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In the presence of Joule heating, the electronic temperature in a metallic resistor placed at sub-Kelvin
temperatures can significantly exceed the phonon temperature. Electron cooling proceeds mainly through two
processes: electronic diffusion to and from the connecting wires and electron-phonon coupling. The goal of this
paper is to present a general solution of the problem in a form that can easily be used in practical situations. As
an application, we compute two quantities that depend on the electronic temperature profile: the second and the
third cumulant of the current noise at zero frequency, as a function of the voltage across the resistor. We also
consider time-dependent heating, an issue relevant for experiments in which current pulses are used, for
instance, in time-resolved calorimetry experiments.
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I. MOTIVATIONS AND OUTLINE

When performing electrical measurements, the signal to
noise ratio can usually be improved by simply increasing the
currents or voltages. In low-temperature experiments, this
procedure is problematic because of Joule heating, which can
affect the temperature of the circuit under investigation or
the temperature of resistors on bias lines, leading to excess
noise. Particularly critical is the situation in the sub-Kelvin
range, because the temperature of the electrons decouples
from the lattice temperature.1–4 A very conservative, wide-
spread rule of thumb among experimentalists is that the volt-
age V across the small conductors should not exceed
kBTph/e, with Tph the lattice �phonon� temperature. In con-
trast, macroscopic components, like commercial resistors,
are believed to be immune to electron heating. In fact, the
first rule is severe, and the second assertion is often incorrect.
The goal of this paper is to provide the experimental physi-
cist with easy evaluation tools of heating effects in order to
optimize experiments.

The important parameters are the voltage V, the resistance
R, the lattice temperature Tph, the resistor volume �, and a
parameter � that describes electron-phonon coupling. The
first step is to calculate the characteristic temperature T�,
which is the temperature that the electrons would reach if
cooling would occur only through the coupling to a bath of
zero-temperature phonons:

T� = � V2

��R
�1/5

. �1�

The average electron temperature can then be directly read
from Fig. 2, the central result of this work, in which the
voltage V, the average temperature Tav, and the lattice tem-
perature Tph are all expressed in units of T�. In Sec. II A, we
explain how this result is obtained and give analytical ex-
pressions in various limits. The results are used to calculate
the second and third cumulants of the current noise produced
by the resistor �Sec. II B, Fig. 4�. Numerical applications are
carried out explicitly in Sec. II C, showing, in particular, that

heating in commercial resistors can be important. In Sec. III,
we address time-dependent situations and calculate how fast
electrons heat up in a resistor when a current is applied and
how fast they cool down when the current is switched off.
For small voltages �eV�kBT��, the variations of temperature
in both transients is exponential, with the diffusion time �D
across the whole conductor as a characteristic time �see Fig.
5�. In the opposite limit �eV�kBT��, heating is exponential,
but cooling proceeds very slowly, with a power law depen-
dence �see Fig. 6�. The time scale is the electron-phonon
scattering time �e-ph at temperature T�, defined by Eq. �17�.
As a numerical application, we consider in Sec. III C a situ-
ation where repeated current pulses are applied to a resistor,
and compute the time dependence of the electron tempera-
ture �Fig. 7�.

II. STATIONARY SITUATIONS

A. Solution of the heat equation

When a voltage V is applied to a two-terminal resistor
�see top of Fig. 1�, the Joule power V2 /R is delivered to the
electrons. This power can dissipate by two mechanisms: the
first one, which dominates at room temperature or in macro-
scopic resistors, is phonon emission. It follows, at tempera-
tures well below the Debye temperature, a Tn�x�−Tph

n depen-
dence, with 4�n�6, T�x� the local electron temperature,
and Tph the phonon temperature.5 The second mechanism is
the simple diffusion of the energetic electrons out of the
resistor. The energy is then dissipated in the connecting
leads, which are, in typical situations, large and have low
resistance. The balance between the Joule power and the two
cooling mechanisms can be expressed in the form of a heat
equation6

d

dx
�LoT�x�

R

d

dx
T�x�� = −

V2

R
+ ���T5�x� − Tph

5 � , �2�

with x the position along the resistor in reduced units �x runs
from 0 to 1�, Lo=	2kB

2 /3e2 the Lorenz number, � the resistor
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volume, and � the electron-phonon coupling constant �typi-
cally �	2 nW/
m3/K5 for good metals7�. The left-hand
side of Eq. �2� accounts for heat transport by electron diffu-
sion, which is expressed by the Wiedemann-Franz law, stat-
ing that the electron thermal conductivity is proportional to
the product of the electrical conductivity and the electron
temperature. The following assumptions have been made in
writing Eq. �2�:

�1� The electron temperature T�x� is assumed to be well
defined locally, i.e., the local electron energy distribution
function is a Fermi function. This requires that the thermal-
ization of electrons among themselves �e.g., by Coulomb in-
teraction� occurs faster than the diffusion of electrons across
the resistor,8 a condition usually obeyed except for short
wires �length �50 
m� made of very pure materials.9

�2� The last term of the equation, which describes cooling
by phonons, assumes that the lattice temperature Tph does not
depend on the local electron temperature T�x�. Corrections
due to the Kapitza resistance between the phonons of the
resistive film and the substrate could, in principle, be
included,3,10 but their contribution is not essential in practice.

�3� The heat power transferred to phonons was taken pro-
portional to Tn�x�−Tph

n with n=5. Theoretically, it is pre-
dicted that the exponent n, which is related to an E2−n depen-
dence of the electron-phonon scattering rate with electron
energy E, can range from 4 to 6, depending on the relative
sizes of the thermal phonon wavelength and the electron
mean free path, on the dimensionality of the phonon system,
and on the dynamics of impurities.5 In most experiments,
values close to n=5 have been found �see discussions in
Refs. 5, 7, and 11�, therefore, our choice. The calculations

can, however, be easily extended to other values of n, and the
results presented in Fig. 2 apply, with another definition of
T�, as discussed in the following.

�4� Radiative cooling,11 which has a negligible effect in
resistors connected to large, nonsuperconducting contacts,12

is neglected.
The heat equation �2� has to be solved with boundary

conditions for T�x� at x=0 and x=1. When the connecting
wires to the resistor have low resistance and are very large
compared to the resistor, as is the case for macroscopic re-
sistors made of thin and narrow metallic stripes of metal, one
can assume T�0�=T�1�=Tph. This simple hypothesis will be
made in the following. For on-chip thin-film resistors, heat-
ing of the contact pads themselves may, however, not be
negligible.13

Before a general solution of Eq. �2� is presented, we recall
simple limits. The so-called interacting hot-electron limit6 is
obtained by neglecting phonon cooling:

T�x� =
Tph
2 +

3

	2x�1 − x�� eV

kB
�2

�3�

�see left panel of Fig. 1, dashed lines�. For Tph=0, the maxi-
mal temperature is T� 1

2
�= �
3/2	�eV /kB	0.28eV /kB, and

the average temperature is Tav=�0
1T�x�dx= �
3/8�eV /kB

	0.22eV /kB. Electron-phonon coupling further reduces the
temperature, so that this is an upper bound on the average
electron temperature, which numerically reads, keeping14

now Tph,

FIG. 1. �Color online� Top: Resistor biased by a voltage V and
placed between two connecting wires in which the electron tem-
perature T and the phonon temperature Tph are equal. Left panel:
�solid lines� temperature profile in the resistor for different values of
�=eV /kBT� with T�= �V2 /��R�1/5; �dashed lines� temperature pro-
file expected when phonon cooling is neglected �Eq. �3��. Right
panel: Temperature profile near the ends of the resistor for �
10
and �ph=Tph/T�=0, 0.5, and 1.

FIG. 2. �Color online� Average temperature Tav in units of T�, as
a function of �=eV /kBT�, for �ph=Tph/T�=0, 0.25, 0.5, 0.75, and 1
�from bottom to top�. The dotted line corresponds to the low-�
approximation Tav=


3
8

eV
kB

; the dashed-dotted line to the large-� ap-
proximation Tav=1−1.16/�. Inset: At �ph=Tph/T�=0, comparison
of the evolution of the average temperature with � for various ex-
ponents n of the temperature in the expression of the heat flow
through electron-phonon coupling.

HUARD et al. PHYSICAL REVIEW B 76, 165426 �2007�

165426-2



Tav

Tph
�
1 + �0.22

eV

kBTph
�2

. �4�

In particular, the rule of thumb eV=kBTph corresponds to a
2.5% average overheating of the electrons. Numerically, one
obtains the equivalent expression

Tav�mK� � 
Tph
2 �mK� + �2.5V�
V��2. �5�

In the opposite limit where cooling by diffusion can be
neglected, the electron temperature is homogeneous and
equal to3

T = �Tph
5 + T�

5 �1/5. �6�

In the following, we call this limit “the fully thermalized
regime.” In the limit Tph=0, the temperature grows as V2/5

�see Fig. 3�.
In intermediate regimes, the temperature profile is ob-

tained by solving numerically the heat equation. For gener-
ality, it is convenient to rewrite it in reduced units. One pos-
sibility is to take as a reference the “crossover temperature”4

Tco= ���Re2 /kB
2�−1/3, which is the energy scale for which

phonon cooling and diffusion cooling are equally important.
This temperature is an intrinsic quantity for the resistor,
which, in particular, does not depend on V or Tph. However,
it does not correspond to the electron temperature in any
limit, therefore, we prefer to take as a reference T�, keeping
in mind that it depends on V. Defining ��x�=T�x� /T� ,�
=eV /kBT��=�eV /kBTco�3/5�, and �ph=Tph/T���V−2/5�, Eq. �2�
reads

d2

dx2�2�x� =
6

	2v2��5�x� − �ph
5 − 1� . �7�

The temperature profile being symmetric with respect to the
middle of the wire, Eq. �7� needs to be solved for 0�x�

1
2

with the boundary conditions ��0�=�ph and ��� 1
2

�=0. Instead
of solving this nonlinear differential equation with boundary
conditions specified at different points, it is convenient to
rewrite it in the following integral form:

2
3v
	�m

x = �
�ph

2 /�m
2

�2�x�/�m
2

du�2

7
�m

5 �u7/2 − 1� − �5�u − 1��−1/2

,

�8�

with �m=�� 1
2

� and �= ��ph
5 +1�1/5. The value of �m is obtained

by solving Eq. �8� for x=1/2. In the left panel of Fig. 1, the
temperature profile along the resistor is given for �=1, 2, 3,
10, and 30, assuming Tph=0. At ��1, one recovers the result
of Eq. �3�, plotted as dashed lines: phonon cooling can be
neglected. For ��10, it is an excellent approximation to take
�m=� in Eq. �8�, a value that does not depend on �. T�x� is
then a function of x� only, which is essentially constant
around the middle of the wire, whereas at a distance 5/�
from the contacts, one obtains the profiles shown in the right
panel of Fig. 1 for �ph=0 �see Ref. 15�, 0.5, and 1. The
characteristic length over which the electron temperature
varies from Tph to T� is, therefore, L�=L /�=


3
8 L3/5Le-ph

2/5 ,
where the “electron-phonon length”

Le-ph = � 8kB


3e
�5/2

���V3�−1/2 �9�

�� being the resistivity� is defined, following16 Ref. 6, as the
resistor length for which 4kBT� /R is equal to the current
noise in the interacting hot-electron regime


3
2 eI. This length

is typically of the order of a few micrometers for voltages of
the order of 1 mV.

From the complete temperature profile ��x�, the average
electron temperature Tav is obtained using Tav=T��0

1��x�dx.
The central result of this work is the resulting plot, shown in
Fig. 2, of the average temperature Tav as a function of the
voltage V, both in units of T�, for Tph/T�=0, 0.25, 0.5, 0.75,
and 1. At �ph=0 and ��2,Tav



3
8 eV � kB �dotted line�,

whereas for ��4,Tav/T��1−1.16/� �dashed line�. This 1 /�
dependence is due to the crossover regions of width 
5/� at
the resistor ends. Figure 2 can be directly used to read out the
average electron temperature Tav for a given set of experi-
mental parameters �V ,Tph� after having computed T� with
Eq. �1�. Interestingly, the corresponding curves for other ex-
ponents of the temperature in the last term of Eq. �2� �n=4 or
6 instead of 5� are almost identical �see inset�, and the same
curves can be used to evaluate Tav, however, with the gener-
alized definition of the reference temperature T�

= �V2 /��R�1/n.
However, because of the use of reduced units which de-

pend on V, the � dependence of Tav at a fixed value of �ph
shown in Fig. 2 does not correspond to a situation in which V
is changed at a fixed Tph, since �ph�V−2/5. In order to visu-
alize how temperature increases with V at a given phonon
temperature, we plot in Fig. 3 the average temperature Tav�V�
for various Tph, with V and Tph given in units of4 Tco
= ���Re2 /kB

2�−1/3, which is constant for a given resistor. The
range in voltage V is the same as in Fig. 2. We have used the

FIG. 3. �Color online� Average temperature Tav as a function of
voltage V for various temperatures Tph, all in units of Tco

= ���Re2 /kB
2�−1/3. The value of Tph/Tco is given by the intersection

of the curves with the vertical axis. The blue dashed line is the
reference temperature T�.
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relations �5/3=eV /kTco and �Tav/T���2/3=Tav/Tco.

B. Second and third cumulants of the current noise at zero
frequency

The temperature profile can be used to evaluate the cur-
rent noise properties of the resistor. We focus here on the
second �S2� and third �S3� cumulants of noise at low frequen-
cies ����eV for S2 and ���eV, � /�D for S3,17 with �D
=L2 /D the diffusion time and D the diffusion constant�:

S2 = 2�� dt��I�0��I�t��

and

S3 = �� dt1dt2��I�0��I�t1��I�t2�� ,

with �I�t�= I�t�− �I�. It has been shown that when phonon
cooling can be disregarded and eV�kBTph, S2 and S3 are
proportional to the applied current:6,13 S2=F2�2eI and S3
=F3�e2I, with F2 and F3 the generalized “Fano factors.”
When, furthermore, the rate of electron-electron interaction
is negligible compared to 1/�D, the distribution function is
not a Fermi function, but a function with two steps,8,18

and18–20 F2= 1
3 �0.33 and F3= 1

15 �0.067. In the opposite
limit where electron-electron interaction is strong, electrons
thermalize locally to distribute in energy according to a
Fermi function, and the temperature profile is given by Eq.
�3�. One then obtains21–23 F2=


3
4 �0.43 and24 F3= 8

	2 − 9
16

�0.248.
In the presence of strong phonon cooling ���1�, the elec-

tron temperature becomes homogeneous, at a value T�

smaller than eV /kB. It is then expected24 that F2 ,F3→0.
For intermediate coupling to phonons, F2 and F3 depend

on the voltage across the resistor. Their values are obtained
from the full solution of the heat equation: the second cumu-
lant is given by a Johnson-Nyquist-like formula6 S2
=4kBTav/R, in which the noise temperature is the average
electron temperature Tav, yielding F2=2kBTav/eV=2�av/�.
This formula can be understood as resulting from the added
Johnson-Nyquist noise of small sections of the resistor, each
at a temperature T�x�. The decay of F2 at large V was dis-
cussed in Ref. 21, and the complete crossover was calculated
in Ref. 25 by numerical integration of Eq. �2�. In turn, F3 is
given by �see Appendix�

F3 =
36

	2�
0

1

dxdy
1

��x�
G1��,x,y����y� − 2�av� , �10�

where G1�� ,x ,y� is the Green’s function such that ��2

+ 15
	2 �2�3�x��G1�� ,x ,y�=��x−y� and G1�� ,0 ,y�=G1�� ,x ,0�

=0. The calculation of F3 is detailed in the Appendix. Figure
4 shows the voltage dependence of F2 �blue line� and F3 �red
line� as a function of � �bottom axis� and L /Le-ph
= �
3� /8�5/2 �top axis� for Tph=0. Also shown with a dashed
line is the curve obtained for F2 when electron diffusion is
neglected,21 using Eq. �6� �dashed line�, which gives F2
=2/��V−3/5. In turn, at large voltages, F3��−2�V−6/5. If one

considers a situation where the resistor length L is varied at
constant current, then F2�1/L and F3�1/L2. The decay to
zero of F2 and F3 from the interacting hot-electron values �


3
4

and 8
	2 − 9

16� is, therefore, very slow, as already pointed out in
Refs. 24 and 25. The non-Gaussian character of the current
noise, evidenced by F3�0, is washed out at L /Le-ph�10.

C. Examples

We consider here a few cases illustrating the use of the
results given in the preceding sections. As a first example,
we consider a 10-
m-long, 100-nm-wide, and 5-nm-thick Cr
resistor with resistance R=25 k� like those used in Ref. 26,
biased at V=1 mV and placed at Tph=20 mK. Assuming
�Cr=2 nW/
m3/K5, the characteristic temperature is T�

=1.3 K and the voltage and phonon temperature in reduced
units are �=eV /kBT�
9 and �ph=0.015. The noise tempera-
ture is directly read from Fig. 2: Tav
0.87T�
1.15 K. At
this voltage, heating of the resistor is, thus, very important,
an effect which hindered the authors of Ref. 26 from drawing
clear-cut conclusions from Coulomb blockade measurements
at finite voltage. Increasing the resistor volume � with
“cooling fins” can help in decreasing electron heating,3 but
such a procedure is extremely inefficient since the character-
istic temperature T� decreases as �−1/5 only.

As a second application, we now consider a commercial
macroscopic surface mount resistor with R=500 �. Such re-
sistors, made of thin �
10 nm� NiCr films27 with resistivity
�
100 
� cm and dimensions 
1�0.2 mm2, were used as
bias resistors in measurements of the state of superconduct-
ing Josephson Q-bits28,29 performed at 15 mK, with a bias
current 
0.8 
A, resulting in a voltage V
400 
V. The
corresponding temperature scale T�
150 mK yields �

FIG. 4. �Color online� Solid lines: Fano factors F2=S2 /2eI
�blue� and F3=S3 /e2I �red� for the zero-frequency second and third
cumulants of noise, from the hot-electron limit to the fully thermal-
ized regime. Dashed-dotted line: Asymptotic dependence of F2 ne-
glecting electron diffusion, F2=2/�. The top axis is resistor length
over Le-ph �see Eq. �9��.
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=eV /kBT�
30 and �ph
0.1, hence, from Fig. 2, Tav
T�


150 mK. Even in such a macroscopic resistor, the volume
is not sufficient to provide enough electron-phonon coupling,
and heating is important. In the next section, we show how
this heating is limited when pulses are used instead of static
voltages.

III. TIME-DEPENDENT SITUATIONS: SWITCHING ON
AND OFF JOULE HEATING

The case of a constant voltage V across the resistor, which
was investigated above, can be extended to the case of
slowly varying voltages directly. However, when V changes
on time scales shorter than the diffusion time or the electron-
phonon scattering time30 �see below�, the previous results
cannot be used to calculate instantaneous temperatures.
These issues are solved by adding to the heat equation �2� a
time-dependent term dQ /dt=CedT /dt, with Ce=�T� the
electronic heat capacity, �= �	2 /3�kB

2�F �from Fermi liquid
theory�, and �F the density of states at Fermi energy �spin
degeneracy included�. When V�t�=Vf�t�, the time-dependent
heat equation can then be rewritten, in reduced units, as

��2

��
=

�2�2

�x2 −
6

	2v2��5 − �ph
5 − f2���� , �11�

where �= t /�D is the reduced time, with �D=L2 /D the diffu-
sion time. Note that the reference temperature T� used to
define ��x�=T�x� /T� is calculated with the voltage scale V,
not with the time-dependent value V�t�. In the following, we
treat more explicitly two situations: how a resistor heats up
when the voltage is applied at t=0, i.e., f���=H���, and how
a resistor cools down when the voltage is set to zero at t
=0, i.e., f���=1−H���. Here, H��� is the Heaviside function
�0 for ��0, 1 for �
0�. These situations also allow one to
describe experiments in which current or voltage pulses are
used like, for example, measuring the switching rate of Jo-
sephson junctions.28 Understanding how the pulse character-
istics can reduce the noise in such measurements is, there-
fore, important to design the readout of superconducting
Q-bits.

When a voltage is applied, the linear drop of the electrical
potential, which results from the collective charge modes, is
established after a RC time, where the capacitance C is the
capacitance of the wire to ground. This time is generally
much shorter than the time necessary to build up the tem-
perature profile, which involves diffusion of individual elec-
trons. Hence, we consider here that Joule heating is homo-
geneous as soon as a voltage is applied. When ��1, the
temperature profile is entirely determined by the temperature
at the ends of the resistor, therefore a steady-state regime is
reached only when the electrons have diffused across the
whole resistor and the characteristic time is the diffusion
time �D. If ��1, the transient is shorter because, apart from
very close to the ends, the temperature is mostly determined
by a local equilibrium between Joule heating and phonon
emission. We now treat quantitatively these two limits.

A. Small � limit

If ��1, ��x , t�−�ph�1 even when the stationary regime
is reached, and Eq. �11� reduces to

��2

��
=

�2�2

�x2 +
6

	2v2f2��� . �12�

As shown in Sec. II A, the proper energy scale when ��1 is
eV, and the solution of Eq. �12� that satisfies the boundary
conditions T�0,��=T�1,��=Tph reads

� kBT�x,��
eV

�2

= � kBTph

eV
�2

+ �
k odd

ak���sin�	kx� , �13�

with ak��� solution of

dak���
d�

+ 	2k2ak��� =
24

	3k
f2��� . �14�

In the case where f���=H���, heating is then given by

ak���= �24/	5k3��1−e−	2k2��, and in the case f���=1−H���,
cooling from the profile �3� follows ak���= �24/	5k3�e−	2k2�.
Corresponding temperature profiles at various times are plot-
ted in the top panels of Fig. 5 assuming Tph=0, whereas the
time evolution of the average temperature Tav is plotted in
the bottom panels. At very short times, the average tempera-
ture grows as kBTav/eV=
6� /	. At ��0.01, a better ap-
proximation is

FIG. 5. �Color online� Time evolution of the temperature profile
�top panels� and of the average temperature Tav �bottom panels� in
the limit ��1, for Tph=0. Left panels: Heating sequence of the
resistor when V�t� /V=H�t� �as shown in the inset�. Right panels:
Cooling sequence of the resistor when V�t� /V=1−H�t� �as shown
in the inset�. The profiles are plotted at various values of t /�D, with
�D=L2 /D the diffusion time. The colors of the solid curves in the
top panels correspond to those of the square symbols in the bottom
panels. The curves in the bottom panels cannot be distinguished
from kBTav/eV	


3
8

1−exp�−10�� and


3
8 exp�−5��, respectively.
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kBTav

eV
	


3

8

1 − exp�− 10�� , �15�

which cannot be distinguished from the exact solution in Fig.
5. At �	0.5, the asymptotical temperature profile given by
Eq. �2� is essentially established. Conversely, after the volt-
age is turned off, the temperature decay is well approximated
�within the linewidth in Fig. 5� by

kBTav

eV
	


3

8
exp�− 5�� . �16�

Hence, in the low-voltage regime, heating and cooling occur
exponentially and the time scale is the diffusion time �D. In
the example of the 500 � commercial resistor in Sec. II B,
�D
3 ms. For metallic wires made of pure materials27 with
an elastic mean free path of the order of 40 cm2/s, �D

20 ns for a length L
20 
m.

B. Large � limit

If ��1, it was shown in Sec. II A that the temperature
becomes almost homogeneous in the wire. The relevant time
scale is then the electron-phonon scattering time11,31,34 at the
characteristic temperature T�:

�e-ph�T�� =
�

�T�
3 =

	2

3

L�
2

D
, �17�

with L� the characteristic length for the variation of T�x�
introduced in Sec. II A. Numerically, � /��0.03 
s K3. Us-
ing 6

	2 �2�=2�* with

�* = t/�e-ph�T�� , �18�

Eq. �11� reduces to

��2

��* = − 2��5 − �ph
5 − f2��*�� , �19�

which for �ph= f =0 is simply equivalent to

�T

�t
= −

T

�e-ph�T�
, �20�

expressing that the instantaneous decay rate of T is exponen-
tial with a characteristic time �e-ph�T�. Equation �19� yields

�
�2�0�

�2��*� dw

f2��*� + �ph
5 − w5/2 = 2�*. �21�

When f���=1−H��� and Tph=0, the temperature decay from
T� has a simple form:

���*� = �1 + 3�*�−1/3. �22�

This temperature decay, which was directly measured in Ref.
11, follows a power law only, so that it takes a very long time
to recover the base temperature after the voltage is set to 0,
which is due to the divergence of �e-ph�T� when T→0. The
results of Eq. �21� with f =1 �heating� and f =0 �cooling� are
plotted in Fig. 6 in the case Tph=0, with linear �top� and
logarithmic �bottom� time scales. The temperature rise is

well approximated by ���*��
2�* when �*�0.2 �dashed
line� and ���*��1−0.86 exp�−4.2�*� when �*�0.2 �dotted
line�. More generally, when �*�1, for Tph�0,

���*� � 
�2�0� + 2�1 + �ph
5 − �5�0���*. �23�

Even though ��1, we now estimate cooling by electron
diffusion to the connecting leads. Starting from a constant
temperature T0, cooling by diffusion follows Eq. �13� with

ak���= � kBT0

eV
�2 4

	
e−	2k2�

k and Tav/T0
exp�−5��. Because of this
exponential dependence, to be compared with the power law
�22�, diffusion can contribute to cooling when t becomes
comparable to �D.

C. Numerical application

In experiments where the voltage is applied in repeated
pulses, heating is reduced and the temperature oscillates in
time. To illustrate this effect, we reconsider the second ex-
ample of Sec. II C, but we now assume that the voltage is
applied during short pulses of duration tp=0.1 
s, repeated
every period tr=20 
s �which corresponds to actual experi-
mental conditions in Refs. 28 and 29�. We now show that
despite the short duty cycle d= tp / tr=0.005, heating is not
negligible. In our example, v
30, therefore the relevant
time scale when V is applied is �e-ph�T��=� /�T�

3 
10 
s.
Equation �23� with �ph=15 mK/T�=0.1 gives T�tp�
=0.17T�=25 mK, indicating slight heating by the first pulse.
The resistance then cools down during a time tr before the
next pulse is applied, following Eq. �21�, to T=0.169T�,
hardly less than at the end of the first pulse.35 The tempera-
ture rises further during the next pulses until steady oscilla-
tions are established. The full time evolution of T shown in
Fig. 7 is obtained by iterating Eq. �21�. At each pulse, the

FIG. 6. �Color online� Evolution of the temperature with time in
linear �top� and logarithmic �bottom� scales in the limit ��1 for
Tph=0. Left panels: Heating sequence of the resistor when V�t� /V
=H�t� �as shown in the inset�. Right panels: Cooling sequence of
the resistor when V�t� /V=1−H�t� �as shown in the inset�. Times are
given in units of the electron-phonon time at temperature T�:
�e-ph�T��=� /�T�

3 . The blue dashed line is 
2�* and the red dashed-
dotted line is 1−0.86 exp�−4.2�*�, with �*= t /�e-ph�T��.
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temperature rise gets smaller than the preceding pulse be-
cause the starting temperature is larger and the heat transfer
to phonons becomes more efficient. For the same reason, the
cooling between the pulses gets more and more efficient. At
t�250 
s, a stationary regime is reached, with the reduced
temperature oscillating between �min and �max such that

�
�min

2
�max

2

dw / �1+�ph
5 −w5/2�=2�p

* and �
�max

2
�min

2

dw / ��ph
5 −w5/2�=2��r

*

−�p
*�. One obtains �min=0.33 �Tmin=49 mK� and �max=0.36

�Tmax=54 mK�. The amplitude of the oscillations ��=�max
−�min is, therefore, very small. However, it increases with tp,
as shown in the inset of Fig. 7, and can become sizable.

The main features of the time evolution of the tempera-
ture can be calculated more simply from the average Joule
power dV2 /R. From Sec. II, the characteristic temperature is
then T�

eff=52 mK, which fits with the average temperature in
the stationary regime of the pulse sequence. According to
Sec. III B, this temperature is reached in a time �e-ph�T�

eff�

220 
s. The rise of temperature with time calculated with
Eq. �21�, in which all quantities �� ,�*� are calculated using
T�

eff, is shown as a dotted line in Fig. 7 and reproduces well
the overall behavior. The amplitude �� of the temperature
oscillations can be evaluated using Eq. �23� under the as-
sumption that the starting temperature is T�

eff, which is a good
approximation for oscillations of small amplitude, and con-
sidering that the voltage V is always present during the pulse
of duration tp, i.e., with ��0�=T�

eff /T�=d1/5 and �*

= tp /�e-ph�T��. If �ph�1 and d�1, one obtains �����0��*,
an approximation only 20% larger than the exact result in the
worst case of the inset of Fig. 7 �tp=2 
s�.

IV. SUMMARY

The solution of the heat equation in a resistor is deter-
mined by a characteristic temperature T�= �V2 /��R�1/5. If

�=eV /kBT��1, cooling by phonons is negligible, T�x� is
given by Eq. �3�, and the average temperature Tav= �
3/8�
��eV /kB�. If ��10, the temperature is �T�

5 +Tph
5 �1/5 except at

distances shorter than 
5L /� from the ends. At ��4 and
Tph=0, the average temperature is Tav�T��1−1.16/v�. Us-
ing these results, we have calculated the decay of the Fano
factors F2 and F3 relative to the second and third cumulants
of current fluctuations with the resistor length L. We have
also addressed time-dependent situations to describe the
heating and cooling of resistors. If ��1, the characteristic
time scale is the diffusion time �D, heating follows kBTav�t�
	


3
8 eV
1−exp�−10��, and cooling follows kBTav�t�

	

3
8 eV exp�−5��, with �= t /�D. If ��1, the instantaneous

relaxation time is �e-ph�T�=� /�T3. Heating from T�0� to T�

is achieved in a time �e-ph�T��, following ���*�
�
��0�2+2�1+�ph

5 −��0�5��* at short times and ���*��1
−0.86 exp�−4.2�*� at long times, with �=T /T� and �*

= t /�e-ph�T��. Cooling from a temperature T0 occurs very
slowly, along a power law: at Tph=0, T�t� /T0= �1
+3t /�e-ph�T0��−1/3.

Finally, we recall that the actual temperature can be
higher than the predictions made here for at least two rea-
sons. First, the electronic temperature can be larger than Tph
in the connecting wires because of their finite resistivity13,21

or because of imperfect thermalization to the cryogenic unit.
Second, we have neglected the Kapitza resistance,10 due to
which the phonon temperature inside the resistor can differ
from the bath temperature Tph. However, this latest effect is
relatively less important in very thin resistors because the
ratio of the heat flow from electrons to resistor phonons to
the heat flow from resistor phonons to substrate is propor-
tional to the film thickness.3
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APPENDIX: CALCULATION OF THE THIRD
CUMULANTS OF CURRENT IN PRESENCE OF THE

ELECTRON-PHONON SCATTERING

The calculation of the third cumulant of current in the
presence of electron-phonon scattering is an extension of the
expressions of Pilgram et al.17 The third cumulant at zero
frequency is expressed as a function of the correlator be-
tween temperature and current fluctuations:

S3 =
6kB

R
�

0

1

dx��T�x��I� . �A1�

To calculate the integrand, we start from the stochastic dif-
fusion equation for the fluctuations �f of the electron energy
distribution function

FIG. 7. �Color online� Main panel: Time dependence of the
temperature of a commercial macroscopic surface mount 500 �
resistor �see text� heated by voltage pulses �bottom curve� of length
tp=0.1 
s applied every 20 
s. The dashed-dotted line is the pre-
dicted heating with the average Joule power. Inset: �blue dashed
lines� minimal and maximal temperatures reached in the stationary
regime as a function of the pulse length tp. The red solid line is the
temperature evaluated with the average Joule power.
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� �

�t
−

1

�D

�2

�x2��f − �Iee − �Ie-ph

= − e��̇
�f

��
−

1

L

�

�x
�Fimp − �Fee, �A2�

with �Iee the linearized electron-electron diffusion integral,
�Ie-ph the linearized electron-phonon diffusion integral, and
�Fimp and �Fee random extraneous sources associated with
electron-impurity and electron-electron scattering. The corre-
lation function of extraneous sources is

��Fimp��,x��Fimp���,x����

= 2
D

�F�
��x − x����� − ���f��,x��1 − f��,x�� . �A3�

The energy distribution function is assumed to have a Fermi
shape with coordinate dependent temperature T�x� and elec-
trical potential ��x�:

f��,x� = �1 + exp�� − e��x�
kBT�x� ��−1

. �A4�

To derive the correlator ��Te�x��I��, Eq. �A2� is multiplied
by � and integrated over energy,21 assuming that the rate of
energy dissipation associated with electron-phonon scatter-
ing is of the form

�F� d��Ie-ph = ��T5�x� − Tph
5 � . �A5�

The electron-electron collision integral and the associated
extraneous source drop out because of energy conservation,
and one obtains

� �

�t
−

1

�D

�2

�x2��e2LoT�T� + 5�F
−1�T4�T −

1

�D

�2

�x2 �e2����

= −
1

L
� d��

�

�x
�Fimp. �A6�

Now we multiply Eq. �A6� and the equation for the fluctua-
tions of the total current, which in the low-frequency limit
reads18

�I =
e�F�

L
� d�� dx�Fimp. �A7�

Upon averaging, it gives in the low-frequency limit

�2

�x2 �LoT��T�x��I��� − Lo�T4��T�x��I��

= −
�2

�x2 ������x��I��� +
2

e

�

�x
� d��f�1 − f� , �A8�

with �=5��R /Lo. The right-hand side of this equation was
calculated in Ref. 17. The solution of this equation may be
written in a symbolic form as

��T�x��I�� =
2kB

LoT
� �2

�x2 − �T3�−1� ���T�
�x

−
�2

�x2��� �2

�x2�−1�T

�x
�� , �A9�

where the symbol ��2 /�x2− f�−1 is the Green’s function
G�x ,y� such that ��2 /�x2− f�G�x ,y�=��x−y� and G�0,y�
=G�x ,0�=G�1,y�=G�x ,1�=0. Using �=−Vx, the expres-
sion in brackets greatly simplifies:

� ���T�
�x

−
�2

�x2��� �2

�x2�−1�T

�x
�� = V�T − 2Tav� .

�A10�

To calculate the third cumulant of the current, one has to
solve Eq. �A9� and substitute the solution into Eq. �A1�. The
generalized Fano factor F3=S3 /e2I is then

F3 =
36

	2�
0

1

dx
1

T�x�� �2

�x2 − �T3�x��−1

�T − 2Tav�

�A11a�

=
36

	2�
0

1

dxdy
1

��x�
G1��,x,y����y� − 2�av� , �A11b�

with G1�� ,x ,y� the Green’s function such that

� �2

�x2 −
15

	2v2�3�x��G1��,x,y� = ��x − y� , �A12�

which can be calculated from24

G0�x,y� = � �2

�x2�−1

= min�x,y��max�x,y� − 1� �A13�

using

G1 = �1 −
15

	2v2G0�3�x��−1

G0. �A14�

In practice, we performed this calculation by discretization
of the coordinates and matrix inversion: the resistor is cut
into N pieces of length �=1/N and the function G0�x ,y� is
represented with a matrix G0 such that

Gij
0 = −

�

N
min�i, j��max�i, j� − 1� �A15�

�0� i , j�N�. The term 15
	2 �2G0�3�x� is represented by the

matrix F built on the calculated temperature profile ��x� us-
ing

Fij = Gij
0 15

	2v2�3�j�� . �A16�

We then invert the matrix A with Aij =
1
��ij −Fij and compute

G1=A−1G0. Finally,

F3 =
36

	2��
i,j

Gij
1 �− ��j�� + 2�av�

��i�
. �A17�
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