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Due to strain and confinement effects, the two-dimensional electron gas in AlP has a valley degeneracy gv=1
for quantum well width L�Lc=45.7 Å and a valley degeneracy of gv=2 for quantum well width L�Lc. We
present theoretical results for transport properties of the electron gas for the two cases. We calculate the
mobility of the two-dimensional electron gas at zero temperature for interface-roughness scattering and for
impurity scattering. We discuss the transport scattering time, the single-particle relaxation time, and the mag-
netoresistance in a parallel magnetic field. Our calculations are important �i� for the design of AlP quantum
well structures, �ii� to get insight into relevant microscopic parameters of different scattering mechanisms, and
�iii� to obtain information about the electronic properties of the electron gas at low density where many-body
effects and localization effects are important.
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I. INTRODUCTION

GaP/AlP/GaP quantum well �QW� structures and mul-
tiple quantum well structures, where the electron gas is lo-
cated in the AlP, have been grown and studied recently at
low temperature via cyclotron resonance, quantum Hall ef-
fect, Shubnikov–de Haas oscillations1 �SdH� and intersub-
band spectroscopy.2 The system is similar to the
AlxGa1−xAs/AlAs/AlxGa1−xAs system, which was studied
for the past years; for a review, see Ref. 3. In this paper, we
present theoretical results for transport properties of the two-
dimensional electron gas, which is present in the structure
GaP/AlP/GaP. We discuss two scattering mechanisms,
interface-roughness scattering �IRS� and charged impurities
scattering �CIS�, and three different scattering times, for the
conductivity and for transport in a weak perpendicular mag-
netic field and in a strong parallel magnetic field.

Consider the surface of AlP in the �001� direction. The
energy minimum is at the X point of the Brillouin zone;
therefore, there exists a threefold level degeneracy.1,4 Due to
biaxial strain �st� present in the AlP layer, there exists a split-
ting of the energy minimum to a twofold level and a onefold
level. The twofold level is lower in energy than the onefold
level. This strain induced energy splitting, �Est=40 meV,
gives rise to two bands, one with gv=2 �gv is the valley
degeneracy� and one with gv=1.1 The two bands are charac-
terized by different effective masses, which are the mass in
the z direction mc �the confinement mass� and the mass m* in
the xy direction �transport mass�. In the following, we sup-
pose that one has introduced electrons in the AlP layer by
doping with donors or via a gate. In an AlP layer of finite
width, one has to add the confinement effects for the electron
gas. We suppose a QW of width L and infinite confinement.
The confinement effects give rise to energy levels En

QW

=�2�2n2 /2mcL
2, with n�N+ and different masses in the z

direction. These QW energies are the origin of the subband
structure associated with each of the two bands. It shall be
argued later in detail that the electron gas in the lowest sub-
band has valley degeneracy gv=1 for wells of width L�Lc
and valley degeneracy gv=2 for wells of width L�Lc.

1

In this paper, we present for zero temperature some cal-
culations for the mobility in such structures. We consider a
simple model of quantum wells with infinite confinement.6,7

This model was formulated some time ago in order to dis-
cuss transport properties of the two-dimensional electron gas
in Si/Si1−xGex QWs. We think that our calculations will help
sample growers to design samples with interesting physical
properties. We present results for the mobility, results con-
cerning the Dingle temperature �the single-particle relaxation
time� and the magnetoresistance in a parallel magnetic field.
Such measurements can be used to get information on the
real doping profile of the sample and microscopic parameters
of the disorder. In the last part of the paper, we discuss the
possibility of a metal-insulator transition �MIT� which might
happen in QW at low density.

The paper is organized as follows. In Sec. II, we describe
the model for the QW and the theory which we shall use for
our calculations. In Sec. III, we present results for IRS. Our
results for CIS are presented in Sec. IV. In Sec. V, we de-
scribe the MIT in quantum wells. We discuss our results in
Sec. VI and conclude in Sec. VII.

II. MODEL AND THEORY

A. Model and electronic structure

We consider a two-dimensional electron gas with para-
bolic dispersion determined by the effective mass m*. We
assume that the electron gas is in the xy plane with infinite
confinement for z�0 and z�L. For 0�z�L, the electron
gas in the lowest subband is described by the wave function
��0�z�L�=�2/Lsin��z /L�. In this QW model, form fac-
tors for IRS, CIS, and the electron-electron interaction were
calculated in analytical form before7 and are not given ex-
plicitly in this paper. For the background dielectric constant
of AlP, we use 	L=9.8. The QW is shown in a schematic
view in the inset of Fig. 1.

The longitudinal mass ml=0.9me and the transverse mass
mt=0.3me in AlP have been determined in experiment.1,2,5 me
is the free electron mass. This means that for �001� grown

PHYSICAL REVIEW B 76, 165309 �2007�

1098-0121/2007/76�16�/165309�8� ©2007 The American Physical Society165309-1

http://dx.doi.org/10.1103/PhysRevB.76.165309


material and QWs of width L�Lc, the transport mass m* is
m*=0.3me, while the mass in the z direction is mc=0.9me.

5

Note that the transport mass connects the mobility 
 with the
transport scattering time �t: 
=e�t /m*. For QWs of width
L�Lc, one gets m*=0.52me= �mlmt�1/2 and mc=0.3me.

1 With
these parameters, the critical length is determined by Lc

=���ml−mt� /2mlmt���2�2 /�Est�=45.7 Å. Presently grown
QWs have widths in the range 20 Å�L�150 Å with elec-
tron density N�1�1013 cm−2, which implies that QWs with
L�Lc and L�Lc can be studied experimentally.

In the following, we study the cases L�Lc and L�Lc.
For L�Lc, we use gv=1, mc=0.9me, and m*=0.3me.

5 The
effective Bohr radius a* is defined with the transport mass
and the background dielectric constant and is given by a*

=17.3 Å. For L�Lc, we use gv=2, mc=0.3me, and m*

=0.52me.
1 The effective Bohr radius in this case is smaller

because of the larger mass and is given by a*=10.0 Å.
We introduce the Wigner-Seitz parameter rs via rs

=1/��Na*2, and this parameter gives information about the
importance of many-body effects. rs versus electron density
is shown in Fig. 1 for QWs with L�Lc and L�Lc. For a
given electron density, rs is larger for L�Lc due to the
smaller effective Bohr radius. In the simple picture of one
occupied subband and taking into account interaction effects,
one expects that many-body effects become important for
rs�1, see Fig. 1 for the corresponding electron density.

We study an electron gas in a quantum well with infinite
confinement where only one band and only one subband are
occupied. For L�Lc, the �second� band with gv=2 is higher
in energy than the �first� band with gv=1. If the Fermi energy
	F of the band with gv=1 exceeds the difference in energy
between the two bands, we begin to populate the second
band. This criterion gives a maximal density N1B

max�L�Lc� in
order to have only one band �1B� occupied. For L�Lc, the
�first� band with gv=1 is higher in energy than the �second�
band with gv=2 and the electron density should be smaller
than the maximal density N1B

max�L�Lc� in order to have only
one band occupied. A simple calculation for infinite quantum
wells gives

N1B
max�L � Lc� = 1.05 � 1016 cm−2 Å2/L2 − 5.02 � 1012 cm−2

�1a�

for L�Lc and

N1B
max�L � Lc� = 1.74 � 1013 cm−2 − 3.63 � 1016 cm−2 Å2/L2

�1b�

for L�Lc. Note that N1B
max�L→�=1.74�1013 cm−2, which

corresponds to �Est=40 meV=	F.
In order to have only one subband �1SB� occupied, the

Fermi energy must be smaller than the intersubband energy
�ise� distance of the QW, given by �EQW

ise =3�2�2 /2mcL
2. For

the band with gv=1 for L�Lc, this corresponds to a maximal
electron density

N1SB
max�gv = 1� = 1.57 � 1016 cm−2 Å2/L2. �2a�

For the band with gv=2 for L�Lc, we find

N1SB
max�gv = 2� = 1.63 � 1017 cm−2 Å2/L2. �2b�

The density range where only 1B and only 1SB are occupied
is the region

0 � N � min�N1B
max,N1SB

max� . �3�

In Fig. 2, we show N1B
max and N1SB

max versus quantum well
width. Note that the range for one occupied band and one
occupied subband is quite large �Nmax�1�1013 cm−2� if one
is not near Lc. For L=Lc, one has Nmax=0, and one has to
consider a system where the two bands with gv=1 and gv
=2 are populated simultaneously and have the same Fermi
energy.

B. Disorder, screening, and transport theory

We consider in this paper interface-roughness and ran-
domly distributed charged impurities as source of disorder.
Detailed results for the random potential due to different
kinds of disorder can be found in Ref. 7. We present results
for the mobility for zero temperature, determined by the
transport scattering time �t, and the single-particle relaxation
time �s, which can be measured by SdH oscillations in a

FIG. 1. Wigner-Seitz parameter rs versus electron density N for
L�Lc �with Bohr radius a*=17.3 Å� and L�Lc �a*=10.0 Å�. In
the inset, we show a schematic representation of a quantum well of
width L and position zi of the impurity layer.
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weak perpendicular magnetic field.4 For a discussion of the
single-particle relaxation time �s, see Refs. 8 and 9. For the
transport scattering time, backscattering is most important
while small angle scattering is less important. For the single-
particle relaxation time, all scattering events contribute with
the same weight.

The interaction effects of the electron gas and the screen-
ing are treated within the random-phase approximation
�RPA� with a finite local-field correction �LFC�.4,7,9 The LFC
G�q� describes many-body effects �exchange and correla-
tion� beyond the mean-field approximation �the RPA� and
becomes important for low electron density.10 We use the
Hubbard approximation GH�q�=q / �gsgv

�kF
2 +q2� in our cal-

culation for the screening function. gs is the spin degeneracy.
In the Hubbard approximation, correlation effects are ne-
glected. However, in using GH�q�, we show that it is impor-
tant to take into account the physics described by the LFC.
For the unpolarized electron gas, we apply gs=2, and for the
fully polarized electron gas, we use gs=1.

By applying a parallel magnetic field, the electron gas can
be spin polarized. The density of states and the screening
properties are modified in a parallel magnetic field, and this
gives rise to a magnetoresistance.11 The parallel magnetic
field induces a Zeeman splitting of spin-up and spin-down
electrons, and for B�Bc=2hN / �egvg*m* /me�, the system is
completely spin polarized. g* is the Lande g factor and h the
Planck constant. Orbital effects are neglected in our calcula-
tion; therefore, we have, in our approach, ��B�Bc�=��Bc�.11

In this paper, we only discuss the resistance ratio ��B
=Bc� /��B=0�. A partially polarized two-dimensional elec-
tron gas in AlP for 0�B�Bc shall be discussed elsewhere.

In some figures, we present ratios, for instance, �t /�s and
��B=Bc� /��B=0�. In such ratios, the parameter � cancels
out for IRS, and for CIS, the impurity Ni concentration can-
cels out. However, this is only the case if one scattering
mechanism is present. In experiment, sometimes two scatter-
ing mechanisms are important and then one should be more
careful in analyzing the data.

III. RESULTS FOR INTERFACE-ROUGHNESS
SCATTERING

It was predicted from theory, see Fig. 3 of Ref. 6, that IRS
is the dominant scattering mechanism in thin quantum wells
and that the mobility increases as 
�L6. This law was con-
firmed later in experiments on narrow GaAs �Refs. 12 and
13� and InAs �Ref. 14� quantum wells. For more references
on experimental results concerning IRS in quantum wells,
see Ref. 14. We neglect in this paper the penetration effects
of the wave function into the barrier.

The Fourier transform of the random potential for IRS is
proportional to m*2�2�2 / �mc

2L6� and consequently one ob-
tains 
�L6. � represents the average height of the roughness
in the z direction and � the correlation length parameter of
the roughness in the xy direction.4 Note that the mobility is
given by the relation 
�mc

2L6 exp�−kF
2�2� / �m*2�2�2�. kF is

the Fermi wave number. IRS in quantum wells with width
L�Lc is reduced due to mass effects by a factor �m* /mc�2

��0.3/0.9�2=1/9, while for L�Lc, it is enhanced due to
mass effects by a factor �m* /mc�2��0.52/0.3�2�3.6 There-
fore, we believe that IRS may also be important in quantum
wells with Lc�L�2Lc. In thin QW, however, IRS is cer-
tainly very important. Some more results on IRS for L�Lc
will be published elsewhere.15

A representative example for the case of IRS is shown in
Fig. 3. As parameters of the interface roughness, we used
�=3 Å and �=50 Å. For N�N* and with increasing elec-
tron density, the mobility first decreases, reaches a minimum
near N*�gv / �2��2�=gv�6.37�1011 cm−2�, and increases
again for N�N*.7 For �=50 Å, the results shown in
Fig. 3 can be used by experimentalists to obtain the
mobility for different QW widths by applying 
�L ,N�
�
1�L1 ,N��L1 /L�6 with L1=30 Å for L�Lc and 
�L ,N�
�
2�L2 ,N��L2 /L�6 with L2=60 Å for L�Lc.

The single-particle relaxation time �s can be measured
because �s is related to the Dingle temperature TD via kBTD
=� /2��s. The ratio of the transport scattering time and the
single-particle relaxation time, �t /�s, versus electron density
is shown in Fig. 4 for L=60 Å. Results including the LFC
are shown as the solid line and without the LFC as the
dashed-dotted line. Only small effects due to the LFC are
seen. We mention that the results for the ratio �t /�s for dif-
ferent well widths are nearly independent of the QW width.
The reason is that all the effects of form factors are nearly
canceled in the ratio. Note the larger ratio at higher electron
density due to reduced backscattering in the transport scat-
tering time �t: �t /�s= �kF��2 /3.9 The ratio allows us to deter-
mine kF�, and for a given density, the parameter � can be
determined. The ratio �t /�s=2/3 for small electron density
�kF��1� is characteristic for IRS.9

We now discuss the prediction for the resistance in a par-
allel magnetic field. The resistance ratio ��Bc� /��B=0� ver-
sus electron density for L=60 Å�Lc for IRS is shown in
Fig. 5. The ratio ��Bc� /��B=0� is large when the density is
low. The LFC is important in the low density limit and can
substantially increase the ratio ��Bc� /��B=0� compared to
the case where the LFC is neglected. Without LFC, the lim-
iting behavior for small density is ��Bc� /��B=0�=8.11 If one
trusts in the concept and the physics represented by the LFC,

FIG. 3. Mobility 
 versus electron density N for a quantum well
of width L=30 Å�Lc and L=60 Å�Lc for IRS with �=3 Å and
�=50 Å. The LFC in the Hubbard approximation has been taken
into account.
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one can use measurements of the magnetoresistance to ob-
tain information about the LFC.

IV. RESULTS FOR CHARGED IMPURITY SCATTERING

Let us first note that CIS is characterized by the impurity
density Ni and the distance zi of the impurity layer from the
QW edge at z=0, see the inset of Fig. 1. For zi=0, the im-
purities are at the interface of the QW, and for zi=L /2, the
impurities are at the center of the QW �residual impurities�.
For zi�0, the impurities are outside the QW �remote dop-
ing�. In order to assure neutrality, we have assumed that Ni
=N. However, we want to stress that 
�1/Ni, and the fig-
ures can be used to derive the mobility as function of elec-
tron density for fixed Ni. For instance, for given 
exp and
given electron density N and QW width, one can calculate
Ni

exp=Ni
 /
exp, with Ni=N and 
 from our figures, assum-
ing that a single scattering mechanism is present. This is
important for cases where the electron density is varied by a
gate.

The random potential which we use in this section is for
charged impurities distributed randomly in the xy plane. The
form factor for CIS was given in Ref. 7 in analytical form as
function of q, L, and zi. The expression for the mobility can
be found in Ref. 9. The results given in this section are in
lowest order of the impurity concentration.

A. Mobility and conductivity measurements

A representative example is shown in Fig. 6 where the
mobility versus density for two different QW widths, L
=100 Å and L=30 Å, is shown for impurities outside the
well �zi=−L /2� and at the interface of the QW �zi=0�. The
density dependence of the mobility for Ni=N is not dramatic;
however, the width plays an important role. For larger width,
the distance of the impurity layer to the sin2��z /L� profile of
the electron gas in the z direction is larger; therefore, the
mobility increases. For impurities outside the QW, the mo-
bility is much higher than for impurities in the QW; this is
the well-known remote doping effect.

Our results for the mobility versus QW width are shown
in Fig. 7 for N=Ni=1�1012 cm−2 and in Fig. 8 for N=Ni
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FIG. 4. Ratio �t /�s versus electron density N for a quantum well
of width L=60 Å�Lc for IRS with �=3 Å and �=50 Å. The solid
line represents the calculation with the LFC in the Hubbard
approximation taken into account, and the dashed-dotted line is
without the LFC. The dotted lines represent analytical results from
Ref. 9.

FIG. 5. Resistance ratio ��Bc� /��B=0� versus electron density N
for a quantum well of width L=60 Å�Lc for IRS with �=3 Å and
�=50 Å. The solid line represents the calculation where the LFC in
the Hubbard approximation is taken into account and the dashed-
dotted line is without LFC.
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=1�1013 cm−2. For zi�0, the mobility increases with in-
creasing well width. The reason for this was already
discussed—the distance between the electron gas and the im-
purity layer increases with increasing well width. For zi
=L /2, we see a very weak QW width dependence of the
mobility. Most impressive is the weak change at L=Lc for
larger electron density, see Fig. 8. This comes from the fact
that the larger screening in the QW for L�Lc compensates
the larger effective mass compared to the QW with L�Lc.
For samples where one can change the electron density with
a gate, the impurity density is fixed and the mobility values
are higher than shown in Fig. 8 where we have used N=Ni
=1�1013 cm−2.

B. Single-particle relaxation time: Shubnikov–de Haas
oscillations

We repeat that Ni is canceled out in the ratio �t /�s. How-
ever, in order to obtain the ratio, one needs the two numbers
for �t and �s; thus, two measurements are necessary. The
absolute value of �t allows us to get an idea about the scat-
tering mechanisms present in the sample.

The ratio �t /�s versus electron density is shown in Fig. 9
for impurities at the center of the QW at zi=L /2 �residual
impurities�. With increasing electron density, the ratio in-
creases smoothly. For impurities located in the center of the
QW, the enhancement with increasing density is not very
strong; see the linear scale for �t /�s in Fig. 9. With increasing
electron density, the ratio increases smoothly from 1 to about
2 for N=1�1013 cm−2. A finite LFC decreases the ratio.

Results for �t /�s versus electron density are shown in Fig.
10 for impurities outside the QW �remote doping� at zi
=−L /2. In fact, for an ideal electron gas with L=0, one finds
the analytical result �t /�s=4kF

2 �zi�2.9 In the more general case
of a QW with finite width, one should add to zi the distance
L /2 for the QW. Therefore, for high density, on finds the
analytical result �t /�s=4kF

2�L /2+ �zi��2, which becomes �t /�s

=4kF
2L2 if zi=−L /2. This result is also shown in Fig. 10 as

the dotted line. We suggest that measurements of �t and �s at
higher density allow to determine zi.

C. Transport properties of the spin-polarized electron gas
for BÐBc

The ratio ��B=Bc� /��B=0� versus electron density is
shown in Fig. 11 for impurities at the center of the QW �zi

=L /2�. With decreasing density, the ratio increases strongly.
Without LFC, the ratio varies between 0.5���B=Bc� /��B
=0��4, the dashed lines.11 Including the LFC strongly in-
creases the ratio, especially for L�Lc. Again, we see a very
strong effect of a finite LFC at low density. For L�Lc, the
ratio is only weakly L dependent; compare in Fig. 11 the
results for L=60 Å and L=100 Å.

In Fig. 12, we show ��B=Bc� /��B=0� versus quantum
well width L for different electron densities for zi=L /2 �re-
sidual impurities�. The differences at L=Lc are considerable.
Note the large enhancement of ��B=Bc� /��B=0� for low
density. We note a weak quantum well width dependence for
L�Lc and L�Lc.

In Fig. 13, we show ��B=Bc� /��B=0� versus well width
for different electron densities for impurities outside the well
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FIG. 8. Mobility 
 versus quantum well width L for CIS for
N=Ni=1�1013 cm−2 and three different values of the position of
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FIG. 9. Ratio �t /�s versus electron density N for CIS for impu-
rities at the center of the QW zi=L /2 and for quantum wells of
different widths. The solid lines represent the calculation with the
LFC in the Hubbard approximation and the dashed-dotted lines
without LFC.

FIG. 10. Ratio �t /�s versus electron density N for CIS for im-
purities outside the QW with zi=−L /2 and for quantum wells of
different widths. The solid lines represent the calculation with the
LFC in the Hubbard approximation and the dashed-dotted lines
without LFC. The dotted lines represent the analytical result
�2kFL�2 of Ref. 9; see the discussion in text.
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zi=−L /2 �remote doping�. While one does not see a dramatic
difference between Fig. 12, where impurities are at the center
of the QW, and Fig. 13, where impurities are outside the
well, the quantum well width dependence is stronger in Fig.
13 for impurities outside the well than for impurities inside
the well. In addition, ��B=0� is quite different in the two
cases.

V. RESULTS FOR THE METAL-INSULATOR TRANSITION

Using a mode-coupling theory, a MIT was predicted6 in
quantum wells. This MIT corresponds to a phase transition
where interaction effects become, for low electron density,
inefficient to screen the random potential created by the dis-
order. Weak-localization effects are neglected in this theory.
In the mode-coupling theory, multiple-scattering events to-
gether with screening effects are taken into account, and this
leads to a MIT with a metallic phase at high electron density
and an insulating phase at low electron density.16 The critical
electron density Nc for the MIT in our theory is the density

where strong localization effects are expected.
For IRS and CIS, an insulating phase is expected for N

�Nc and a conducting phase for N�Nc. The critical electron
density of the quantum well for IRS depends on the width of
the QW and decreases with increasing quantum well width,
because IRS is less important for larger QW width. Numeri-
cal results for Nc versus QW width L for AlP are shown in
Fig. 14. For the solid lines, only IRS was taken into account.
We conclude that for QWs with L�1.5Lc, the IRS is not
anymore important. Due to the mass ratio, the IRS for given
QW width is more important for L�Lc than for L�Lc. This
is clearly seen in Fig. 14; compare the two solid lines, both
calculated for IRS.

Results for Nc for impurities outside the QW with zi
=−L /2 and Ni=N �remote doping�, together with IRS, are
also shown in Fig. 14. For L�Lc, remote doping increases
Nc appreciably, compared to IRS alone. For impurities at zi
=L /2 and Ni=1�1011 cm−2 �residual impurities� and IRS,
the phase diagram is also shown in Fig. 14. For L�Lc, one
finds that Nc	2�1011 cm−2 is nearly independent of the

FIG. 11. Resistance ratio ��Bc� /��B=0� versus electron density
N for CIS for zi=L /2 and quantum wells of different widths L
=100 Å�Lc, L=60 Å�Lc, and L=30 Å�Lc. The solid lines rep-
resent the calculation where the LFC in the Hubbard approximation
is taken into account and the dashed-dotted lines represent the cal-
culation without LFC.

FIG. 12. Resistance ratio ��Bc� /��B=0� versus quantum well
width L for CIS for zi=L /2 �impurities in the well� and different
densities. The LFC in the Hubbard approximation is taken into
account.

FIG. 13. Resistance ratio ��Bc� /��B=0� versus quantum well
width L for CIS for zi=−L /2 �remote doping� and different densi-
ties. The LFC in the Hubbard approximation is taken into account.

FIG. 14. Critical electron density Nc for a conducting phase
�N�Nc� and an insulating phase �N�Nc� versus quantum well
width L. For the solid lines, only IRS with �=3 Å and �=50 Å is
taken into account. For the dashed lines, CIS with zi=−L /2 and
Ni=N �remote doping� and IRS with �=3 Å and �=50 Å are used.
For the dotted lines, CIS with zi=L /2 and Ni=1�1011 cm−2 �re-
sidual impurities� and IRS with �=3 Å and �=50 Å are taken into
account.
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QW width. Of course, if one reduces Ni, one also reduces Nc.
We conclude that for L�Lc, residual impurities in the QW
determine the critical density Nc, which is relatively indepen-
dent of the QW width. As a rough estimate for residual im-
purities and L�Lc, we obtain from our numerical results
Nc�2Ni, see the dotted line in Fig. 14 for L�Lc.

From Fig. 14, we predict that quantum wells of width L
grown with N�Nc will be insulating. Increasing the electron
density, for instance, by light, doping, or a gate, could bring
the two-dimensional electron gas back into the metallic re-
gime. However, for L�Lc, the increase in electron density
must be substantial. For L�Lc, the electron density should
fulfill the relation N�2Ni for being in the metallic regime.
We suggest more experiments with QWs with small width in
order to better understand the insulating phase apparently
present at high density due to the strong IRS. The prediction
of this phase transition should be taken seriously; the predic-
tion of the L6 law for the mobility was also verified in ex-
periment. From our theoretical results, we conclude that with
IRS, one should very rapidly approach the regime of strong
disorder by reducing the QW width.

Near the MIT, multiple-scattering effects have to be taken
into account for the mobility. A generalized expression for
the mobility is described17 by 
MIT�N�Nc�=
�1−Nc /N�
and 
MIT�N�Nc�=0. 
 represents the mobility calculated in
lowest order of the random potential, as shown in Figs. 3 and
6–8, and Nc is the critical density shown in Fig. 14. Note that

MIT�N�Nc��
.

VI. DISCUSSION

Measurements of the magnetoresistance and of SdH oscil-
lations are complementary. The determination of �t /�s is
most interesting for large electron density where the concept
of a Fermi liquid is well defined and where SdH oscillations
exist for weak disorder. Nevertheless, one can get informa-
tion about the disorder parameters � and zi. The ratio ��B
=Bc� /��B=0� is more interesting for low electron density,
where many-body effects are important and where one needs
to test the concept of a Fermi liquid. In principle, it is pos-
sible to obtain information about the many-body effects via
the LFC.

Measurements of SdH oscillations have recently been
used to show that the effective mass in silicon �100� is di-
verging at low electron density.18 The origin of this diver-
gence is not yet known. Together with the effective mass, the
Dingle temperature is determined in SdH measurements.
This example shows that measurements of SdH oscillations
allow us to discover unexpected physical phenomena. More-
over, the determination of �t /�s can be used to determine
microscopic parameters of disorder. This is important for
sample growers in order to compare the real doping profile
with the intended doping profile in the case of charged im-
purities. In the case of IRS, the microscopic parameter � can
be determined for thin QWs with L�Lc. A determination of
� with �t /�s was recently performed19 for the two-
dimensional electron gas in AlxGa1−xN/GaN heterostructures
and a value �=100 Å was estimated from experimental re-
sults.

The determination of � and � for QWs with L�Lc,
where IRS is dominant, would allow us to estimate if inter-
face roughness scattering is also important for QWs with L
�Lc, supposing that the roughness parameters are indepen-
dent of the QW width. The single-particle relaxation time,
together with the transport scattering time, is the essential
quantity in order to study the microscopic parameters of dis-
order in the case of a Fermi liquid at high density, where the
Wigner-Seitz parameter is not too large and where kF��1
and kF�L /2+ �zi���1.

The application of a parallel magnetic field allows us to
spin polarize the electron gas. This gives rise to density of
states modifications and reduced screening.11 A Fermi-liquid
concept was applied to calculate the magnetoresistance for
weak disorder. Also, for strong disorder, near the MIT, some
predictions have been made, and the importance of strong
many-body effects in the low density limit has been dis-
cussed within the concept of a local-field correction.17 There-
fore, we argue that agreement with predictions made in Refs.
11 and 17 would imply the confirmation of the Fermi-liquid
concept together with the existence of a MIT. In addition, we
argue that the local-field correction in the strongly correlated
regime can be estimated with ��B=Bc� /��B=0� measure-
ments. The low density behavior can be studied with low
magnetic fields. We believe that such measurements can be
made in many laboratories if clean samples are available,
where the metal-insulator occurs at low electron density.
Otherwise, one could study the behavior of the MIT with a
parallel magnetic field. We mention that after about 25 years
of discussion, the existence of a MIT in two-dimensional
electron systems is quite well established now.20,21

Finally, we give the expressions of the critical magnetic
field for complete spin polarization. For L�Lc, the Lande g
factor g* was determined in experiment and found to be
g*�L�Lc�=2.6.1 It follows that

Bc�L � Lc�/T = 30.6�N/1012 cm−2� . �4a�

For L�Lc, the Lande g factor is not yet known. A first
measurement22 of the magnetoresistance of a sample with
L=40 Å and N�1�1012 cm−2 in a parallel magnetic field
suggests that g*�L�Lc��6.5. Therefore, we expect that

Bc�L � Lc�/T = 42.4�N/1012 cm−2� . �4b�

At low electron density, the critical fields are quite low and
experiments should be easily feasible. We suggest to do
transport measurements with AlP quantum wells in a parallel
magnetic field in order to study many-body effects.

AlP samples, where one can change the electron density
by a gate, would be very interesting, and comparison with
our theoretical prediction would be simplified due to the
fixed impurity density in such samples. Samples where one
can change the electron density with light are also useful, but
there one needs assumptions on how the impurity concentra-
tion chances with light.

Finally, we want to stress that the large effective electron
mass m* in AlP allows us to study strongly correlated elec-
tron systems with “high” electron densities in the range
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1011 cm−2�N�1012 cm−2, see Fig. 1. This will help us bet-
ter understand many-body effects in the two-dimensional
disordered Coulomb system.

VII. CONCLUSION

For the two-dimensional electron gas realized in AlP, we
presented theoretical results for the transport time, the Dingle
temperature, and the resistivity in a parallel magnetic field.
We conclude that AlP quantum wells represent a very inter-

esting system to study interface-roughness scattering, many-
body effects, and localization effects in thin quantum wells
when L�Lc. This could be used to get information about the
roughness parameters � and � of the AlP surface.

AlP quantum wells with L�Lc and L�Lc should be stud-
ied with a parallel magnetic field in order to get information
about many-body effects in the density range 5�1010 cm−2

�N�5�1012 cm−2. Measurements of the transport scatter-
ing time and the single-particle relaxation time allow us to
determine microscopic parameters of disorder and the real
doping profile in the sample.

*Author to whom correspondence should be addressed.
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