PHYSICAL REVIEW B 76, 165425 (2007)

Interaction of Lamb modes with two-level systems in amorphous nanoscopic membranes
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Using a generalized model of interaction between a two-level system (TLS) and an arbitrary deformation of
the material, we calculate the interaction of Lamb modes with TLSs in amorphous nanoscopic membranes. We
compare the mean free paths of the Lamb modes of different symmetries and calculate the heat conductivity «.
In the limit of an infinitely wide membrane, the heat conductivity is divergent. Nevertheless, the finite size of
the membrane imposes a lower cutoff for the phonon frequencies, which leads to the temperature dependence
k> T(a+bInT). This temperature dependence is a hallmark of the TLS-limited heat conductance at low

temperature.
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I. INTRODUCTION

The development of nanodetectors and the strict require-
ments on their performance triggered intense experimental
and theoretical studies of their thermal properties. These de-
tectors work usually in a temperature range around 1 K or
below, and are supported by thin, insulating membranes. The
thickness of such membranes is of the order of 100 nm,
which, in the given temperature range, makes it comparable
to the dominant thermal phonon wavelength. In problems
where the phonon wavelength is comparable to or longer
than some of the dimensions of the system in question, the
three-dimensional phonon gas model cannot be applied any-
more to calculate the system’s thermal properties. Instead,
one has to use the phonon modes specific to the system. If,
like in our case at subkelvin temperatures, the mean free path
is much longer than the wavelength, these phonon modes are
the eigenmodes of the elastic equation for the given geom-
etry.

The membranes that support the detectors are made of
amorphous, low stress silicon nitride (SiN,) and their ther-
mal properties have been measured in various geometries by
different groups (see, for example, Refs. 1-6). Depending on
the quality and the dimensions of the samples, and possibly
the temperature range in which measurements were done, the
heat flux along the membrane may be due to either
diffusive>*7 or radiative phonon transport.>* In the case of
diffusive phonon transport, it was observed that the heat con-
ductivity « is roughly proportional to 72.

For a better thermal insulation of the detector, the under-
lying membrane is sometimes cut. The result is a self-
supporting structure with a wider area in the middle, con-
nected to the bulk by long, narrow bridges, like in Fig.
1(b)."? The heat conductivity along such bridges has again a
power law dependence on the temperature, k=77, where p
takes values between 1.5 and 2."'? For the samples measured
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in Ref. 2, p increased with the width of the bridge.

The heat capacity of a membrane is more difficult to mea-
sure directly since the membrane is always in contact with
the bulk. However, it can be estimated by applying ac heat-
ing and measuring the amplitude of the temperature oscilla-
tions. In this way, Leivo and Pekola? observed that the ratio
cyl k, where cy is the heat capacity, increases with tempera-
ture for the narrowest bridges.

As mentioned above, to explain theoretically all these ob-
servations, we have to work with the proper set of phonon
modes. For wide membranes with parallel surfaces, the
eigenmodes of the elastic equations are called Lamb modes
and horizontal shear modes, as explained, for example, in
Ref. 8. Using these modes and their dispersion relations, we
could describe quite well the thermal properties of the mem-
branes in the low temperature limit,” i.e., at temperatures
where the characteristic thermal wavelength of the phonons
is much longer than the thickness of the membrane. For a
typical 100 nm thick SiN, membrane, the characteristic ther-
mal wavelength becomes larger than the membrane thickness
at about 250 mK.

Nevertheless, the same temperature dependence of the
heat conductivity and heat capacity persists also in a tem-
perature range where this characteristic thermal wavelength
becomes equal to or even smaller than the thickness. This
can no longer be explained only by the dispersion relation of
the Lamb modes in the membrane, and we have to take into
account the amorphous structure of the membrane and the
resulting phonon scattering.

g §(b)

FIG. 1. (a) Full, dielectric membrane. (b) Cut membrane for
better thermal insulation.
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An amorphous material contains dynamic defects which
can be modeled by an ensemble of two-level systems
(TLSs).!%12 A TLS can be understood as an atom or group of
atoms which can tunnel between two close minima in the
configuration space. Any deformation of the material dis-
turbs the TLS, which can have a transition (an excitation or a
deexcitation) to the other energy level. A passing phonon
produces such a deformation and, therefore, may be scattered
by the TLS. In bulk materials, the phonon modes are simple,
transversally or longitudinally polarized plane waves, and
the deformation field they produce can be described by only
two parameters, the wave vector (or the wavelength) and the
polarization. As a consequence, in the so-called standard
tunneling model, the interaction Hamiltonian has a very
simple structure.'®'? In a mesoscopic system, the deforma-
tion caused by the displacement field of a phonon mode is
more complex and the TLS-phonon interaction Hamiltonian
has to be modified accordingly. This was done in Ref. 13.
Here, we use this more general Hamiltonian to calculate the
interaction of the phonon modes of the membrane with the
TLS:s.

II. TWO-LEVEL SYSTEM-PHONON INTERACTION
A TLS is described by a Hamiltonian which has the form

A A
HTLS=EO-Z_EO-)C (1)

when written in the basis formed by the ground states of the
two potential wells between which the system tunnels.'® In
Eq. (1), A is the asymmetry of the potential, A is the tunnel
splitting, and o, o, are Pauli matrices. The Hamiltonian (1)
can be diagonalized by an orthogonal transformation O,

, €
His=O0"Hy 0= 5% (2)

and we obtain the excitation energy, e=A?+A2 Every-
where in this paper the superscript T denotes the transpose of
a matrix.

The TLS parameters A and A are not the same for all the
TLSs in the material, but they are well modeled by the dis-
tribution P(A,A)=Py/A in the unit volume of the material.
We can rewrite the function P in terms of the more practical
variables € and u=A/e,

P
—Lz- (3)

P(e,u) =
uvl —u

The TLSs that have an excitation energy comparable to kzT
are very efficient phonon scatterers.

The deformation due to the displacement field of a pho-
non is quantitatively described by the strain field, which will
be represented here by the six-component vector S.8 If we
denote the displacement field by u(r), then the strain is de-
fined as the symmetric gradient of u(r), ie., ST=(Vqu)’
=y, Aylhy, Oy, D+ O,y , Aty + I Uy, Aty +Jyut,). This de-
formation adds a time-dependent perturbation to the Hamil-
tonian (1), which we shall denote by H,. The perturbation is
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assumed to be diagonal when written in the basis of the two
ground states of the potential wells [like in Eq. (1)],'10-1214.15

1)
Hl = E(TZ, (4)

and linear in the strain field at the location of the TLS,!3-1
5=27T-[r]-S. (5)

The other quantities in Eq. (5) are the coupling constant ¥,
the six-component vector T, which is defined by a generic
orientation t of the TLS as TE(tf,ti,t?,Zt),tz,%th,2txty)T,
and the 6 X 6 matrix of the deformation potential parameters
[r]. For isotropic materials, the matrix [r] is

000

(6)

S O O N —
S O e =y
S O = ey
S m O O O

S m O O O
o O O O

0000 ¢

with the TLS potential parameters ¢ and { that satisfy the
condition {+2&=1.13

To calculate the scattering probabilities, we have to write
H, in the second quantization. For this, we denote the TLS
excited state by |) and its ground state by ||), and we intro-
duce the “creation” and “annihilation” operators at and q,
respectively, so that af||)=|1), a|1)=]l), a¥|7)=0, and
a||)=0. The operators a and a' obey Fermi commutation
relations, and in matrix form, we have o,=(2a’a—1) and
a'x=(a"'+a). The bosonic creation and annihilation operators
for phonons will be denoted by b; and b,, respectively,
where w stands, in general, for the quantum numbers of the
phonon modes (see, for example, Refs. 13—-16). Using these
notations and applying the transformation O to the total
Hamiltonian [O”(Hy g+ H;)O = Hq, ¢+H|], we obtain

T

YA
H) =207 1] 3 [8,b, +Stb1]2ata— 1)
€
"

- %TT~ [r]- 2 [Sub, +Sibi M@ +a).  (7)
y23

In the first order perturbation theory, the phonon absorption
and emission rates are determined by the off-diagonal ele-
ments of H{, i.e., of the second row of Eq. (7). Higher order
processes are not considered here.

Phonon modes in the membrane

The phonon modes of a freestanding, infinite membrane
are divided into three groups, according to their symmetry
properties. One group is formed of simple, transversally po-
larized modes, called the horizontal shear modes (4). The
two other groups are the symmetric (s) and antisymmetric
(a) Lamb modes. Together, these modes form a complete,
orthonormal set of functions for the elastic displacement
fields in the membrane, and their proper quantization has
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been carried out in Ref. 16. In this paper, we shall use the
results and notations from there, and we shall call the three
different types of phonons (i.e., &, s, and a) polarizations.
We assume that the membrane of thickness d is placed
parallel to the (xy) plane and its parallel surfaces cut the z
axis at +d/2. The phonons propagate in the (xy) plane with

the wave vector kuzkHlA(”, of real k. We use a hat to denote
unit vectors.

Along the z direction, the phonon modes are stationary.
As the & modes are pure transversal waves, they have only
one wave vector component along the z direction, which we
denote by kj,. The s and a waves are superpositions of trans-
versal and longitudinal waves of wave vector components
along the z direction denoted by k, and k;, respectively. Due
to the boundary conditions, which demand that the mem-
brane surfaces are stress-free, k; takes the discrete values
mm/d, with m taking all integer values between O and oo,
whereas k, and k; satisfy the more complicated relations®

tan(k,d/2) 4k ot
=T 2 22 (8a)
tan(k,d/2) (k; — ki)
for the symmetric modes and
tan(k;d/2 4k ki
(] ):_ 2112\\2 (8b)
tan(k,d/2) (k; = ki)

for the antisymmetric modes. Equations (8a) and (8b) plus
Snell’s law, w2=c,2(kﬁ+kt2)=c12(kﬁ+k12), enable us to write k;,
as a function of k, for each of the polarizations s and a. (In
Snell’s law, ¢, and c; are the respective transversal and lon-
gitudinal sound velocities for bulk media.) Like in the case
of the & modes, the dispersion relations for the symmetric
and antisymmetric modes split into branches, i.e., Egs. (8a)
and (8b) and Snell’s law do not give only one function k; (k,)
for either set of modes, but produce an infinite, countable set
of such functions. These functions will be called phonon
branches and we shall number them with m=0,1,..., as we
did in Ref. 16, where branches of bigger m lie above
branches of smaller m in the (k;,k,) plane.

< k.d ) sinh(x;d)
cos| —
2 2K[

<(|k o k2 sin ( ,d) v (Tp- k2 sm(kd)) —4k

t t

2
M2=A{4|E,|2kﬁ (5P + iy Sl

2
kd _ sinh(x,d)
{4|k| o s 52 | (e 008D
h(x.d kd
X((|k|2 k2 sinh(k, )—(|k|2 k2 sin( )) —4kﬁ
2K, 2k,

= (k> =k}

— 2
kid
cos
2
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A simple way to express the quantum numbers of the
phonon modes is to use Egs. (8a) and (8b) and Snell’s law to
write the functions k,(k;) and k(k;). Then each branch of
polarization o=s,a and branch number m is going to be
described by the continuous set of numbers [k,(k)),k,(k))] 5.,
with k; taking values from 0 to %. We, therefore, choose the
set u of quantum numbers that specify the phonon modes in
Eq. (7) to be u={o,m,k}.

The functions k,(k;) and k,(k;) may take both real and
imaginary values. To distinguish between these situations,
we write the imaginary values of k, as ik, and the imaginary
values of k; as ik;. In these notations, k;, and k;, take always
positive, real values.

In order to simplify the later discussion, we shall replace

k, and k; with the complex quantities k,=k,+ik, and k,=k;

+iK;, respectively. Note, however, that k, and k; are never
really complex, but they are either real or imaginary, as long
as k; is real.!®

The displacement fields of the phonon modes are®!6

u, =N, cos[k,(z - d/2)](lA(H X 7)e'kir-en (9a)

u, = Ns{il;t[2k cos(k,d/2)cos(k;z) + [k — ki ]cos(k,d/Z)

X cos(l;,z)]ku — ky[ 2k k; cos(k,d/2)sin(kz) — [k,

kiJcos(kd/2)sin(k,z) Jzte ®rr=en, (9b)

u, = N {ik[2ki sin(k,d/2)sin(k;z) + [k} — ki Jsin(k;d/2)
xsin(k,z) kg + k[ 2k k; sin(k,d/2)cos(k;z) — [k

— ki Jsin(k;d/2)cos(kz) J2}e krr=e1. (9¢)
As one can see, when k, or k; take imaginary values, the
trigonometric functions in Eq. (9) will switch into hyperbolic
functions. The normalization constants N,, N,, and N, are
given by!'6

m=0

N> = v (10a)
P lve, m>o,

2
sm(kld)> 2 - 2P

2k

cos| —
2

[x(|&)* + k{)sinh(x,d) — k,([k,]* - kﬁ)sin(k,d)]},

(10b)
2 s1n(k,d)> |k i |2 (I;l_d) 2
2k, 2
- 2
sin( %d) [, (k> + k)sinh(r,d) + k(K| - k2)sin(k,d)]} ,
(10¢)
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where A is the area of the membrane and V=dA is its vol-
ume. To obtain the expressions for N and N, for the different

combinations of real or imaginary k, and k;, one has to rake
the limit to O of their redundant components in Egs. (10b)
and (10c). For example, if k, is real and k; is imaginary, we
calculate the corresponding normalization factor by taking in
Eq. (10b) or (10c) the limits x,— 0 and k;— 0.1°

III. TRANSITION RATES

Now we have all the ingredients to calculate the TLS
transition rates or phonon absorption and emission probabili-

My i) = 26N, {~ 1,1k, sin[ky(z = d/2)] + it 2,k cos[ky(z + di2)Jrer,
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ties. We shall denote the phonon-TLS quantum states by
|n s |)or |n e 1), where we denoted the number of phonons
on the mode u by n,. Using Eq. (7), we write the emission
amplitude of a phonon by a TLS as

~ yN | hn,
AHn 4+ 1, ) == —~| —%M", 11
<n/.L Tl 1|n/.L l> € 2p(1)'u 7 ( )

with M, is given by
T
M,(O=T"-[r]-S,.

Explicitly, for the three phonon polarizations, we have

(12a)

M, (1) = N{= 2k &y cos(kd/2)cos(ki) Tk L + (1 = D51+ ki [L + (1 = Q22T+ kK7 = ki Ieos(kid/2)cos(k2) (¢ = 1)(t; = 12)

= it &k ki cos(k,dl2)sin(k;z) — 2t t.dk; — ki > cos(kd/2)sin(k,z)}

(12b)

M 1) = Nof= 2k kq sin(k,d/2)sin(k2) {12 + L1 = )]+ kG122 + £ = )]} = kk [k} = ki sin(kid/2)sin(k2)(1 = (5 = 12)

+ 8itXtZ§l€,l;,kﬁ sin(k,d/2)cos(k;z) + 2tth§[I€,2 - kﬂ2 sin(k,d/2)cos(k,z)},

where k, and k; are implicitly determined by the branch num-
ber m and k. Using Fermi’s golden rule, we calculate the

(12¢)

In an amorphous solid, the orientations of the TLSs are
arbitrary, so the relevant quantities for our calculations are

phonon absorption and emission rates I'% - and ' , respec-  the averages of ['4 over the directions t of the TLSs. The
tively, only quantity that depends on t in Egs. (13) is [M ,|*. Addi-
tionally, we assume that the distribution of TLSs in the mem-
7 PA2 ) brane is uniform, which leaves again |M “ 2, the only quantity
hs=—— 2 M, |*n,6(hw, - €), (13a)  dependent on z in the expressions, for the absorbtion and
e emission rates. As we are interested in an average scattering
probability rather than in a detailed description of where
242 along the z direction the scattering takes place, we also av-
T PA long the z direction th ing takes pl 1
re = _T|M"|2(n“+ 1)8hw,—€), (13b)  erage |M,|* along z. Denoting by (-) the average over the
pw, TLS orientations and the z variable, we obtain
yvhere € is the energy of the TLS, as defined in Sec. II, and w <|Mh|2> _ —l(kﬁ " ki)’ (14a)
is the angular frequency of the phonon. Vv
|
N2 kd\|*(sinh(xd) sin(kd) kd)|’
_ K
(M,Py == 4CilkPRilis + K cos(L) ( = ) + Gk = Kil? cos<L>
d 2 2Kl Zkl 2
inh(,q) in(k,d) kd |’
— sinh(x — sin _ _
X <(|1<,|2 + k) ——— = (k> - k%)z—’) —2C k(2K — ki > = |&,|©) cos<L)
2k, k, 2
— 2
: 6 14T 124 716 kid :
Xsin(kd) - 2Cx 2k + kilk,|* + |k|°) | cos 5 sinh(k,d) (, (14b)
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2

— 2 —
N2 kd inh(k,d)  sin(k,d kd
(M%) = =4Y 4C [k RIE + B2 sin(L) (S“‘ (ed) _ sintk )>+c,“f 2 sin<L>
2 2K1 2k] 2
o osinh(kd) -, sin(kd) o oo el (Ra) |
X\ (k2 + k) "2 + (k> = k)" | = 2C k,(= 2kC + k&> + |K,|) | sin| ==
2k, 2k, 2

Xsin(k,d) — 2C, k(2K + kil k> + &,|°)

C, and C; are constants that depend on the deformation po-
tential parameter &, C,=4&%/15 and C,=(15-40&+32&%)/15.
Note that C,> C,=0 for all £'3 Using Eqgs. (13) and (14), we
can calculate the TLS and phonon relaxation times,

A2 1
Tj:E’; oh('i€>2 w—(|MM|2)5(ﬁwM—e) (15)
m T

and

7';1 = ;w_E 2<|MM|2>tanh<B )5(hw -€

W Eu

7T'}’2VPO<|M |2>tanh<@> i
pw 2

"

(16)

respectively. Here, we changed the summation over u and €
into a two-dimensional integral and used the TLS density (3).

Using Eq. (16), we can calculate the two-dimensional heat
conductivity along the membrane,

_1 29
K= AE hw,7,(v,); o
h%p ( )2 kjw,
167T2’)/2VP0 kBTan(r J dk” (?kH <|Mn,a'|2>
coth(Bhw, ,/2)
sinh?(Bhiw, ,/2) (17)

For the last expression, we wrote explicitly u=(n,o,k;) and
converted the summation over k; into an integral, omitting
the k; dependence of w and |M|? for brevity. At an arbitrary
temperature, k has to be calculated numerically. In this pa-
per, we give only the analytical low temperature approxima-
tion.

IV. LOW ENERGY EXPANSION: ASYMPTOTIC RESULTS

We can analytically calculate the scattering times or the
thermal properties of the membrane only in the long-
wavelength limit, i.e., for the branch m=0 for each of the
three polarizations of the phonon modes and k;<<1/d. The
calculation of thermal properties in this limit corresponds to
a temperature range in which kzT<<#ic,/d. First, we have to
calculate the relaxation times for each polarization.

— 2
sin| —
2

sinh(x,d) (14¢)

A. h mode

For the lowest branch of the 7 mode, wy, is linear in k|,
and using Eq. (14a), the calculation of Thok () 18 straightfor-

ward for any o,

fipc; 1 coth(Bhw/2)

18
TP, C, ho (18)

Th0.4y(w) =

B. s mode
To get a long-wavelength expression of the dispersion re-
lation for the lowest branch of the s mode, we note that k;
=ik, takes imaginary values, which turns Eq. (8a) into
tan(kb/2) Ak wki
tanh(kb/2) ~ (k2= k2)?

(19)

We expand the trigonometric functions in Eq. (19) to leading
order and obtain

(,US’O k” 2 \r CZ C kH C kH (20)

Using this, we calculate the relaxation time for this branch,
hpc? 4ci(ci—c))  coth(Bhwl2)
TV Py Cict + Cci(cl —2¢2) how

hpc? 1 coth(Bhw/2)

= — . 21
7P, C, ) @1

Tv,O,kH(w) =

C. a mode

The antisymmetric modes have a more complicated
asymptotic expansion. First, let us remark that for the lowest

branch and any kj, both k;=ix, and k,=ik, take imaginary

values, so we write Eq. (8b) in the form
tanh(k;d/2) _ 4K,K,kﬁ
tanh(x,d/2) (K,2 + kﬁ 2

(22)

Expanding this equation to the second leading order, we ob-
tain a quadratic dispersion relation for very small k;,’
cj-cl h

ki = —ki.
3c,2 o om*

wa,(),kH = dC, (23)

Nevertheless, this asymptotic expression is not enough for
the calculation of <|Ma,0,ku|2>, as it turns out that both expres-
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C/C=4/3 —— '
14 | i -
t
s
tm
s
&

0 0.1 0.2 0.3 0.4 0.5
ctz/c,2

FIG. 2. The ratio Th,O,kH(m)/ 0,0,k (w) 3 function of the ratio 0,2/ cl2
for different values of C;/C,. The value C;/C,=4/3 is the minimum
possible value and, thus, all other curves lie above the solid curve in
the plot.

sions (10c) and (14c) are zero in the first and second leading
orders. Therefore, we have to expand to the third leading
order to get nonzero results. From Eq. (8b), we obtain

i, ,27c;-20c; ,
@a0ky = ﬁ(k ~& 902 i 24)
from which we finally get
. _ hpc? ci(ci—c) coth(Bhw/2)
a0k () TV Py Cict + Cci(ci = 2¢7) fhow
_ hpe; 1 coth(Bhwl2) 29)
B mP, C, ho ’
with C,=4C,.

D. Comparison of the scattering rates and mean free paths

The first thing to observe is that, although the dispersion
relations for the s and a modes are different in the low k;
limit, T50k, and Ta 0k, Are related by the simple equation
T50.0=%47,0.0 (We shall simply write 7, for Ta.,o,ku(w)). In
other words, the scattering rate for the s phonons is four
times smaller than the scattering rate of @ phonons at the
same .

Let us now compare 7, , with 7, ,. For this, we calcu-
late the ratio

4 2 2 2
Tho.w _ Cic; + Cicilei —2¢;)

2022
Ciei(cj=c7)

1= (C/C)(efc)?
1—(clc)?
(26)

=1- (C/Cl)2

Ta,O,w

In any normal material (i.e., with positive Poisson ratio), the
ratio ¢?/cf is restricted to 0<c?/c; =1/2, and for C,/C,, we
have'® C,/C,=15/48—-10/+8=4/3. In Fig. 2, we plot the
ratio 7, ¢,/ 7,0, s function of ctz/ c,2 for different values of
C//C,.

We first remark that in the limit ¢,/¢;— 0, 7,0,/ T0.0.0=1,
independent of the value for C;/C,. Increasing c,/c; will re-
sult in a decrease of 7, ,/ 7,0, until a minimum is reached
at (c,/c))*=1-+1-(C,/C,)7", which lies between 0 and 1/2.
Afterwards, 7,0 /7,0, increases monotonically until it
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reaches the value (C,/C,)/2 for (c,/c;)*=1/2. AS Ty .o/ Tap.0
increases monotonically with C;/C,, we conclude that 7, ,
<T,0., for any c,/c;, as long as C,/C,<2. For C,/C,=2,
Th.0.0 €an be either smaller or greater than 7, ,, depending
on whether (c,/c;)? is smaller or greater than C,/C,, respec-
tively. A typical value for (c,/c;)? in SiN, is 0.36, which
means that 7, ,<7,0, as long as C,;/C, is smaller than
2.78.

When comparing 7, , with 7, ,, We encounter a similar
situation. As 7, ,=47, .4, the ratio 7, ,/ 7, has the same
features as the ratio 7, /7,0, €xcept for the fact that the
critical value for C,/C, is 8, i.e., 7, is always smaller than
To0.0 if C;/C,<8 and can be either smaller or greater than
Ty0.0 for C;/C,=8. For the SiN, typical value, (c,/c;)?
=0.36, we have 7, ,= 7,0, as long as C;,/C,=17.6.

More interesting than the scattering rates is to compare
the phonon mean free paths, since these can be directly mea-
sured experimentally. For this, let us first use the dispersion
relations (20) and (23), and wh,o,k“=ctk” to write the expres-
sions for the mean free paths:

fipc; 1 coth(Bhawl/2)

l )= = 27a
h0.ky (@) = €t Th,0.k 2P, C, P (27a)
fipe; 1 coth(Bhe k2
_ fCt _CO ([)’ CiK)) )’ (27b)
7T'y2P0 Ct hk”
; fhiped 21 = c/ci coth(Bhawl2)
S w =C 7-S = ~
5,0,k (w) s 15,0k, 7T’}/2P0 C, ho
(28a)
fipc; 1 coth(Bhick /2
_ i)cl 1 coth(Bfick; )’ (28b)
7Ty2P0 Cs th
2hw
la,O,kH(w) = 7711,0,1(”
_ ﬁpcl3 2(1 —ctzlclz)“4 /d_wcoth(,Bﬁw/Z)
VP, 3%C, ¢ 0]
(29a)
fid
) coth('g—rct\/l —cf/c,zkﬁ)
hpc; 2 2V3
= — (29b)

- 77721)0 Ca th

A way to determine the mean free path of phonons is to
measure the resonant attenuation of ultrasound propagating
along the membrane. If this is experimentally impossible,
another way to determine the material parameters is to make
acoustic measurements on thicker and wider membranes.
Note, however, that elastic waves attenuate not only because
of resonant scattering of phonons [Egs. (27)—(29)], but also
due to energy relaxation.'* Nevertheless, since we are inter-
ested here in the thermal properties of the membranes, only
the resonant scattering is important and we disregard the en-
ergy relaxation mechanism.
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To analyze the results (27)—(29) in more detail, we ex-
pressed the mean free paths both in terms of the angular
frequency and in terms of k. If the elastic modes of different
polarizations are produced with the same w, then we should
compare the mean free paths as given by the expressions
(27a), (28a), and (29a), which we denote as I, ,. For ex-
ample, 1,0 o/L0.0=(Th0.0/ Ts0.0)(c/c;), which is smaller
than (7, ./ 7y0.,) in any material. The discussion we made
above about 7, /7, 0., applies here too.

The expressions (29) for [, , are very different from the
ones for [,,, and [, Nevertheless, the expressions
(27)—(29) are calculated for kj<<1/d, which means that wd
<(27/k))w=c,, which implies Vwd/c,<1. Taking this into
account when we compare the expressions for /o, 0.0
and [, ,, at the same w, we conclude that, as a function of
frequency, for low enough frequencies the antisymmetric
Lamb modes have the shortest mean free path. This is a
consequence of the fact that the group velocity of the a
modes decreases to zero as k; decreases.

If we compare lh,O,kH and ls’()’kH as functions of k,
we see that [ /L0 =(Thok/ TS,O,,{H)[coth(ﬁﬁc,kH/ 2)
[coth(Bficski/2)], which is bigger than 7,0, / Tyok, Since
¢;<c, implies coth(Bhcky/2)> coth(Bfick/2). Comparing
Lo 0k, With expressions (27b) and (28b), we observe, for ex-
ample, that both la,O,kH/ lh,O,k" and la,O,k"/ ls,O,kH are proportional
to coth(ﬁﬁwa,o,k”/ 2)/ coth(,Bﬁwh/s’o’kH/ 2). However, again, for
long wavelengths, due to the quadratic dependence of Wq04,
on k, we have w, o <y . Moreover, coth(x) ~ 1/x for
x—0, so both la,O,kH/ lh,O,k” and la,O,kH/ ls,O,kH are proportional to
1/k, and become very big in the limit of long wavelengths.
In conclusion, as function of k; in the limit dk;<<1, the anti-
symmetric modes have a much longer mean free path than
the symmetric and horizontal shear modes with the same k.

E. Calculation of the heat conductivity

Now we calculate the heat conductivity in the limit of low
temperature. In that limit, only the lowest branch of each
polarization will be populated. Furthermore, in the low tem-
perature range that we are interested in (typical temperatures
are below 300 mK), the typical phonon frequency cutoff in
amorphous materials can be neglected. In the k; space, the
density of states is A/(27)? and, after some changes of vari-
ables, we write Eq. (17) in the form

‘Fﬁzf

where the lower limits a);o were introduced for the reasons
that will become clear immediately. Using Eqs. (27)—(29) for
the mean free paths, we express k as a sum of three contri-

k\l(r()(w)l(r()k” o’
smh2 (Bhw/2) ’

butions:
kzpc? I(x,0) I(x,) 2I(x,
_ BP: T( ( h,()) + ( X,o) + ( a,o)>’ (31)
167 h 7P, C, C, C,
where x;OE Bﬁw;O and by I(x) we denoted the integral
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4x%e" 8x
(e - 1)2 -1

y? coth(y/2)
D) -

—-8In(1-¢™).

I(x) = fx

Note that, although the mean free paths for the 4 and s
modes have different functional dependencies on w than the
mean free path for the a modes, the integrand in Eq. (31) is
the same for all three modes. The role of the lower cutoff in
Eq. (30) becomes obvious when we look at Eq. (32): the
integral I(x) has a logarithmic divergence in x=0.

If the cutoff is small enough, then we can approximate
I(x) by

(32)

I(x) = 12-81In(x), (33)
and inserting this into Eq. (31), we obtain
I pc? [ 3-2In(Bho,,) 3-2In(Bho.,)
K= +
4h VP, C, C,

2A3-2 ln(ﬁﬁw:,o)]]
+ Cu ,

(34)

where the first, second, and third terms in the square brackets
above give the contributions of the 4, s, and a phonon modes
to the heat conductivity. The above expression leads to the
temperature dependence ko T(a+b1InT) and this depen-
dence is a hallmark of the TLS-limited heat conductance at
low temperature.

For a numerical estimate, let us use for the cutoff the
finite size of the membrane, v_vhich limits the wave vectors to
values of the order of 277/VA. For the typical experimental
parameters 7=0.1 K, YyA=400 um, and d=200 nm,">’ we
have In(x;,0271) ==4.9, In(xs 0 27,) = —4.4, and In(x, 0 2m1)
~-11.4. However, since C,=4C, [see Egs. (21) and (25)],
the contributions of all the phonon polarizations to the heat
conductivity are of the same order.

V. CONCLUSIONS

We used the model introduced in Ref. 13 to calculate the
scattering of the elastic modes in a thin, amorphous mem-
brane. We modeled the scattering centers in the membrane
by an ensemble of TLSs with the same properties and distri-
bution over energy splitting and asymmetry as the TLSs in a
bulk material. Whether this assumption is valid remains to be
checked by experiment. We obtained the expressions for the
TLS relaxation time [Eq. (15)], for the phonon scattering
time [Eq. (16)], and for the heat conductivity « [Eq. (17)].

For general temperatures, the heat conductivity and the
scattering times have to be calculated numerically. We cal-
culated analytical low temperature approximations and com-
pared the mean free paths of different phonon polarizations.
In this way, we observed that the contribution of the lowest
branches of the phonon modes to the heat conductivity are
logarithmically divergent at k;— 0. This could be a reason
for which in some experiments a radiative heat transport is
observed.” Nevertheless, there is a natural lower cutoff of
ky—0 due to the finite size of the membrane. This cutoff
renders « finite, which, in the low temperature limit, behaves
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like k< T(a+b In T). This behavior is a hallmark of the TLS-
limited heat conductance at low temperature.

Due to the dispersion relations of the phonon modes, the
TLS distribution in the low energy limit has a bigger impact
on the heat conductivity in thin membranes than in bulk
materials. If we, for instance, modify the distribution (3) into

Py
/— b

P'(eu) =
e“‘uNl—u

with an extra energy dependence € ¢, we make the expres-
. . * . . .

sion (30) for x convergent even in the w,,— 0 limit, which
leads to a low temperature asymptotic dependence of «

PHYSICAL REVIEW B 76, 165425 (2007)

o« T However, whether this is the situation or not has to
be decided experimentally.
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