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Employing the nonequilibrium Green’s function method, we develop a fully quantum mechanical model to
study the coupled electron-phonon transport in one-dimensional atomic junctions connecting to one-
dimensional leads. This model enables us to study the electronic and phononic transport on an equal footing.
We derive the electrical and energy currents of the coupled electron-phonon system and present a self-
consistent picture of energy exchange between them. As an application, we study the heat dissipation in
current-carrying atomic junctions with metallic and semiconductor leads. We find that the inclusion of phonon
transport is important in determining the heat dissipation and temperature change of the atomic junctions.
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I. INTRODUCTION

The electronic transport and phononic transport in meso-
and nanostructures have attracted a great deal of interest in
the past two decades, although their development is not so
parallel sometimes. These structures display important quan-
tum effects due to the confinement in one or more
directions.1 The quantized electrical conductance2 was ob-
served much earlier than that of the thermal conductance3

mainly due to the difficulty in measuring thermal transport
properties. Electrons and phonons are not two isolated sys-
tems. Their interactions are important for both electronic and
phononic transport. With the development of both fields,
there arises the requirement to study the coupled electron-
phonon transport from time to time. When studying elec-
tronic transport problems, one usually assumes that electrons
interact with some phonon bath where the phonons are in
their thermal equilibrium state characterized by the Bose dis-
tribution. This simple assumption is not able to give satisfac-
tory results in some cases where the phonons are driven out
of equilibrium by the electrons. This is especially true in
places where the thermal conductance is low or the phonon
relaxation is slow.4,5 To take into account the nonequilibrium
phonon effect, one usually introduces into the electronic
transport formalism some phenomenological parameters that
describe the phonon relaxation process. In engineering appli-
cations, as the size of the electronic devices decreases to
nanoscale, the heat dissipation and conduction in these struc-
tures become critical issues, which may influence the elec-
tronic properties dramatically.6 Only studying the electronic
transport is not enough in these cases. On the other hand,
heat transport in one-dimensional �1D� structures has re-
ceived considerable attention recently.6–8 Fourier’s law of
heat conduction is no longer valid in many 1D systems. The
microscopic origins of the macroscopic Fourier’s law remain
one of the most frustrating problems in nonequilibrium sta-
tistical mechanics. Since the electrons and phonons both con-
tribute to the heat conduction, their relative roles in many
nanostructures are still not clear. Especially in semiconduc-
tors, which one carries the majority of the thermal current is
not a trivial problem. To answer these questions, we need
some general models, which take into account the electron
and phonon transport, and their mutual interactions.

Theoretically, although the development of electronic
transport in 1D structures has been very striking, that of the

phononic transport is relatively slow. Classical molecular dy-
namics �MD� and the Boltzmann-Peierls equation are the
widely used methods in phononic transport. The MD method
is not accurate below the Debye temperature, while the
Boltzmann-Peierls equation cannot be used in nanostructures
without translational invariance. In both cases, the quantum
effect becomes important.1 Only recently, the nonequilibrium
Green’s function method,9–12 which has been widely used to
study the electronic transport, has been applied to study the
quantum phononic transport.13–17 As far as we know, the
study of the coupled electronic and phononic transport in
nanostructures is rare.18–22 In this paper, using the nonequi-
librium Green’s function method, we study the coupled elec-
tronic and phononic transport in 1D atomic junctions con-
necting with 1D leads. The formalism is similar to that of
Ref. 18, where the authors analyzed the heat generation in
current-carrying molecular systems from the electronic trans-
port point of view. Here, we study the heat generation from
both the electron and the phonon points of view and present
a self-consistent picture of energy exchange between them.
We also go beyond the wideband approximation in Ref. 18
and study the heat generation in atomic junctions with semi-
conductor leads. In our model, the electron subsystem is de-
scribed by a single-orbital tight-binding Hamiltonian, and the
phonon subsystem is described in a harmonic approximation.
We assume that the electron-phonon interaction is not strong
so that the mean-field treatment is valid. The strong-
interaction case is the scope of future work.

The rest of the paper is organized as follows. In Sec. II,
we introduce the 1D model system and derive expressions
for the electrical and energy currents of the coupled electron-
phonon system. In Sec. III, we show the heat generation in
one- and two-atom structures connecting with different leads.
Section IV is the conclusion. In Appendixes A and B, we
give some technical details of our derivation.

II. COUPLED ELECTRONIC AND PHONONIC
TRANSPORT

A. Hamiltonian

Our model system is an infinite 1D atomic chain, as
shown in Fig. 1. The electrons and atoms are only allowed to
move in the longitudinal direction. We treat the atoms as
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coupled harmonic oscillators and take into account their
nearest neighbor interactions up to the second order. We as-
sume that there is only one single electronic state for each
atom and take into account hopping transitions between the
nearest states. This corresponds to a single-orbital tight-
binding model. Also, we assume that there is only one spin
state for each orbital. Following Caroli,23 we divide the
whole system into one central region and two semi-infinite
leads, which act as electrical and thermal baths �Fig. 1�. The
Hamiltonian of the whole system is

H = �
�=L,C,R;�=e,ph

H�
� + �

�=L,R;�=e,ph
�H�

�C + H�
C�� + Heph.

�1�

The electron-phonon interaction Hamiltonian Heph is nonzero
only in the central region. The electron Hamiltonian reads

He
� = �

i

�i
�ci

†�ci
� + �

�i−j�=1

tij
�ci

†�cj
�, �2�

where ci
†� and ci

� are the electron creation and annihilation
operators. �i

� is the electron onsite energy and tij
� is the hop-

ping energy between adjacent states. i and j run over the sites
in the � region. The coupling Hamiltonian with the leads is

He
LC = �

ij

tij
LCci

†Lcj
C, �3�

and

He
CR = �

ij

tij
CRci

†Ccj
R. �4�

He
CL and He

RC have similar expressions. We also have t�C

= tC�†, �=L ,R. For our 1D tight-binding model, t�C has only
one nonzero element. If we label the central atoms with in-
dices 1 to n, as shown in Fig. 1, the nonzero elements will be
t01
LC, t10

CL, tn+1,n
RC , and tn,n+1

CR .
The phonon Hamiltonian is

Hph
� =

1

2�
i

u̇i
�u̇i

� +
1

2 �
�i−j�=0,1

ui
�Kij

�uj
�, �5�

where ui
� and u̇i

� are the mass-renormalized atom displace-
ment and momentum operator. Kii

�=2K0
� /mi

� and Kij
� =

−K0
� /�mi

�mj
� �i� j�. Here, K0

� is the spring constant and mi
�

is the mass of the ith atom in the � region. Like the elec-
trons, the coupling Hamiltonians with the leads are

Hph
LC =

1

2�
ij

ui
LKij

LCuj
C �6�

and

Hph
CR =

1

2�
ij

ui
CKij

CRuj
R. �7�

We also have KC�=K�C†. The nonzero elements are K01
LC,

K10
CL, Kn+1,n

RC , and Kn,n+1
CR .

The electron-phonon interaction is included within the
adiabatic Born-Oppenheimer approximation. First, the elec-
tron subsystem is solved with all the atoms in their equilib-
rium positions. Then, the isolated phonon subsystem is con-
sidered. After that, the electron-phonon interaction is turned
on by allowing the atoms to oscillate around their equilib-
rium positions. Within this picture, the electron-phonon in-
teraction is11

Heph = �
i,j,k

Mij
k ci

†cjuk. �8�

The interaction matrix element is Mij
k =�i� �He

�uk
� j�. All the op-

erators in Eq. �8� are in the central region, so we omitted the
superscript C. In our model, the electron operators are in the
second quantization, those that of the phonons are in the first
quantization.

B. Green’s functions

The nonequilibrium Green’s function method for the elec-
tronic transport is discussed in Refs. 9–12 and that for the
phononic transport in Refs. 13–17. Here, we concentrate on
the electron-phonon interactions. The definition of the
electron contour-order Green’s function is Gjk�� ,���=
−i�T�cj���ck

†����	� and the phonon counterpart is Djk�� ,���=
−i�T�uj���uk����	�. Here, � is time on the Keldysh contour
and T�¯	 is the contour-order operator. We set �=1 through-
out the formulas. Without the electron-phonon interaction,
the isolated electron and phonon problem can be solved ex-
actly. We denote these Green’s functions as G0�� ,��� and
D0�� ,���, respectively. In our case, it is convenient to write
the Hamiltonians as matrices and work in the energy space.
The electron retarded and advanced Green’s functions are
G0

r���=G0
a†���= 
��+ i��I−He

C−�L
r ���−�R

r ����−1. I is an
identity matrix and �→0+. The retarded self-energy ��

r

= tC�g�
r t�C is due to the interactions with the lead �. The

retarded Green’s function of the semi-infinite lead g�
r can be

obtained analytically �Appendix A�. The “less than” Green’s
function is given by G0

	=G0
r��L

	+�R
	�G0

a, where ��
	=

−f�
e ���

r −��
a�. f�

e is the Fermi-Dirac distribution. The phonon
retarded and advanced Green’s functions are24 D0

r�
�
=D0

a†�
�= 
�
+ i��2I−KC−�L
r �
�−�R

r �
��−1. The lead re-
tarded self-energy is ��

r �
�=KC�d�
r �
�K�C. d�

r also has an
analytical expression �Appendix A�. The phonon less than
Green’s function is D0

	=D0
r��L

	+�R
	�D0

a, where ��
	

= f�
ph���

r −��
a�. f�

ph is the Bose distribution function.
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FIG. 1. Schematic diagram of the 1D coupled
electron-phonon system and the parameters used
in the model. The big dots in the bottom line
represent atoms, while the small dots in the upper
line represent electron states. They are coupled
via the electron-phonon interaction.
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Knowing the bare electron and phonon Green’s functions
G0 and D0, we can include their interaction as a perturbation.
Following the standard procedure of the nonequilibrium
Green’s function method, we can express this interaction as
self-energies. The full Green’s functions are obtained from
the Dyson equation, e.g., for electrons, Gr,a=G0

r,a

+G0
r,a�e ph

r,a Gr,a, and G	=Gr�t
	Ga. �t

	=�e ph
	 +�L

	+�R
	 is the

total self-energy. Keeping the lowest nonzero order �the sec-
ond order� of the self-energies, we have two �Hartree- and
Fock-like� terms for the electrons and one polarization term
for the phonons. This is the so-called Born approximation
�BA�.11 The Fock self-energies are

�mn
F,	��� = iMmi

k � G0
	

ij�� − 
�D0
	

kl�
�
d


2�
Mjn

l �9�

and

�mn
F,r��� = iMmi

k � d


2�

G0

r
ij�� − 
�D0

	
kl�
�

+ G0
	

ij�� − 
�D0
r

kl�
� + G0
r

ij�� − 
�D0
r

kl�
��Mjn
l .

�10�

The less than Hartree self-energy is zero, and the retarded
one is

�mn
H,r = − iMmn

i D0
r

ij�
� = 0�Mkl
j � G0

	
lk���

d�

2�
. �11�

This term is a constant for all energies, which represents a
static potential due to the presence of phonons. The self-
energies for the phonons are

�mn
	 �
� = − iMlk

m� d�

2�
G0

	
ki���G0


jl�� − 
�Mij

n �12�

and

�mn
r �
� = − iMlk

m� d�

2�

G0

r
ki���G0

	
jl�� − 
�

+ G0
	

ki���G0
a

jl�� − 
��Mij
n . �13�

In Eqs. �9�–�13�, sum over repeated indices is assumed. The
self-consistent Born approximation �SCBA� is obtained by
replacing all the bare Green’s functions G0 and D0 in Eqs.
�9�–�13� with the full G and D.11 In Appendix B, we show
that the SCBA fulfills the electrical and energy current con-
servation, while BA fails.

C. Electrical and energy currents

The electrical and energy currents can be expressed by the
Green’s functions. The electrical current out of the lead �
is11,25

J� = e� d�

2�
Tr�G�����

	��� − G	�����
���	 . �14�

The electron energy current is

J�
E,e =� d�

2�
� Tr�G�����

	��� − G	�����
���	 . �15�

The electron heat current is obtained from Eqs. �14� and �15�
as J�

h,e=J�
E,e−��J� /e. �� is the lead chemical potential. The

derivation of the phonon energy current runs parallel with
that of the electrons,17

J�
E,ph = −� d


4�

 Tr�D�
���

	�
� − D	�
���
�
�	 .

�16�

For phonons, the energy current is the same as the heat cur-
rent. When there is no electron-phonon interaction, the elec-
tron energy current is conserved throughout the structure. So
is the phonon energy current. In the presence of such an
interaction, only the total energy current is conserved due to
the energy exchange between them. The phonons do not
carry charges, so in both cases, the electrical current is con-
served. Since we cannot get the exact self-energies in most
cases, we need some approximations. Properly defined self-
energies should fulfill the electrical and energy current con-
servation,

�
�

J� = 0, �17�

�
�

�J�
E,e + J�

E,ph� = 0, �18�

where � runs over all the leads. We justify that the SCBA
fulfills these conservation laws, while the BA fails to con-
serve the energy current �Appendix B�. Provided that we
satisfy these conservation laws, we can write the electrical
and energy currents in symmetric forms. The electrical cur-
rent is

J = e� d�

2�
T̃e���
fL

e��� − fR
e ���� . �19�

The transmission coefficient reads

T̃e = Tr1

2
�Gr��L +

1

2
�eph − Se�Ga�R

+ Gr�LGa��R +
1

2
�eph + Se��� , �20�

where Se is

Se =
1
2 �fR

e + fL
e��eph + i�eph

	

fL
e − fR

e . �21�

��= i���
r −��

a�, where �=L ,R is the electron level-width
function. �eph= i��eph

r −�eph
a � is due to the electron-phonon

interaction. The total energy current is
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JE =� d�

2�
�T̃e���
fL

e��� − fR
e ����

−
1

2
T̃ph���
fL

ph��� − fR
ph����� . �22�

The phonon transmission coefficient is

T̃ph = Tr1

2
�Dr��L +

1

2
�eph − Sph�Da�R

+ Dr�LDa��R +
1

2
�eph + Sph��� , �23�

where Sph is

Sph =
1
2 �fR

ph + fL
ph��eph − i�eph

	

fL
ph − fR

ph . �24�

��= i���
r −��

a� is the phonon level-width function. �eph

= i��eph
r −�eph

a � is due to the electron-phonon interaction.
Equations �19�–�24� are the generalization of the Caroli
formula23 to include the electron-phonon interaction.

III. HEAT GENERATION IN CURRENT-CARRYING
ONE-DIMENSIONAL ATOMIC JUNCTIONS

As an application of the formalism in Sec. II, we study the
heat dissipation in current-carrying 1D atomic junctions. In
the presence of potential difference between the two leads,
there will be electrical current flowing between them. When
the electrons pass the central region, there is an energy ex-
change between the electron and phonon systems. This is
only a small part of the generated Joule heat, most of which
is dissipated into the leads. However, this small fraction may
still make the atom temperature higher than that of the leads.
This influences the transport properties of the atomic junc-
tion and even leads to junction breakup.26,27 According to
Appendix B, the heat generation is given by 
Eq. �B9��

Q = i� d�

2�
� d


2�


Gnm

 ���Mmi
k Dkl

	�
�Gij
	�� − 
�Mjn

l � .

�25�

Before presenting our results, we first discuss how our model
is related to available ones and show some general features
of the local heating effect that have been mentioned in pre-
vious studies.

A. General features and relation with other approaches

Different models have been used to study the local heat-
ing effect in atomic junctions.18,26–42 Horsfield et al. com-
pared different classical, semiclassical, and quantum me-
chanical models.31–33 Within the framework of MD, they
developed the correlated electron-ion dynamics method to
take into account the correlations between the electron and
the nuclei dynamics and the energy transfer between them.
This approach goes beyond the perturbative treatment, in-
cludes the anharmonicity inherently, and contains the screen-
ing effect. It also reproduces the Fermi golden rule �FGR�

results for the energy exchange between electrons and nuclei.
The FGR method is equivalent to the BA in our Green’s
function approach. We can generalize the FGR to include all
orders of perturbation and solve the problem by matching the
many body problem into a single electron problem with
many scattering channels.34,35 However, this approach is
only valid near equilibrium.35 Furthermore, it assumes that
the phonon subsystem is in equilibrium, so it cannot be used
to study the nonequilibrium phononic transport. Many
Green’s function and/or density functional theory based ap-
proaches are able to include the electron-phonon interaction
and the phonon subsystem at the SCBA level.19,37,39,40,42

These approaches are more accurate than our model calcula-
tion. The advantage of our approach is that we treat the pho-
non subsystem in real space, instead of the normal mode
used in most approaches. The inclusion of phonon anharmo-
nicity is convenient within the real space representation.17

Furthermore, the leads in our model can serve as both elec-
tron and phonon baths. This enables us to study the coupled
nonequilibrium electronic and phononic transport. Although
our formalism is similar to that of Ref. 18, there, the authors
studied the local heating effect from the electronic transport
point of view. We present a self-consistent picture for the two
viewpoints and show that under SCBA, they give exactly the
same result �Appendix B�. We also go beyond the wideband
limit in Ref. 18 by introducing 1D electron and phonon baths
�Appendix A�, which can be metal or semiconductor depend-
ing on the parameters. This enables us to study more effects
that are not studied in Ref. 18.

As expected, our model reproduces the well-known in-
elastic tunneling features presented in the literature. For a
perfect conducting channel, we observed the differential con-
ductance drop due to electron-phonon interaction.20,39,42 For
weak coupling with the leads, we observed phonon-assisted
tunneling peaks. These serve as important checks of our for-
malism. Now, we turn to the heat generation in these atomic
structures. Figure 2 compares results from different equa-
tions for the heat generation in a single-atom structure �n
=1 in Fig. 1�. The parameters used in the calculation are
stated in the figure caption. With these parameters, the elec-
tron energy band is in the range −1���1 eV. The chemical
potential of each lead is zero in equilibrium. The phonon
energy is approximately 
=0.05 eV. In all the results pre-
sented in this paper, the lead temperature is T=4.2 K and the
electron-phonon coupling matrix M =0.08 eV/ �Å amu1/2�.
The cutoff energy of the electron system is 2.1 eV and the
phonon system is 0.2 eV. The energy spacing is discretized
into grids of 1 meV. Equation �B5� gives the energy decrease
of the electron system, while Eq. �B8� gives the energy in-
crease of the phonon system. Numerical results from Eqs.
�B5� and �B8� under SCBA have some slight discrepancy.
This is due to numerical inaccuracies. We also show results
from BA since it is equivalent to the FGR approach in Ref.
32. The lowest order perturbation method cannot conserve
energy. The electron and phonon results show large discrep-
ancy. We note that although Eqs. �B5� and �B7� are equiva-
lent, the numerical result from Eq. �B5� is unstable in many
cases. The reason is that the energy exchange between the
electron and the phonon system is only a small fraction of
the total electrical energy current. Equation �B5� is the dif-
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ference between two large numbers, so our numerical inte-
gration has to be accurate enough to get a reasonable result.37

On the contrary, Eq. �25� is much more stable since we know
the difference analytically. All the results presented below
use this equation.

Figure 2 also shows some general features of heat genera-
tion in atomic junctions. We can see two threshold values.
The first one corresponds to the onset of phonon emission.
Due to the almost zero phonon occupation at low tempera-
tures, only when the applied voltage is larger than the pho-
non energy can the phonon emission be turned on. The sec-
ond threshold value corresponds to the alignment of the lead
chemical potential with the electron on-site energy eV=2�0.
These two threshold behaviors may be smoothed out when
the coupling with the leads gets stronger. The atomic cou-
pling with the leads cause broadening of the first threshold
behavior, while the electronic coupling is responsible for that
of the second.

B. Effect of coupling with leads

The electron-lead coupling not only leads to the electron
level broadening but also influences the electron tunneling
time. The larger this coupling, the less time electrons spend
in the central region. In Fig. 3, we show the heat generation
and the atom temperature for a single-atom structure under
different electronic coupling strengths. The definition of tem-
perature is ambiguous in nanostructures.6 Here, we use the
method proposed in Ref. 18. We can only see one threshold
behavior at about 0.2 V, which is smoothed out when the
coupling is larger than 0.2 eV. The temperature and the heat
generation show similar trends. The saturation voltage of
heat generation increases with the increase of the electron-
lead coupling. This is due to the coupling induced atomic
level broadening. The decrease of the heat generation and
temperature with increasing electron-lead coupling can be

easily understood. The larger this coupling, the less time
electrons spend at the central atom. Since the electron-
phonon interaction takes place there, the heat generation de-
creases. We also show the heat generation as a function of
electron-lead coupling in the inset of the lower panel. The
applied voltage is 0.3 V. On one side, when the coupling is
too small, few electrons can tunnel through the atom. The
heat generation is small. On the other side, when the cou-
pling is very large, the electron tunneling process is too
quick for the phonons to interact with the electrons. The heat
generation is also small. It has a maximum value at some
moderate coupling strength. This is different from the elec-
trical current, which increases monotonously with the in-
crease of coupling strength.

The atom-lead coupling determines how well the gener-
ated heat can be conducted into the surrounding leads. One
of the important reasons why we are interested in the heat
generation in nanostructures is that it may lead to tempera-
ture increase and even structure breakup. To study the tem-
perature change, we need to take into account not only the
heat generation but also the heat conduction into the leads. In
the simplest one-atom structure, the heat conductance is
mainly determined by the atom-lead coupling. Our model
includes this intrinsically. Figure 4 shows the heat generation
and the atom temperature as a function of atom-lead cou-
pling under different biases. In the case of a perfect junction,
the heat generation reaches its maximum value, while the
atom temperature is the lowest. The reason is that the perfect
junction has the best heat conductance. When the atom-lead
coupling is weak, the heat generation is small. However, the
poor heat conductance can still result in a much higher tem-
perature than the surrounding leads. We also show the heat
conductance as a function of atom-lead coupling in the inset
of the upper panel, which shows a sharp peak at resonance.
The atom-lead coupling also influences the electronic current
profile. Our model calculation reproduces the result that
heating of the phonon subsystem may increase the electron-
phonon scattering rates and lead to the electronic current
decrease or negative differential conductance.4,5

In Fig. 5, we show the heat generation of a two-atom
structure �n=2 in Fig. 1�. The central region has two identi-
cal atoms. Interaction between them leads to two discrete
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FIG. 2. �Color online� Comparison of different methods to com-
pute the heat generation in a single-atom structure. The four curves
correspond to results from Eqs. �B5� and �B8� under BA and SCBA,
respectively. If we label this single atom as index 1, its electronic
on-site energy is written as �1
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R
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energy levels. One is at 0 eV and the other at 0.4 eV. When
the electrical coupling between the leads and the central re-
gion is small �0.1 eV�, in addition to the threshold behavior
at eV=
, there are two ladders corresponding to the phonon-
assisted resonant tunneling across the two electrical levels. If
the electrical coupling gets larger �0.2 eV�, the two ladders
broaden out. Again, this is attributed to the coupling induced
level broadening. The heat generation for the two-atom
structure is much larger than that of a single-atom structure.
The more the electrical levels, the larger the electrical current
and heat generation. It is worth noting that for multiatom
structures, the distribution of the electrostatic potential may
influence the results significantly.41 In the above calculation,
we assume that the two electrical levels do not change with
the applied bias and that we can tune their positions via a
gate voltage.

C. Effect of a semiconductor lead

If one of the metallic leads is replaced by a semiconduc-
tor, there will be some new features in the electrical current

and the heat generation. In our simple model, we can alter-
nate the electron on-site energies between two values to
mimic a simple semiconductor �Appendix A�. In Fig. 6, we
show the heat generation and the electrical current for such
kind of structure. The alternating on-site energies of the left
lead are −0.1 and −0.2 eV. This produces an energy band
gap of 0.1 eV. Other parameters are given in the figure cap-
tion. We can see that there appears negative differential con-
ductivity in the current-voltage characteristics due to the
semiconductor band gap. This qualitatively agrees with the
experimental43 and first-principles44 studies. The heat gen-
eration curve is slightly different. In addition to its threshold
behavior, the peak and valley positions are also different.
The electrical current has a peak when the chemical potential
of the lead is aligned with the central electrical level, while
the peak of the heat generation shifts to the right by one
phonon energy. This corresponds to the phonon-assisted
resonant tunneling. The current and the heat generation de-
crease when the single electrical level is within the band gap
of the left lead. The peak-to-valley ratio depends on the cou-
pling with the semiconductor lead. In the limit of small band
gap and large coupling, we recover the metallic lead results.

IV. CONCLUSION

We studied the coupled electron and phonon transport in
1D atomic junctions in the weak electron-phonon interaction
regime. Based on the nonequilibrium Green’s function
method, we derived the electrical and energy currents of the
coupled electron-phonon system and the energy exchange
between them. We showed that the SCBA conserves the en-
ergy current. Using this formalism, we studied the heat gen-
eration in one- and two-atom structures coupling with differ-
ent leads under a broad range of parameters. Especially, we
studied the influence of the thermal transport properties on
the heat generation and atom temperature of the central re-
gion. The results on semiconductor leads agree qualitatively
with the experimental and first-principles studies. This model
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FIG. 4. �Color online� Heat generation Q and the atom tempera-
ture T as a function of the atom-lead coupling K10

CL=K21
RC=K at V

=0.2 and 0.3 V. Other parameters are the same with Fig. 2. The
inset shows the thermal conductance � as a function of K. The unit
is 1�10−12 W/K.
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can be easily extended to study more realistic structures such
as molecular transport junctions and metallic nanowires. The
electron phonon Hamiltonians, their interaction, and lead-
coupling matrices can all be obtained from first-principles
calculations.17,39,45 The surface Green’s functions for bulk
leads can be computed by the recursive method.17,45 It is also
possible to include the electron-electron and the phonon-
phonon interactions.14,17
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APPENDIX A: SURFACE GREEN’S FUNCTIONS
OF THE ONE-DIMENSIONAL LEAD

In this appendix, we show that for the 1D tight-binding
model, the lead self-energies can be expressed analytically.17

The electron and phonon self-energies are similar in their
form. Here, we take electrons as an example and give the
phonon results directly. We assume that the on-site energies
of the electrons alternate between �1 and �2. The hopping
energy is tij

� = t0. If �1=�2, we get a continuum band. This
corresponds to a metallic lead. If they are not equal, we get
two bands with a band gap. We can take the lower as the
valence band �VB� and the upper as the conduction band
�CB�. We use this method to mimic a semiconductor lead. In
this case, the semi-infinite lead has two electron states in
each period. In the tight-binding model, only the left- �right�
most state of the central region is coupled to the left �right�
lead. So, we only need to know the surface Green’s function,
e.g., for the left lead, it is g0=g00

r . We assume that the re-
tarded Green’s function is

gij
r = c1�i−j state 1

c2�i−j state 2.
� �A1�

Substituting it into the definition of the retarded Green’s
functions 
��+ i��I−H�gr= I, we have

− t0c1 + �� + i� − �2�c2 − t0c1� = 0, �A2�

− t0c2 + �� + i� − �1�c1� − t0c2� = 0. �A3�

From Eqs. �A2� and �A3�, we get an equation for �,

�2 + �2 −
�� + i� − �1��� + i� − �2�

t0
2 �� + 1 = 0. �A4�

The condition that Eq. �A4� has traveling wave solutions
gives the dispersion relation

��1 + �2� − ���1 − �2�2 + 16t0
2

2
� � � �1 �VB� ,

�2 � � �
��1 + �2� + ���1 − �2�2 + 16t0

2

2
�CB� . �A5�

We assume that �1��2 without loss of generality. The en-
ergy band gap is �2−�1. If they are equal, the two bands

merge into one, which corresponds to a metallic lead.
For the surface Green’s function of the left lead, we also

have

�� + i� − �1�c1 − t0c2 = 1. �A6�

From Eqs. �A2� and �A6�, we get

g0 = �
� + i� − �2

�1 + ��t0
2 �VB�

� + i� − �1

�1 + ��t0
2 �CB� .� �A7�

�� � �1 is one of the roots of Eq. �A4�. The surface Green’s
function of the right lead is identical.

We can also alternate the atom masses to generate a pho-
non band gap. In our model, the mass change will modify the
renormalized spring constants. The diagonal elements of the
dynamical matrix will be two alternating values Kii

�=2k1 or
2k2, while the off-diagonal elements will be a single value
Kij

� =−�k1k2, where �i− j�=1. If we assume that k2�k1, the
acoustic band �AB� is 0	
2	2k1 and the optical band �OB�
2k2	
2	2�k1+k2�. The surface Green’s function is

d0 = �
�2

�1 + ��k1k2
�AB�

�1

�1 + ��k1k2
�OB� ,� �A8�

where �n= �
+ i��2−2kn. �� � �1 is one of the roots of

�2 + �2 −
�1�2

k1k2
�� + 1 = 0. �A9�

In all the simulation results of the present paper, the two
spring constants are equal �k1=k2�, which correspond to a
single continuum phonon band. The electron on-site energies
are also equal ��1=�2� except in Fig. 6, where we set �1=
−0.2 eV and �2=−0.1 eV to mimic a semiconductor lead.

APPENDIX B: ENERGY CURRENT CONSERVATION

In this appendix, we justify that the SCBA satisfies the
energy current conservation. The justification of the electri-
cal current conservation is given in Refs. 42 and 46. What
we need to prove is that

�
�

�J�
E,e + J�

E,ph� = 0. �B1�

The electron part is

�
�

J�
E,e = �

�
� d�

2�
� Tr�G�����

	��� − G	�����
���	 .

�B2�

Using the important relation39,46

Tr�G�t
	 − G	�t

	 = 0, �B3�

we get
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�
�

J�
E,e = −� d�

2�
� Tr�G����eph

	 ��� − G	����eph
 ���	 .

�B4�

The Hartree term does not contribute to the current directly.
It is just like a static potential which only modifies the
Green’s function. Substituting the Fock self-energy into Eq.
�B4�, we have

− Q = �
�

J�
E,e

= − i� d�

2�
� d


2�
�
Gnm

 ���Mmi
k Dkl

	�
�Gij
	�� − 
�Mjn

l

− Gnm
	 ���Mmi

k Dkl
�
�Gij

�� − 
�Mjn
l � . �B5�

Sum over all the indices is assumed. The heat generation Q
is the energy decrease of the electron system, which should
also be the energy increase of the phonon system. Replacing

 by −
, using the symmetric properties of the phonon
Green’s functions,17 replacing � by �−
, and finally chang-
ing dummy variables, we get

i� d�

2�
� d


2�
�
Gnm

	 ���Mmi
k Dkl

�
�Gij
�� − 
�Mjn

l �

= i� d�

2�
� d


2�
�
Gnm

	 ���Mmi
k Dkl

�− 
�Gij
�� + 
�Mjn

l �

= i� d�

2�
� d


2�
�� − 
�
Gnm

	 �� − 
�Mmi
k Dlk

	�
�Gij
���Mjn

l �

= i� d�

2�
� d


2�
�� − 
�
Gnm

 ���Mmi
k Dkl

	�
�Gij
	�� − 
�Mjn

l � .

�B6�

Substituting Eq. �B6� back into Eq. �B5�, we get

− Q = �
�

J�
E,e

= − i� d�

2�
� d


2�


Gnm

 ���Mmi
k Dkl

	�
�Gij
	�� − 
�Mjn

l � .

�0. �B7�

For the phonon energy current, we have

Q = �
�

J�
E,ph

= i� d�

2�
� d


4�


Dnm

 �
�Mlk
mGki

	���Gjl
�� − 
�Mij

n

− Dnm
	 �
�Mlk

mGki
���Gjl

	�� − 
�Mij
n � . �B8�

Following the same procedure as electrons, finally, we get

Q = �
�

J�
E,ph

= i� d�

2�
� d


2�


Gnm

 ���Mmi
k Dkl

	�
�Gij
	�� − 
�Mjn

l � � 0.

�B9�

So, we still have

�
�

�J�
E,e + J�

E,ph� = 0. �B10�

Equations �B7� and �B9� give the energy exchange between
the electron and the phonon system, which is also the heat
generation of the atomic junction. Replacing D	, G	 by D0

	,
G0

	 in Eq. �B7� and G, G	 by G0
, G0

	 in Eq. �B9�, we get
the results under BA. We can find that the energy increase of
the phonons does not equal the energy decrease of the elec-
trons under BA.
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