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Image potential and field states at Ag(100) and Fe(110) surfaces
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By combining the first-principles concept based on the density functional theory with a model vacuum
potential, we calculate image potential states and analogous ones in the presence of an electric field applied on
a nonmagnetic Ag(100) surface and a magnetic Fe(110) surface. Our investigations are based on the Green-
function embedding technique, which allows us to treat a truly semi-infinite surface and whence yields a
continuum of bulk states. This turns out to be of crucial importance in order to investigate the qualitative
difference between localized image or field states located in a band gap of the substrate and states in resonance
with bulk states present at the same energies. This difference leads to remarkable changes in the binding energy
versus field dispersion of the states. Furthermore, we show that in the case of the Fe(110) surface, the
calculated magnetic exchange splitting increases with the electric field and is also modified by the transition

from field states to surface resonance states.
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I. INTRODUCTION

For the understanding of the electronic properties of sur-
faces in particular and surface science in general, image po-
tential states proved to play a prominent role. These states
occur as a Rydberg-like series of surface states close to the
vacuum level confined by the surface on the one side and the
slowly 1/z-likedecaying image potential on the other side.
Hence, image states are located relatively far away from the
surface, have a long lifetime and, thus, can be ideally ob-
served experimentally by modern methods like two-photon
photoemission,! inverse photoemission,? and scanning tun-
neling microscopy®* (STM). These states and the corre-
sponding experimental results are also easily described by
rather simple theoretical models, making them ideal specta-
tor states to probe the surface and the electronic structure.’™
The binding energies can be expressed® by a series of image
potential (or Rydberg) states labeled by an index n and mea-
sured from the vacuum level E,,,

op 13.6
n— vac [4(n+a):|2?

in units of eV, where the quantum defect a has to be intro-
duced due to the finite tail of the wave function overlapping
with the crystal. Recently, increasing effort is made to extract
details of the electronic structure of the surface from such
measurements. For example, the investigation of the ex-
change splitting of the image states became feasible.'?
Using the spectroscopy mode of a spin-polarized STM,
the magnetic splitting of the image states can be investigated
locally and, hence, the underlying magnetic structure can be
resolved.!! In these experiments, a rather large bias voltage is
applied between the STM tip and the sample surface such
that electrons can tunnel into the image states. Strictly speak-
ing, the states observed are no longer simple image states as
the applied bias leads to a substantial electric field applied to
the surface. Hence, the electrons are no longer confined by a
1/z-likepotential but experience the additional linear poten-
tial of the field. Following Binnig et al.,> we will use the
term “field states” for these generalized image states. An

n=12.3, ..., (1)
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alternative view on these states is their description as reso-
nances in the field emission of the tip. This picture enables
the description of their intrinsic lifetime and is useful for the
interpretation of the peak shape observed in the STM
experiments.'>!3 However, it is difficult to include both the
surface and the tip effects, which would require a nonequi-
librium treatment of the full junction. In the spirit of the
STM as a tool to investigate surface properties, we will ne-
glect these tip interaction effects.

To provide some insight into the subtle changes of the
image and field states from the simple rule expressed by Eq.
(1) due to the electronic structure of the surface, we perform
first-principles density functional theory (DFT) calculations.
Two systems are presented, the Ag(100) surface and the
Fe(110) surface. We use the simpler, nonmagnetic Ag surface
to introduce the general effects expected in the transition
from image states to field states and to verify the method by
comparing to experiments'4-?" and simple models,' while we
focus on the exchange splitting of these states in the case of
the ferromagnetic Fe surface.!!>!-26 Recently, both surfaces
were investigated, in the case of Ag(100) by STM!*2° and
the Fe(110) surface by spin-polarized STM.!! These experi-
ments require a theoretical investigation of the field states,
which we will present and discuss in Secs. III and IV, respec-
tively.

II. THEORY

Within the local density (LDA) and generalized gradient
approximations (GGA) commonly used for the exchange
correlation potential to the density functional theory, the cal-
culation of image potential states is not possible. In particu-
lar, the only input into the LDA is the exponentially decaying
local charge density in vacuum and, hence, the LDA yields a
potential decaying exponentially toward the vacuum level. In
order to fix this deficiency, we replace the LDA or GGA
vacuum potential by a model potential with the correct 1/z
asymptotic tail. Following similar work by other groups ™
and adding a constant electric field & we assume the follow-
ing form of the potential in vacuum:
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FIG. 1. (Color online) The embedding region is bound by the
bulk on the left side and the vacuum region on the right side. At the
boundary, the embedding potentials 3; and 3y set the correct
boundary conditions in the KS Hamiltonian. The DFT potential
(blue/dashed) is connected to the correct 1/z-likepotential (brown/
dashed dotted) in some mixing region into it until the correct be-
havior of the potential (red/solid) is modeled.

Vim(Z) = Vvac - (136)(2) + ng (2)

4|Z - Z,’|
in units of eV, where z is the coordinate normal to the sur-
face, V,,. denotes the vacuum level of the potential, and z;,
the so-called image plane position, is a parameter. In our
calculations, the vacuum level is taken from the solution of
the Hartree potential, i.e., it is assumed to be the value in the
vacuum region at which the Hartree potential becomes con-
stant at a reasonable distance from the surface at zero field.
The image plane position can also be calculated as the center
of the static screening charge.” We determine the screening
charge by calculating the difference of the lateral averaged
charge with and without applied electric field. The center of
the screening charge for §— 0 can be regarded as the image
plane position. The image states are unoccupied. They can be
investigated by STM if a positive electric field is applied,
enabling the electrons to tunnel from the STM tip into the
image potential states. Therefore, throughout the work, we
use positive electric fields only. In order to ensure a continu-
ous transition of the DFT potential to the model potential in
vacuum, we adopt a simple mixing scheme in which we
change the potential according to

Vinix(2) = Vopr(2)f(2) + Vin(2)[1 = f(2)], A3)

where f(z) changes from 1 to 0 as cos(z) in a chosen mixing
region up to z,;. In Fig. 1, the resulting potential and the
potential mixing are sketched.

Our simple ansatz for the potential will not be able to
predict the experimentally observed image states in all
details—e.g., it misses their finite lifetimes—but their basic
properties can be reproduced. As the potential far in vacuum
as well as the DFT potential deep in the bulk produce the
correct electronic structure, only states localized in the sur-
face region are expected to depend on the ad hoc ansatz of
the mixed potential. Examples for such states are the lower
image potential states and their strong dependence on the
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model parameters like the image plane position, and details
of the potential mixing indicate the deficiency of the model.
The parameters of the model would allow the fitting of the
image state energies to their experimental values. Instead, as
our main aim is the investigation of the field dependence of
the image states in the end, we used a rather minimal mixing
region and fixed the image plane and the vacuum level as our
findings will not depend on the exact details of these states.
More sophisticated schemes?’~2° trying to yield a consistent
treatment of the short range correlations as in our DFT po-
tentials and the long range correlations leading to the 1/z
have been proposed and can be applied in a further step to
shed light on these details.

Our actual DFT calculations are performed employing
GGA in the Perdew-Burke-Ernzerhof*? parametrization us-
ing the embedded Green-function method,*'=3* which has
been recently implemented within the context of the full-
potential linearized augmented plane-wave method by Wort-
mann et al.333¢ as part of the FLEUR project.?’ In this method,
the surface is modeled by a few atomic layers (the embedded
region) which are embedded as a sandwich between semi-
infinite bulk and vacuum. The usual Kohn-Sham (KS)
Hamiltonian Hgg of the surface or embedding region is
modified by two additional surface terms acting on the em-
bedding surfaces toward the bulk (L) and the vacuum (R).3!
Thus, the Schrodinger equation in the embedding region can
be written as

[Hs(7)~ E1(R) + 5 S 8= ng)l,7) - ()1 =0,

S=LR
4)

with n denoting the coordinate normal to the embedding sur-
faces located at ny R, ¢ is the wave function inside the em-
bedding region, and ¢4 g, the wave function outside this re-
gion. Thus, the additional term in Eq. (4) is ensuring that the
total wave function has no kink at the embedding surfaces.
The outer wave functions can be substituted by introducing
energy dependent operators, so-called embedding potentials
21 » leading to a modified Hamiltonian

1
Hemp=Hgs+ = 2 &n—ng)<£—225>. (5)

2 S=L.R

The key quantities of the method are the embedding poten-
tials 2y x controlling the boundary conditions at the embed-
ding surfaces and, thus, ensuring that the Green function
G(E) obtained from

[Hemn(E) — E]G(E) = 1 (6)

is the Green function of the infinite surface. In our calcula-
tions, the left embedding potential ; is obtained from a
separate calculation of the bulk substrate, while the right
potential 3 contains the information about the decay of the
Green function into vacuum. This can be calculated analyti-
cally for the case of a constant potential,>*»* and can be
obtained from a simple numerical integration in the case of
the 1/z potential,® and an additional applied field. The ana-
lytic image potential [Eq. (2)] is set up on a mesh and the
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value of the wave function is calculated by solving the one-
dimensional Schrodinger equation numerically by the Nu-
merov algorithm, starting with an initial wave function of
free electrons far in the vacuum. The embedding potential
can be expressed by the wave function ¢ and its surface
normal derivative 4,1 at the embedding plane3! zg:

0n L//(ZR)
2¢(zg)

The first derivative of ¢(zg) is calculated by finite differ-
ences.

ER(E) = (7)

II1. IMAGE POTENTIAL STATES OF Ag(100)

To validate our method and to introduce the basic features
of image and field states, we first investigate the Ag(100)
surface. Our setup consists of an embedded region of five
silver layers sandwiched between bulk silver and vacuum.
The interlayer distances of the topmost three surface layers
have been relaxed beforehand using a standard film calcula-
tion with the FLEUR code.’” This yields relative changes of
the interlayer spacing of Aj,=—1.2%, Ay3;=+0.9%, and A3,
=+0.9% relative to the bulk Ilattice constant of q
=7.84 au. (4.15 A) for the first, second, and third layers in
good agreement with earlier publications3*-4! and the experi-
mental lattice constant of 4.09 A.42 For this relaxed surface,
we obtain a work function (®=V,,.—Ey) of 4.25 eV, which
is slightly below the measured value of around 4.4 eV.!>1843

By applying the embedding Green-function method, a
slightly larger work function of 4.58 eV is obtained. In order
to investigate the image potential states, we take the electro-
static image plane position given by Ishida and Liebsch** of
2.86 a.u. on the vacuum side of the surface relative to the
atomic position of the topmost layer. This choice is also in
good agreement with the image plane obtained from the cen-
ter of the screening charge, which we determine to be at
2.7 a.u. In our calculation, the embedding plane is positioned
at a distance of 16 a.u. measured from the position of the
surface atoms. We use the GGA DFT potential everywhere
except for the last 2 a.u. prior to the embedding plane, in
which we mix the image potential and the DFT potential.
Thus, only a small change in the potential is introduced.

Figure 2 shows the k-resolved local density of states

(LDOS) at EH:f. The first four image potential states (n
=1,...,4) are visible at —-0.613, -0.182, —0.087, and
—0.031 eV. In principle, these states lead to a delta peak in
the density of states, which is, however, artificially broad-
ened by adding a small imaginary part of 2.7 meV to the
energy. The dashed vertical lines indicate experimental re-
sults obtained by Schuppler et al.'> by two-photon photo-
emission, and the solid line highlights the position of the
vacuum level. The calculated image potential states have
slightly higher binding energies than in this experiment, a
discrepancy which can partly be assigned to the overestima-
tion of the work function and could be fixed by adjusting the
image plane and the potential mixing. With increasing order
of the image state, the height of the peaks decreases as can
be observed in Fig. 2. This is a direct result of the shift of the
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FIG. 2. (Color online) LDOS of the surface layer of a Ag(100)
surface at Iguzf. The energy is given relative to the vacuum level.
Below the vacuum level, four delta peaks indicate the image poten-
tial energies. Above the vacuum energy, a free-electron-like LDOS
is obtained. Experimental results from Schuppler er al. (Ref. 15) are
indicated by dashed lines.

weight into vacuum for these states. By investigating the
decay of the states into the Ag bulk, a perfect exponential
decay with «,_,=0.091 a.u.™!, «,,=0.088 au™!, «,_;
=0.086 a.u.”!, and K,=4=0.086 a.u.”! can be observed for the
n=1, 2, 3, and 4 image states, respectively. These values
correspond to values obtained from the complex band
structure®#¢ of the silver substrate shown in Fig. 3.

The parallel components of k are chosen to be at the T
point of the two-dimensional Brillouin zone. The black lines
represent the band structure of Bloch states with real k vec-
tors along a line in the bulk Brillouin zone which is projected
onto the same IFH point of the two-dimensional Brillouin zone.
The red lines represent states with k,=g,+ik, where ¢, is
equal to 0. The green lines belong to qz=i—:. These evanes-
cent states connect Bloch bands in a band gap by loops. We
find the band gap to be 4.7 eV in total. The band edge is
located at around 1.7 eV above the vacuum level. In this
case, the k vectors with the smallest imaginary values in the
band gap are given by the green line connecting the band
edges of the gap. Thus, the values of the exponential decay
of the image states are determined by the values of this green
line at the image state energies.
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FIG. 3. (Color online) Complex band structure of Ag. Black
lines represent the Bloch band between I" and X. Red lines belong
to complex bands with Re(k)=0 and green lines to complex bands
with Re(lg)zi—:. aq denotes the lattice constant of silver.
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FIG. 4. (Color online) Field states of Ag(100) at E”:l:. At
around 1.7 eV, a change in slope can be seen. At this point, the
upper band edge of the substrate is reached and the field states
become resonance states. The projected band of the silver substrate
is indicated by the shaded region.

By applying a positive electric field to the surface, the
image potential states turn into field states. The electric field
applied pushes the electron back into the Ag substrate and,
thus, it is expected to have a particularly strong effect on the
higher image states, which have a considerable weight in
vacuum. Even for small fields, the energy for the Rydberg
states n— o is no longer the vacuum energy.

In Fig. 4, we show the energies of the image and/or field
states as function of the electric field. The peak positions of
Fig. 2 can be found to be the data points at zero field
strength. We find that with increasing electric field, the en-
ergy of the field states indeed rises. The qualitative behavior
of the calculated field states is in accordance with experi-
mental results® and reproduces the E = &3 result found for an
infinite triangular potential well model.*” While most of Fig.
4 might have been deduced from a much simpler calculation,
a detail in this plot shows the advantage of our semi-infinite
ab initio calculation. At approximately 1.7 eV above the
vacuum level, the projected bulk band is reached and, hence,
the field states are no longer localized at the surface but
hybridize with states of the Ag substrate to form surface
resonance states. This leads to a change in their field depen-
dence, which manifests itself in the change in slope seen in
the shaded area of Fig. 4.

IV. IMAGE POTENTIAL STATES OF Fe(110)

To model the Fe(110) surface, we use an embedding vol-
ume comprised of the topmost four layers. As the surface
relaxations for this surface are small*®*-3! and test calcula-
tions showed no substantial difference of our results between
the relaxed surface and the one with atoms located at bulk
truncated positions, we use here the unrelaxed, simple bulk
terminated setup. A work function of 5.49 eV for the LDA>?
and 4.67 eV for the GGA is obtained for the unrelaxed em-
bedding calculation with the experimental lattice constant of
2.87 A.*2 The resulting work function is comparable to other
ab initio calculations.2**8:33-35 Measured values of the work
function of Fe(110) are reported to be 5.12 eV (Ref. 21) and
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FIG. 5. (Color online) Spin-resolved LDOS of Fe(110) at IZH
=T". Dashed lines indicate experimental values by Fischer er al.
(Ref. 21) of the spin averaged image state energies. They deter-
mined the upper limit for the magnetic splitting of the n=1 state to
80 meV (marked by A). All energies are given relative to the
vacuum energy marked by the black line.

5.05 eV, very much in between our values. In order to
estimate the image plane position, we calculate the center of
the screening charge and obtain an image plane position of
around 3.1 a.u. The n>2 states are insensitive to the position
of the image plane, and an image plane position of 3.8 a.u. is
used in the following because it leads to a good fit to the
experimental energy of the first image state. The DFT poten-
tial is mixed with the image potential starting at 7.2 a.u. from
the surface up to a distance of 8.38 a.u.

In Fig. 5, the spin-resolved LDOS is given at E”:f for the
unrelaxed setup in the GGA. The energies of the image states
are close to the measured energies by Fischer et al.,”! indi-
cated by dashed lines, and Himpsel.?> Different from the
Ag(100) calculation, the two spins are no longer degenerated
and an exchange splitting of the states can be observed. This
splitting is most pronounced for the n=1 state and decays
rapidly for the higher Rydberg states. For the first Rydberg
state (n=1), we obtain a spin splitting of 133 meV, which
is nearly twice as large as the splitting observed in
experiment’!7 or by theoretical approaches,’>** but within
the range given by Borstel and Thorner’ and close to
85+20 meV measured by Thomann et al.>® The calculated
splitting is nearly unaffected by variations of the image plane
position and applied mixing region. Furthermore, by using
different approximations for the exchange correlation poten-
tial, the magnitude of the splitting does not change signifi-
cantly.

Figure 6 shows the evolution of the exchange-split image
potential states with applied electric field. Most features seen
in the upper panel correspond to the general trend seen in
Fig. 4 for the Ag surface. The lower panel of Fig. 6 addition-
ally shows the exchange splitting, i.e., the difference of the
majority and minority curves of the upper panel. This plot
shows rather drastic changes of the exchange splitting with
respect to the applied field. For zero field, the splitting is
very small for all states except for the n=1 state. Indeed, it
was shown that the splitting is expected®* to decay with
1/n3, which can be roughly confirmed. This can be under-
stood from the fact that the higher Rydberg states have their
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FIG. 6. (Color online) In the upper panel, the field states of
Fe(110) at k=T are shown. The difference between the majority
state and the minority state is plotted in the lower panel. The slope
of this magnetic exchange splitting changes. These positions are
mapped onto the field state plot by the vertical lines, with colors
corresponding to the number of the Rydberg state. It can be seen
that they all cross the field state curve at the same energy of around
2.4 eV. This is indicated by the black horizontal line. The projected
band of the majority spin starts at around 2.4 eV. It explains the
features seen in the magnetic exchange splitting plot.

main weight in vacuum, where the potential is spin degener-
ate and only the lowest states have a significant overlap with
the bulk potential. However, this picture changes for larger
field. The states are pushed toward the surface and the ex-
change splitting strongly increases. Two further interesting
features are remarkable in Fig. 6. At mark A the magnetic
exchange splitting of the n=2 state becomes larger than the
splitting of the n=1 state. Such an interesting crossover
seems to be also present in experiment®® and might be worth
investigating with a refined model as the exact energy dis-
persion of the n=1 state might be sensitive to our model
parameters. Furthermore, the curves for the n>1 states ex-
hibit a change in slope. The positions of the changes are
marked (vertical lines) for the n=2, 3, and 4 states and pro-
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jected into the plot of the Fe(110) field states. They all ap-
pear at the same energy (horizontal line) of ~2.4 eV. At this
energy, the majority band gap of the Fe(110) substrate ends.
Hence, it can be concluded that the change in slope is a
consequence of the field state approaching the continuum of
Fe majority states and turning into a resonance. Before that,
they are deflected, giving rise to bigger spin splitting. The
minority spin states only interact with the corresponding
states at ~3.9 eV above the vacuum energy.

V. CONCLUSIONS

In this paper, we investigated image states and field states
using the truly semi-infinite surface provided by the Green-
function embedding method. Our DFT calculations confirm
the general trend found in simple one-dimensional models,
but additionally indicate that these states also show features
of the electronic structure of the surface and the substrate. In
particular, the exchange splitting of the image and field states
reflects the spin polarization of the surface potential. The
transition from image and field states from being localized
between the vacuum potential and a gap in the band structure
of the substrate into a resonance state hybridizing with sub-
strate states at energies not in a projected band gap can also
lead to experimentally accessible changes in the energy ver-
sus field dispersion. These effects might be the origin of the
experimentally observed field dependence of the exchange
splitting in scanning tunneling spectroscopy. With this we
would like to encourage further experimental work resolving
the exchange splitting of image potential states and their field
dependence.
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