Thus,

U=1" (54)

This solution implies that the flux inside the sample is (J.)
=-DXI(z))! 9z=Jot,/Z and therefore the average transmis-
sion coefficient through the slab is the ratio of the mean free
path to the width of the slab

<T>=J—O 7

Notice that in our conventions, the diffusion constant D has
dimensions of length and is the transport mean free path.

Consider now the density correlation function [Eq. (38)].
Solving Egs. (21) and (22) and calculating C(r), using the
correlation function of the Langevin sources [Eq. (23)]
[evaluated with the help of Eq. (55)], we obtain

1
— AN<r<d{
2 2.2° tr
cr) = (I(2)? ; (56)
—_— <K< r<z
262€,,r° br<r<z

where it is assumed that the observation points are far from
the end of the slab, i.e., {,<z<Z.

The above result shows a power law decay of the speckle
correlations, which is similar to the case of directed waves.
Yet, unlike the directed wave, the transmission coefficient of
the system in diffusive systems experiences sample-specific
fluctuations. This is due to the finite amount of backscatter-
ing, which can be safely neglected in the case of directed
waves. In order to evaluate the magnitude of these fluctua-
tions, let us consider the integrated flux passing through the
slab,

- 1
5JZ= EJVd’j}’JZ, (57)

where V denotes the volume of the slab. Here, we assume the
slab to be finite with dimensions X, Y, and Z, such that Z
<X.,Y. Now, as follows from Eq. (22), the current J, con-
tains two contributions,
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FIG. 2. The diagram contributing to the transmission coefficient
correlations at large angles. The gray boxes are Hikami boxes,
while solid lines connected by dashed lines represent averaged
Green’s functions (see Appendix A for details).

Jd
JZ:—DB—Z§I+JZL. (58)

The first contribution vanishes upon integration over space;
therefore, the fluctuations in the total current are essentially
due to the contribution from the Langevin sources,

((87,)%) = %f dErdPr' (I (e) I (x)). (59)
v

Substituting Eq. (23) for the correlation function of the
Langevin sources and evaluating the integral, we obtain

_ 25 ¢
((87,)%) = V%. (60)

From here, we conclude that the fluctuations in the transmis-
sion coefficient scale as

(8T ((a1)Y) Nz L L
(TY* ~ (J)*V* 187Xy N’

(61)

where N~ vV/7,~€XY/\*Z is the total number of eigenfre-
quencies lying within the frequency band of width 1/ 7, cen-
tered at the frequency of the incoming beam. Here, v
~ 1/c\? is the density of states of the slab (per unit volume),
19=2>14c is the typical time of diffusion through the sample,
and c is the wave velocity.

2. Sensitivities of the speckle pattern in the diffusive regime

Below, we summarize the results of the speckle pattern
sensitivities to various perturbations in the diffusive regime.
These results are obtained by solving Egs. (31)—(33) and
identifying the relevant scale of the perturbation parameter.

The sensitivity to a change in the wave frequency is char-
acterized by the frequency scale of the order of

(62)

e
I}
N2

where c¢ is the wave velocity and € is the elastic mean free
path. This frequency scale is the inverse time which takes the
wave to propagate through the sample.

The sensitivity to a change in the angle of the incoming
wave, ¢, is characterized by the scale
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. 1

¢ iz (63)
The interpretation of this result is similar to that presented
for directed waves. Here, however, the diffusive nature of the
ray dynamics implies that the original distance between two
rays which reach the same point at the screen is of order of
\€Z. Therefore, the interference of these rays will become
completely different when the phase difference, due to the
change in the incidence angle, is of order 1, i.e., k\s“TZd)*
~ 1. This condition leads to Eq. (64).

Finally, let us discuss the sensitivity of the transmission
coefficient to a change in the angle of incidence, in a finite
three-dimensional system. This sensitivity may be described
by the correlation function of the fluctuations S7(6) at two
different angles, and the result takes the form’

ML h g <
Sh N 10— A
(ST(0)T(0')) | 4mz|0-0| ~ Z ¢
(8T%) A2 DN
— if —<|0-6|.
z¢ !

(64)

As we show above, the fluctuations in the transmission co-
efficient follow from the fluctuations in the current due to the
Langevin current sources. Therefore, one expects that the
above correlation function can be deduced from the correla-
tion function of the Langevin sources [Eq. (32)], where y
stands for the change in the incidence angle of the incoming
wave. This procedure, indeed, gives the result within the
range %< |60-0'| < %. However, for larger difference in the
angle of incidence, i.e., %<|0— 0’|, the behavior is domi-
nated by an additional contribution, which is not described
by the Boltzmann-Langevin approach. This contribution can
be calculated from a diagram which contains two Hikami
boxes, as shown in Fig. 2. In real space, it may be associated
with pair of orbits which intersect twice during their propa-
gation in the system.

At this point, it is instructive to mention the relation be-
tween Eq. (65) and the universal conductance fluctuations of
mesoscopic metals. The conductance in these systems is pro-
portional to the integral of the transmission coefficient over
the angle, G o [T(0)d 0. Therefore, according to Eq. (65), the
main contribution to the conductance fluctuations,

((8G)?) o f dede XT(0)sT(0")), (65)

comes from the interval of large angle difference, }7‘<|0
—0'|. As a result, we have (8G)*)~e*/h? for a three-
dimensional system where all dimensions are of the same
order.!?20

IV. CONCLUSIONS

We have developed a method of description of speckle
statistics in elastically scattering media, which can be applied
to both diffusive and ballistic regimes. Our main result is
given by Egs. (4)—(6), which have a form of kinetic equa-
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tions with random sources. Though the derivation of these
equations in Appendix A involved the Born approximation
for the amplitude of scattering on individual scatterers, we
believe that the region of the applicability of these equation
is much broader. They are valid as long as the Boltzmann
kinetic equation [Eq. (4)] holds. Namely, {>\,£ and |r
-r'|>\, &

We would like to mention that the results presented above
substantially differ from those known in the literature (see,
for example, Refs. ©). First, the correlation function [Eq.
(40)] exhibits a universal long range power law behavior
over a wide range of distance, p. The only nonuniversal re-
gimes are at the tail, p>Z 6/ 6y, and the short distance re-
gion, p~¢. This result is in contrast with the results pre-
sented in Refs. ®° where the intensity correlator C(p)
depends on the detailed form of the disorder correlation
function, g(r), and usually decays exponentially at p>&.
Second, C(p) changes its sign as a function of p. This prop-
erty is a consequence of the current conservation and it is
absent from previous studies. For instance, the sign change
of C(p) implies that the fluctuations of the integrated inten-
sity over disks of radius R>Z# is proportional to R [see Eq.
(50)] rather than R?, as would follow from Refs. ©. These
differences will affect interpretations of any measurement of
speckles done with the help of a sensor aperture that is much
larger than the wavelength.

Finally, we would like to mention that our results may be
easily extended to cases with light polarization, optically ac-
tive media, Faraday effect, and coherent short wave pulses as
long as their duration is longer than 7=€/c. These issues are
left for future studies.
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APPENDIX A: DERIVATION OF THE MAIN EQUATIONS

The derivation of Egs. (4)-(6) is based on the standard
impurity diagram technique.'* The relevant diagram blocks
were derived in numerous works. However, in most cases,
the calculations were done either for the case of delta-
correlated disorder potential or in the diffusive regime. In
this paper, we deal with a general situation of an arbitrary
angular dependence of the scattering cross section. There-
fore, below, we outline the derivation of our formalism and
present expressions for the main diagram blocks.

The wave equation [Eq. (1)] can be written in the form of
a stationary Schrodinger equation for a particle moving in
the presence of a random impurity potential,

V(r) = - 2k*én(r).

The solution of Eq. (1) can be written as ¢f(r)
=[dr'GR(r,r")J(r"), where J(r') is the source of radiation

(A1)
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and G®A(r,r’) is the retarded Green’s function, G*'4 = (k?

+V2=V+izn)~". Here, V denotes the impurity potential opera-
tor. This reduces the problem of speckle statistics of coherent
waves to that of averaging products of retarded and advanced
Green’s functions. The latter problem can be treated using
the impurity diagram technique.'* We derive the expression
for the various diagram blocks below.

1. Average Green’s function

In the Born approximation,?' the self-energy X(k,p) is
given by a single diagram in Fig. 3. Its evaluation gives for
the disorder-averaged Green’s function,

GMA(k,p) = B (A2)

—p? ikt

where the mean free path is given by Egs. (7) and (8).

2. Derivation of the Boltzmann equation

To derive the Boltzmann equation, we will need to evalu-
ate products of Green’s functions at two different frequencies
corresponding to wave numbers, k,=k= 6k/2.

The spatial evolution of the ray distribution function [Eq.
(3)] can be obtained by expressing the solution of the wave
equation in terms of the Green’s functions and performing
disorder averaging. In the leading approximation in N/¢, the
ray distribution function evolution is described by the sum of
ladder diagrams.

Each disorder-averaged Green’s function is strongly
peaked in the momentum region where the on-shell condi-
tion is satisfied, k=|p|. In the limit of dilute scatterers, the
width of this peak, ~1/¢, is much smaller than the typical
momentum transfer at each collision. Therefore, the integra-
tion over the magnitude of momenta in the Green’s functions
can be carried out separately and before the direction inte-
gration. Defining s as the unit vector along the momentum
p=ps, we evaluate the product of the disorder-averaged re-
tarded and advanced Green’s functions integrated over p,

1 jm pdp .
=47 | —GR(k,,ps+q/2)G*(k_,ps — q/2)
Bé‘k,q(s) 0 27 '

1
= A3
—idk+isq+ ¢! (A3)
The ray distribution function f(s,q) is given by the sum
of ladder diagrams and can be expressed in a compact way
using the operator notations

f=2> (B'W)fy = (B- W) Bf,. (A4)
n=0

~
N\

FIG. 3. The self-energy diagram in the Born approximation.
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FIG. 4. The diagram for the irreducible correlator of ray distri-
bution functions at different points. Two impurity ladders emanat-
ing at the radiation source enter the Hikami box, represented by the
hashed octagon, from left to right. The ladders going to the obser-
vation points leave the Hikami box from top to bottom.

Here, f, is the initial ray distribution function, B is the
integral operator whose kernel in the Fourier representation
is given by Eq. (A3), and W is the integral operator acting in
the space of directions,

Wf(s) Efds’W(s—s’)f(s’), W(s—-s') = ﬁw(k[s—s’]).
(A5)

Multiplying Eq. (A4) by (B—W) from the left and using Eq.
(7), we obtain the Boltzmann-Langevin equation
-1 st[f] =L,

(—idk+s-V,)f(s,r) (A6)

L=(—idk+s-V.+€ ) %s,r), (A7)
where the collision integral I,[f] is defined in Eq. (4).

If one is interested in the average ray distribution func-
tion, then f; in Eq. (A6) should be understood as the ray
distribution function of the incident radiation at the boundary
of the disordered medium. In this case, the source vanishes
in the interior of the medium and the average ray distribution
function satisfies the usual homogeneous Boltzmann equa-
tion.

H/il)({Qi}’{si}) = 8(s) — $7)(4m)*W(s| — s3)W(s; — s,) f

anr
XGAk+ 0 — w3,p+q;, - q3) = p5(51 )
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FIG. 5. The three diagrams for the Hikami box: H", H?), and
H®). The ladders coming from the radiation sources enter the
Hikami box from left to right and are characterized by the four
momenta q3,,=(w34,qs4) and the ray directions s3/,. The ladders
going to the observation points exit the Hikami box from top to
bottom and are characterized by the four momenta ¢,
=(wy/2,qy/2) and the ray directions s;,,. Note that in our notations,
the Hikami box contains a single impurity line for each of the
incoming ladders and no impurity lines for the outgoing ladders.

3. Hikami box

Next, let us consider the diagram in Fig. 4 that represents
the irreducible correlator of the ray distribution functions. It
allows the following interpretation which is at the heart of
the Boltzmann-Langevin approach developed in this paper.
The impurity ladders connecting the observation points to
the Hikami box propagate the fluctuations of the distribution
function from the Hikami box out to the observation points.
This propagation is described by the inhomogeneous
Boltzmann-Langevin equation [Eq. (A6)]. Then, the right
hand side of Eq. (A6) may be interpreted as the “Langevin
force” that results in the fluctuations of the ray distribution
function. The fluctuations of the Langevin force are de-
scribed by the Hikami box connected to the impurity ladders
going out to the radiation sources. Since the latter define the
average ray distribution function, we see that by evaluating
the Hikami box, we will relate the fluctuations of the Lange-
vin force to the average ray distribution function.

The Hikami box with the external legs is given by the
three diagrams in Fig. 5. It is characterized by the four mo-
menta ¢;=(w;,q;) and the unit vectors s; characterizing the
ray directions. Here, i=1,2 correspond to outgoing momenta
(ladders going to the observation points) and i=3,4 to the
incoming ones (ladders coming from the radiation source).
The momenta satisfy the conservation law ¢q;+¢g,=¢3+¢qa.
The analytic expression that corresponds to the first diagram
(with no impurity line) is

p’dp
277

GR(k + w]’p + ql)GA(k5p)GR(k + w45p + q4)

(o5

W(s; —s3)W(s, —s,)
B,B,

11
.
B, B,

(A8)

where we used the shorthand notation B;=By ,(s) (With s=s,=s,) and utilized the momentum conservation B;+8B,=08;

+B,.

The second diagram in Fig. 5 contains an impurity line connecting the two advanced Green’s functions (between g5 and ¢,

and g, and g, respectively). It is given by

174204
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H](<2)({qi}’{si}) = (47 W(s| —s3)W(s, —s5) W(s| —s,) f L

perpr

Xzﬂl

where unprimed B’s depend on s; and primed ones on s,,

Bi=B,qs1, (A10)

H/EB)({%},{SI‘}) = (477)3W(52 —83)W(s; —s,) W(s; —s,) f

GA(k,p,)GR(]H' wy,p' + Q4)GA(k+ 0 - 03,p +q;—q3) =—
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2
dp
Py Gk + wy,p+q,)G(k,p) Gk + w, - w3,p+q;—q3)

7 W(s; —53)W(s, —s4) W(s| —s;)
2 B,B,B,B,

s

(A9)

B = Bwivqi(SZ)' (A11)

The third diagram of the Hikami box contains an impurity
line connecting the two retarded Green’s functions (between
¢, and g5 and ¢, and q,, respectively). It is given by

pdp
Py Gk + w1,p +q,)G*(k,p)GR(k + wy.p + q4)

12 !
p'dp , , ,
Xf GR(k+ wi,p +(I1)GR(k+ wy4,P +‘l4)GA(k+ ) — 03,p" +q; - q3)

217

i B,B,B.B,

Next, we make use of the fact that in Egs. (A8), (A9), and
(A12), the operators with indices 3 and 4 act on impurity
ladders 3 and 4 that go out to the radiation sources. These
ladders are equal to the average ray distribution functions,
(fs). In the interior of the medium, the latter obey the Bolt-
zmann equation [Eq. (A6)] with vanishing right hand side,
see discussion below Eq. (A7). Therefore, we have

BWAf) = (fy).- (A13)

Using Eq. (A13) and combining Egs. (A8), (A9), and (A12),
we obtain the correlator of the Langevin forces that enter the
right hand side of Eq. (A6). As a result, we can describe
speckle fluctuations in the framework of the Boltzmann-
Langevin scheme [Egs. (5) and (6)].

APPENDIX B: DERIVATION OF FORMULA (40)

In this appendix, we derive formula (40) for the intensity
correlation function in the directed wave limit. For this pur-
pose, we employ the parabolic and the Markov approxima-
tions. Namely, the scalar wave equation [Eq. (1)] is approxi-
mated by a simpler equation, obtained by substituting
— e y(r) into Eq. (1) and neglecting second order deriva-
tives of the wave function with respect to z. The resulting
equation takes the form of a Schrodinger equation where the
coordinate associated with the propagation direction, z, plays
the role of fictitious time,

 Wi(sy —s3)W(s; —s4) W(s; —s,)

(A12)

R L(ﬁz
Yo T 2k

i )1,/1+ kén(r) . (B1)

=
o? (9y2

The analysis of this equation is further simplified when the
Markov approximation is employed. The latter corresponds
to the situation where the disorder correlation function is
anisotropic. It is delta correlated in the propagation direction
z and long ranged correlated in the perpendicular directions,

(On(r)on(r')) =g (p-p")oz-2"). (B2)

Here, angular brackets denote disorder averaging and g, (p)
represents the disorder correlation function in the p=(x,y)
space. We shall assume that &n(r) is a Gaussian random
function and that g | (p) is isotropic.

These approximations, however, do not imply, necessar-
ily, diffusive motion and therefore apply also for length
scales shorter than the mean free path. Within these approxi-
mations, the Green’s function associated with Eq. (4), hence-
forth called “diffuson” and denoted by D(p,p;z), satisfies an
equation of the form

d J &’
<8—Z+%%>D(p,p;z)—k2fﬁéi(q)[D(p,p—q;z)

—D(p.p;2)]= 8p—py) dp — Py) ), (B3)
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where ¢ | (q) is the Fourier transform of g, (p). Notice here
that the momentum p is a two component vector in the space
perpendicular to the propagation direction.

The above equation can be simplified by Fourier trans-
forming it with respect to the momentum p. Thus, if x de-

notes the variable conjugate to the momentum p and D de-
notes the Fourier transform of the diffuson D, then

eiPOX

g i & \a ~
(a—z—zal)—ﬁx)D—kz[gi(x)—gi(O)]D=47725(0—P0)&Z)~

(B4)

4772q

. ke '4Po (N o, k
D= dxﬁe’po”x“ﬂp‘)ixi exp —
—w q

where under the assumption of isotropy in the plane perpen-
dicular to the propagation direction, g, (x),x)
=g L(\rxﬁ+x2l). Now, taking the inverse Fourier transform

ompmmia= [ £3 [ £
P;P:Po,Py:2) = 4772 4

If we assume boundary conditions where the average distri-

bution function, at z=0, is given by fy(p,p), then for z>0,
the average distribution function is given by the integral

f(P,P,Z)=JdZPodZPOD(P’PZPo’pOZZ)J?o(Po,Po)- (B8)

In particular, assuming the incident wave, at z=0, to be a

plane wave pointing at the z direction, fy(p,p)=41,8(p),
where [, is the density, the above integral reduces to

fp.2) =1, f d’x exp{- ipx — 2k[ g, (x) — g (0)]}.
(B9)

This formula is exact assuming the parabolic and the Markov
approximation. Namely, it holds as long as /> ¢ (Markov
approximation) and £\ (small angle scattering, i.e., para-
bolic approximation). It holds for any distance z <</, and for
any value of the momentum p. It may be further simplified if
we assume that 7> €, where ¢ is the elastic mean free path.

30X
_772 £!4(P=po)+ipo(x—z/kq)—ipx exp{ k_ f
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To solve this equation, we further take its Fourier transform
with respect to z and p (with conjugate variables denoted by
g. and q, respectively),

ipoX—iqpg
472
(B5)

0\ A A
(i‘ZZ + %&)D - kz[gi(x) - gl(o)]D =

Now, let us decompose the vector x into its components: x;
parallel to the vector q and x, perpendicular to that vector.
Then, the solution of the above equation takes the form

[ attia.#t, tx) —&(0)]}), (B6)

X

with respect to g, integrating over x;, and Fourier transform-
ing the result with respect to x, we obtain the result for the
diffuson,

dx\’l’[gi(xlll,’xL) _gL(O)]}~ (B7)

x—qlkz

In this case, the dynamics is of diffusive nature in the angle
of directions and one may approximate the correlation func-
tion g, (x) using the Taylor expansion near x=0,

g.(x) =g, (0)-Dy?, (B10)

where Dy=-g" (0)/2 [g"| (x) denote the second derivative of
g, (x) with respect to x] is the angular diffusion constant.
Substituting Eq. (B10) into Eq. (B9) and performing the in-
tegral over x yield

p2

K’D gz

— 77']0
7)) = exp| — s > . B11
f(p.2) 2Dy p{ 2 ] z (B11)
Let us now consider the fluctuations of the distribution
function. Using Egs. (5) and (6), one may write their corre-
sponding correlation function as

174204-14



PROPAGATION OF COHERENT WAVES IN ELASTICALLY...

PHYSICAL REVIEW B 76, 174204 (2007)

7
(5f(p.p.2)Of(p'.p'.2)) = f dz f d*p'd*p,d*p,D(p.p:p".p1;Z - 2)
0

X[g,(0)8(p; —p2) = . (p1 = P)If(P1.2)f(P2.2)D(p'. P ;p"\ P2 Z - 2),

(B12)

where, as before, this result has been obtained under the parabolic and the Markov approximations. The density correlation
function, C(p—p’), can be deduced from Eq. (B12) by integration over p and p’,

Clp-p')= f d*pd°p'(S5f(p.p.2)Of (p'.p'.2)).

(B13)

Thus, substituting Eqs. (B12) and (B7) into the above formula and performing the integral over p” yield

d’q dp, d’p,

Z —
C(p)=fO dﬁf mmm[gl(o)é(pl—pz)—él(pl—pz)])_‘(pl,é)f(pz,s“)exp{iq{p—%(2—0}

7t
+ 2k f dnig(nglk) - g(O)]} -

0

This formula is obtained essentially by introducing one
Hikami box into the diagrams. The small parameter control-
ling this approximation (i.e., the neglect of additional Hikami
boxes) is [>&*/N\. The distance between the observation
points should be larger than the disorder correlation length,
lp-p'|>&.

The above integral can be further simplified if we assume
the width of the system, Z, to be much larger than the elastic
mean free path, Z> 1. In that case, as can be seen from for-
mula (B11), the width of the average distribution function
f(p, Q) at £>¢€ is much wider than the width of g, (p), as the
width of first function is k\D 4~ év"g’ /€, while the second is
of order 1/&. Therefore, assuming the integral over z to be
dominated by points near the screen z=Z (an assumption
which turns out to be consistent), one may approximate the

factor f(p;,0)f(p,,{) in the integral [Eq. (B12)] as
F1,0f(p2,0)=F*(p1,0) and consider p; and p=p,-p; as
independent variables. Since in this regime f(p,{) is given

by Eq. (B11), the integral over p; and p,—p; can be per-
formed and the result is

(B14)

ijd_f dq {q(z—o]
C(p)—DH v g2.(0)-g, P

z-¢

Xexpy iqp +2k° f dnlg(nglk) - g(0)] (.

0
(B15)

Performing the angular part of the integral over q, expressing
the preexponential factor as a derivative of the exponent, and
changing the integration variable from { to Z—-{, we finally
obtain formula (40),

(7Y ac d
Clp) = 4D(;k2 JO 7 J qdqlo(qp)au

4
Xexp{—%fo dn[l—g?(%n)]}, (B16)

where €~'=k?g | (0), while g(n)=g,(n)/g(0).
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