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There are problems with defining the thermodynamic limit of systems with long-range interactions; as a
result, the thermodynamic behavior of these types of systems is anomalous. In the present work, we review
some concepts from both extensive and nonextensive thermodynamic perspectives. We use a model, whose
Hamiltonian takes into account spins ferromagnetically coupled in a chain via a power law that decays at large
interparticle distance r as 1/r� for ��0. Here, we review old nonextensive scaling. In addition, we propose a

Hamiltonian scaled by 2
�N/2�1−�−1

1−� that explicitly includes symmetry of the lattice and dependence on the size N
of the system. The approach enabled us to improve upon previous results. A numerical test is conducted
through Monte Carlo simulations. In the model, periodic boundary conditions are adopted to eliminate surface
effects.
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I. INTRODUCTION

A good description of magnetic ordering phases illumi-
nates concepts about the critical behavior and possible appli-
cations of magnetic devices. We know that the magnetic be-
havior of systems decreases when the dimensionality of a
physical system decreases. This led to incorrect beliefs that
prompted specialists to lose interest in one-dimensional sys-
tems. However, several theoretical and practical aspects,
which appeared in the physical properties of one-
dimensional systems, caused the specialists to reverse those
beliefs.1–11

Recently, ferromagnetism in one dimension has been re-
ported in various systems. Transitions between two different
magnetic ordering phases are obtained using different ap-
proaches and considerations, and we will discuss some of
these. First, microscopic anomalies lead to important modi-
fications in the thermodynamic properties of systems. As a
consequence, it is suggested that anisotropy barriers contrib-
ute to the effect.8 Second, the Gibbs potential of a one-
dimensional metal at constant magnetization is calculated to
second order in the screened electron-electron interaction. At
zero temperature, a possible paramagnetic-ferromagnetic
quantum phase transition was found in one-dimensional met-
als, which must be at first order.9 Finally, a special Hamil-
tonian considers long-range interactions through a power law
that decays at large interparticle distances. It has been shown
that if the range of interactions decreases, the critical tem-
perature trend disappears, but if the range of interactions
increases, the trend of the critical temperature approaches the
mean field approximation. The crossover between these two
limiting situations is preliminarily discussed.10 That cross-
over is a consequence of long-range interactions, and we use
it to illustrate the nonextensive perspective of the thermody-
namics.

To describe the behavior of systems with long-range in-
teractions, some scaling approaches12 have been introduced
in the literature. In the present work, we carefully discuss the
thermodynamic behavior of systems with microscopic long-
range interactions, taking into account a method of imple-
menting periodic boundary conditions �Sec. III� via a scaling

Hamiltonian �Sec. IV�. Previously, the critical temperature
between two states of different magnetic orderings was ob-
tained in a spin-1

2 Ising linear chain, where the range of
interactions is, at least, comparable to the size of the chain.
However, in order to obtain suitable thermodynamic behav-
ior, in accordance with impositions from extensivity, we im-
prove the so-called nonextensive scaling �Sec. IV� for a sym-
metric one-dimensional lattice.

This Brief Report is organized as follows. In Sec. II, we
introduce the nonextensive perspective of thermodynamics.
In Sec. III, we explain the method of implementing periodic
boundary conditions to eliminate surface effects. In Sec. IV,
we review the Tsallis scaling to get a formalism of the ther-
modynamics from a scaling Hamiltonian and then explain
some important results about the presented formalism. In
Sec. V, we summarize our work and make some concluding
remarks.

II. NONEXTENSIVE THERMODYNAMICS

In this section, we introduce some fundamental facts
about the nonextensive perspective of thermodynamics,
which can be easily illustrated by long-range interaction sys-
tems.

A. Tsallis scaling. This method is useful for scaling ther-
modynamic quantities that depend strongly on the size of the
system with long-range microscopic interactions. The ex-
plicit form of Tsallis scaling appears by evaluating the inter-
nal energy per particle. We take into account the interparticle
potentials v�r� with an attractive tail that decays as

v�r� =
1

r� . �1�

The original Tsallis scaling, from the asymptotic trend of UN,
for systems in one dimension, is given by

N* = ��N1−��/�1 − �� for 0 � � � 1

log�N� for � = 1

1/�� − 1� for � � 1.
� �2�

The present scaling has been revised by several authors and
applied to different physical situations. The scaling was ex-
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pressed in a most appropriate form for discrete systems11 and
was previously written as 2�N*. Indeed, in the present work,
we reviewed this kind of scaling and included it as a best
approach.

B. Mean field approximation. We consider a one-
dimensional model of N spin 1

2 . If the coupling is long range,
surface effects appear and become important. This fact re-
quires working with very large systems. However, surface
effects can be ignored, even in moderately sized systems, by
applying periodic boundary conditions. This is a nontrivial
task when long-range interactions are considered. However,
it is possible to do in a suitable form, which is introduced in
Sec. III. The model is described by the Hamiltonian,

H = − �
i,j=1

n

J�i − j�sisj , �3�

where n is the number of particles in every cell and si
= ±1∀ i. The difference �i− j� represents the distance be-
tween two sites. A nonexternal magnetic field is considered.
The coupling decays as a power law given by

J�i − j� =
J

�i − j��
, �4�

where J is a positive parameter which measures the strength
of the coupling. In previous works, these kinds of systems
have been discussed by several authors.1–7,10,11,13 A common
behavior has been conjectured13 for generic systems with
arbitrary �long or short�-range interactions. With the aim of
calculating the mean value of the Hamiltonian, we proceed
in the same way as in Eq. �12�. �H�=�i=1

N E�N�si, where
E�N�= 1

2JN*�s�, the factor 1
2 ensures that we do not count the

same pair of spin twice and in this view N* 	defined in Eq.
�12�
 represents the effective number of the nearest neighbor
spins. The quantity �s� is the average spin per site. This as-
sumption helps us to recover all the results for systems with
long-range microscopic interactions in a similar manner to
the traditional mean field approximation. This treatment can
be extended even if the external magnetic field is nonzero.

So, the average spin per site of the lattice is given by
�s�=tanh	 1

2�N*J�s�
. In the absence of an external magnetic
field, the magnetization is zero for a high temperature para-
magnetic phase, and it will be nonzero at lower temperatures
where the spins have spontaneously aligned. For the present
system, the internal energy is given by U�N�= 1

2NN*J�s�2.
Hence, the internal energy is given by U�N�=NN*U1. The
extensive property imposes observables to be a linear homo-
geneous function of N and U�	N�=	U�N�. However, when
long-range interactions are included, this property is vio-
lated, and it is easy to show that thermodynamic functions
are homogeneous of degree 1+ ��−1� for ��1 �and logarith-
mic of N for �=1�.

In addition, we expect that the internal energy of a mag-
netic system with long-range interactions adopts the follow-
ing form: U�S ,M ,N�=NN*U1�S /N ,M /N�, where U1 is a
function per particle of the entropy S and magnetization M.

Generally, we could write other extensive variables such as
X=V ,A ,L , P , · · · �representing the volume, area, length, and
polarization, respectively� as follows:

U�	S,	X,	N� = 	1+��−1�U�S,X,N� . �5�

Hence, a problem with defining the thermodynamic limit
persists for ��1, in accordance with Eq. �5�. The linearity is
only recovered for ��1. As previously observed, a strong
dependence on the size of the system obstructs the behavior
of the thermodynamic functions and relations.

C. Tsallis conjecture. As a possible way to solve this prob-
lem, Tsallis conjectured that quantities such as energy �such
as internal energy, Helmholtz and Gibbs energies, and ther-
modynamic potentials per particles� and intensive variables
�such as T as in temperature and H as in magnetic field� scale
with N*. Consistency of this conjecture is shown as follows:

GN

N*N
=

UN

N*N
−

T

N*

SN

N
−

H

N*

M

N
�6�

in the thermodynamic limit. Observables per particle and in-
tensive variables are divergent when interactions are long
range. However, scaling quantities are convergent anywhere.
This kind of scaling presents a standard thermodynamic
structure because it preserves the Euler and Gibbs-Duhem
relations.14 By the same reasoning, it is possible to define
scaling quantities as follows: GN

* =GN /N*, UN
* =UN /N*, T*

=T /N*, and H*=H /N*. With these definitions, the previous
equation is given by

GN
*

N
=

UN
*

N
− T*SN

N
− H* M

N
. �7�

At this stage, we focus on some problems related to the
interpretation of Eq. �7�. For instance, the measured tempera-
ture is not T*, it is T, the measured internal energy per par-
ticle is not UN

* , it is UN, etc.

III. PERIODIC BOUNDARY CONDITIONS

If the range of microscopic interactions is smaller than the
size of the system, thermodynamic properties are obtained
from standard calculations. However, if interactions are long
range, surface effects appear and begin to be important for
all finite sizes of systems. The calculation of thermodynamic
quantities must be carefully done. Long-range interactions
are often defined as those that do not fall faster than 1/rD,
where D is the space dimension of the system. A first ap-
proach requires increasing tremendously the size of the box.
In general, periodic boundary conditions are applied in order
to eliminate surface effects in the calculation of the thermo-
dynamic properties of systems. This can be exemplified by a
central cell, which is repeated throughout the space to con-
struct an infinite lattice. During the course of the present
study, if a particle moves in the central cell, its periodic
images move with the same orientation in every one of the
other cells. Thus, as a particle leaves the central cell, one of
its images will enter through the opposite face. There are no
walls at the boundary of the central cell, and the system has
no surface. In general, particles interact with a potential of
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the following form: v�z�=limL→
�k=−L
L g��k+z��, where the

summation over k represents all contributions over replicated
images. Thus, summations can be written in the following
manner:

�
k=−L

L

g��k + z�� = �
k=1

L

g�k − z� + g��z�� + �
k=1

L

g�k + z� . �8�

Two particular cases �the 1/z and the logarithmic potential�
have been discussed in a previous work.15

Certainly, forces are obtained from f�z�=−dv�z� /dz. Due
to the symmetry of the lattice, it is easy to show that contri-
butions to the net force on every particle from all their im-
ages vanish. Thus, periodic summations of forces do not
practically depend on the nature of interactions. In this man-
ner, the net force 	fN=−dg�z� /dz−FL
 converges as quickly
as the sum FL converges,

FL � �
k=1

L �dg�k + z�
dz

+
dg�k − z�

dz
 , �9�

where −1/2�z�1/2 and k�1. Moreover, dg�z� /dz repre-
sents the force of a couple of particles in the central cell and
FL contributions of all replicated cells in all space. If we take
into account a potential such as Eq. �1�, net force converges
in the same manner as summations from Eq. �9�,

FL � − �
k=1

L � 1

�k + z��+1 −
1

�k − z��+1
� 2z�1 + ���

k=1

L
1

k2+� � 4z�1 − L−1−�� . �10�

If L�1, contributions of particles and their images are in-
cluded.

IV. SCALING HAMILTONIAN AND NUMERICAL TEST

We consider a symmetric chain of n spin-1
2 in a central

cell that is replicated L times over both sides. So the total

number of particles N= �2L+1�n. Thus, we study the system
via the Hamiltonian of Eq. �3� and apply periodic boundary
conditions in the manner introduced in Sec. III. We write the
coupling as follows

J�K� =
1

2 �
l=−L

l=L
J�

L�n�
�nl + K��

. �11�

Hence, in order to obtain the scaling, we can determine it
using the tendency of internal energy, similar to Tsallis.13

Taking into account the symmetry of the chain and the con-
tinuous limit, we derive the following integral:

UN � 2�
1

N/2

drg�r�v�r� � 2
�N/2�1−� − 1

1 − �
, �12�

where g�r� �the pair distribution function� approaches 1 for
r�1. Indeed, from Eq. �12�, the scaling coupling can be
written in the following approach:

J�
L�n� = �J/2�N1−� if � � 1

J/2 ln N if � = 1

�1 − ��J/2 if � � 1,
� �13�

where J�
L�n� measures the strength of the coupling that de-

pends on the size n of the system. If we combine Eqs. �11�
and �13� and substitute the result into Eq. �3�, then we obtain
the scaling Hamiltonian that we used to carry out numerical
results with the Monte Carlo procedure. At this stage, we
emphasize that the scaling, in terms of N*, is 2�N* for �
�1 and 2N* for ��1. It has been well expressed in Eq. �13�
for symmetric lattices. Previously, �see, for instance, Ref. 11�
the scaling coupling was defined in the old form �1
−��J /2� and not as the new form �1−��J /2 	from Eq. �13�

for ��1, for a discrete lattice. Hence, if the old scaling is
applied to systems whose most important geometrical prop-
erty is symmetry, then it would poorly represent the trends in
thermodynamic quantities.

Thermodynamics describes the behavior of systems with
many degrees of freedom after they have reached a state of
thermal equilibrium. Furthermore, their thermodynamic state
can be specified in terms of a few parameters called state
variables. At equilibrium, this method of scaling, the Hamil-
tonian allows observables to be linear with the number of
particles.

A. Linearity of extensive quantities. It is well known that
thermodynamic quantities have to behave linearly relative to
N, the size of the system. For the present specific model of a
chain of spins with ferromagnetic long-range interactions,
due to the form of the scaling Hamiltonian, we expect that
the linearity of internal energy was completely satisfied and
U�	n�=	U�n�. This goes against the nonextensive view of
the thermodynamics, which predicts a nonlinear homoge-
neous behavior of internal energy, such as Eq. �5�. In addi-
tion, according to the Tsallis conjecture, we expect that other
extensive quantities also become linear with N. In Fig. 1, the
linearity of magnetization was tested from simulations for
L=0, 1, and 10 and several values of n, where N= �2L+1�n.
We depict several values of magnetization M�	n� versus
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FIG. 1. �Color online� Linearity of magnetization is shown for
L=0, 1, and 10 and several values of n with N= �2L+1�n. We plot
M�	n� versus M�n�, where 	= �2L+1�. We see that the slope is 	.
In the inset, we plot the same in log-log scale. The slope is 1. This
fact emphasizes that magnetization is a linear homogeneous func-
tion of the size of the system.

BRIEF REPORTS PHYSICAL REVIEW B 76, 172402 �2007�

172402-3



M�n�, where 	= �2L+1�. A simple inspection reveals linear-
ity, i.e., M�	n�=	M�n�. Simulation points depict right lines
that differ only in their slopes. This fact is highlighted in the
inset of Fig. 1 in log-log scale, where we observe that all
lines are parallel, whose slope is 1, an indicator of linearity.
So we see that the linearity of an observable is satisfied when
it is different from the internal energy and similar to the case
of magnetization.

B. Improvement of the critical temperature. Phase transi-
tion characterization is obtained in several ways. One of the
most adequate approaches is to define the critical point for
finite systems by the Binder method. To do so, we need to
assess the Binder cumulants of fourth order, which are de-
fined as un=1− �s4� /3�s2�2. Cumulants un as a function of the
temperature intersect at a common point for several sizes n
of the system. This point is the critical temperature that de-
pends on the range of interactions �. We test the trend of the
critical temperature and plot it as a function of � using the
scaling Hamiltonian, and we compare the present result to
the trend obtained previously from the old scaling. In the
present study, we carry out on a linear chain, where the num-
ber of particles in the central cell is 102�n�103. On the one
hand, the effective number of particles of the samples N
= �2L+1�n depends on the number L of replicas. On the other
hand, the computation time depends just on n, not on L. We
see that L=103 is good enough to compute in the thermody-
namic limit and to eliminate unnecessary sources of numeri-
cal fluctuations. For 0���1, the critical temperature ap-
proaches the mean field value �e.g., for �=0.5, Tc /Tc

MF

=0.985±0.005�. However, when ��1, results from different
scalings do not coincide and they are different from the val-
ues predicted by the mean field approximation. In Fig. 2, the
trend of the critical temperature is depicted as a function of
�. We include results in the range 0���2 for the critical
temperature scaled in the manner presented.

V. SUMMARY AND CONCLUDING REMARKS

In the mean field approximation, the state of magnetic
ordering of a chain of spins with microscopic long-range
interactions constitutes an example of ferromagnetism in one
dimension. Because interactions are short range �e.g., first
neighbors� in the standard Ising model, no magnetic ordering
is observed in one dimension. These approaches define two
limiting cases. In the present work, the main goal is to de-

scribe the crossover between these two limiting cases in a
suitable manner. First, if we take a scaling Hamiltonian, the
nice extensive property is recovered, and the thermodynamic
quantities are linear homogeneous functions against the ho-
mogeneous function of degree 1+ ��+1�, which are obtained
if the Hamiltonian is not scaled. Second, an improvement to
the nonextensive scaling is proposed here to obtain a more
suitable method of describing the thermodynamic behavior
trend in this kind of systems for ��1. In the N→
 limit, we
compare old scaling 2�N* versus new scaling 2N*. Third,
periodic boundary conditions can be used in the approach
using infinite replications of a central cell and considering
the contribution over all space. It has been shown that forces
converge rapidly. However, potentials increase with the size
of the system. The thermodynamic limit was reached in a
numerical approach, with a few particles in the central cell
and a finite number L of replications. Finally, we focus our
attention on the Tsallis scaling �not the Tsallis conjecture�,
which is sufficient to solve the problem of the loss of linear-
ity for thermodynamic quantities such as energy and inten-
sive variables, if we use it conveniently in the Hamiltonian.
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FIG. 2. �Color online� The trend of the critical temperature as a
function of �, the range of interaction. For 0���1, the critical
temperature coincides with the mean field value. The new trend is
compared to the old one. In the inset, we show the critical tempera-
ture as a function of 1/�.
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