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We have developed a theoretical method to study the scattering processes of an incident electron through an
N-electron quantum dot �QD� embedded in a two-dimensional �2D� semiconductor. The generalized
Lippmann-Schwinger equations including the electron-electron interaction in this system are solved for the
continuum electron by using the method of continued fractions �MCF� combined with a 2D partial wave
expansion technique. The method is applied to a one-electron QD case. Scattering cross sections are obtained
for both the singlet and triplet couplings between the incident electron and the QD electron during the
scattering. The total elastic scattering cross sections as well as the spin-flip scattering cross sections resulting
from the exchange potential are presented. Furthermore, inelastic scattering processes are also studied using a
multichannel formalism of the MCF.
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I. INTRODUCTION

Electron scattering and transport through quantum dots
�QDs� in a semiconductor nanostructure1–6 have been inten-
sively studied recently. The spin-dependent transport proper-
ties are of particular interest for its possible applications,
e.g., the QD spin valves,4 the quantum logic gates using
coupled QDs, as well as the spin-dependent transport in
single-electron devices,7 etc. In such systems, the electron-
electron exchange potential and the electron spin states have
been utilized and manipulated.8–11 A thorough quantitative
understanding of spin-dependent properties due to electron-
electron interaction is therefore important for a successful
construction of these devices. This subject has been investi-
gated in different issues, such as the utilization of the
electron-electron scattering in determining the electron en-
tanglement dynamics,12 the study of spin-flip scattering in
double QDs,13 and the scattering through a region of nonuni-
form spin-orbit coupling which can form a spin-polarized
beam.14 Theoretically, the transport through QDs has been
studied by different approaches such as transfer matrix, non-
equilibrium Green’s functions, random matrix theory, as well
as those methods built on the Lippmann-Schwinger �LS�
equation.

In this work, we develop a theoretical method to study
electron scattering through a QD of N electrons embedded in
a two-dimensional �2D� semiconductor system. We construct
the scattering equations including an electron-electron inter-
action to represent the process of a 2D free electron scattered
by the QD. The generalized multichannel Lippmann-
Schwinger equations15,16 are solved for this system by using
the method of continued fractions �MCF�. The MCF is an
iterative method to solve the integrodifferential LS equa-
tions, initially developed for three-dimensional electron-
atom �molecule� scattering in atomic physics.17 We show that
this method, combined with the partial wave expansion tech-
nique, is of a rapid convergency for the present problem in a
2D semiconductor system and is therefore efficient in obtain-

ing the scattering cross sections. As an example, we apply
this method to a one-electron QD case and obtain scattering
cross sections resulting from both the singlet- and triplet-
coupled continuum states of two electrons �incident and QD
electrons� during the collision. The results show that the scat-
tering processes can be very different for singlet and triplet
spin states, which mainly originate from the different ex-
change interactions. From the difference of the scattering
amplitudes resulting from the singlet and triplet couplings,
we determine the spin-flip scattering cross sections which
exhibit a maximum as a function of scattering angle and the
incident electron energy. In a multichannel scattering, we
study the inelastic scattering process in which the incident
electron is scattered by a lower energy state of the QD and
leaves behind the QD in an excited state. As expected, such
an inelastic scattering cross section is found to be much
smaller than the elastic one.

This paper is organized as follows. In Sec. II, we present
the Hamiltonian of the system. In Sec. III, we describe our
general theoretical approach, and the one-electron QD case is
given as an example. In Sec. IV, we show our numerical
results for the scattering through a one-electron QD within
both the one-channel and the multichannel models. The con-
clusion is presented in Sec. V. Moreover, the method of con-
tinued fractions is briefly described in Appendix A. The 2D
partial wave expansions used in the numerical solution of the
LS equations are presented in Appendix B.

II. HAMILTONIAN OF THE SYSTEM

The system under investigation consists of an incident 2D
free electron and a quantum dot of N electrons embedded in
a 2D system. The incident electron is scattered by both the
QD potential and by the confined electrons inside the QD.
The Schrödinger equation of the system is given by

�H − Ei��i��;rN+1,�N+1� = 0, �1�

where � represents collectively the spatial and spin coordi-
nates of the N electrons localized in the QD and rN+1
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= �xN+1 ,yN+1� and �N+1 denote the spatial and spin coordi-
nates of the incident electron. The total energy of the system
is Ei, where the subscript i represents a set of quantum num-
bers required to specify uniquely the initial quantum state of
the system. Explicitly, the total Hamiltonian of the system
can be written as

H = H0�rN+1� + HQD��� + Vint�r1,r2, . . . ,rN,rN+1� , �2�

where H0�rN+1�=−�2�N+1
2 /2m*+VQD�rN+1�, HQD��� is the

Hamiltonian of the QD of N electrons, and Vint is the inter-
action potential between the incident electron at rN+1 and the
N electrons in the QD,

Vint�r1,r2, . . . ,rN,rN+1� =
e2

�0
*�

i=1

N
1

�rN+1 − ri�
, �3�

where �0
* is the dielectric constant of the semiconductor ma-

terial and m* is the electron effective mass. The Hamiltonian
for an unperturbed QD is given by

HQD��� = �
i=1

N �−
�2

2m*�i
2 + VQD�ri�� +

e2

�0
*�

i�j

N
1

�ri − r j�
, �4�

where the first term in the right hand side of Eq. �4� describes
N independent electrons in the QD of the confinement poten-
tial VQD�r� and the second term gives the Coulomb interac-
tions among these electrons. The eigenenergy and eigenfunc-
tion of this N-electron QD are denoted by �n and �n,
respectively. They are determined by the following
Schrödinger equation:

HQD����n = �n�n, �5�

with n=0,1 ,2 ,3. . .. The ground state of the N-electron QD is
labeled by n=0 and the excited states by n	1. The eigen-
states of the QD can be obtained using, e.g., the restricted or
unrestricted Hartree-Fock �HF� methods.20

III. SCATTERING EQUATIONS INCLUDING ELECTRON
EXCHANGE INTERACTION

In order to extract scattering properties of the system
�QD+incident electron�, we can write the total wave func-
tion �i of the system as a superposition of the QD wave
function �n and the incident electron wave function,

��i� = �
n=0




�A��n�ni�� , �6�

where �ni describes the wave functions of the incident �scat-
tered� electron in the continuum states corresponding to a
quantum transition from an initial state i to a final state n.
The operator A warrants the antisymmetrization property be-
tween the QD electrons and the incident electron, defined by

A =
1

�N + 1
�
p=1

N+1

�− 1�N+1−pPN+1,p, �7�

where PN+1,p is the permutation operator which exchanges
the electrons at rN+1 and rp. From Eqs. �1�, �2�, and �6�, we
obtain

�
n=0


 �−
�2

2m*�N+1
2 + VQD + HQD + Vint��A��n�ni��

= Ei�
n=0




�A��n�ni�� . �8�

The total energy of the system �the incident electron+QD� Ei
is composed of two parts. The first part is the kinetic energy
of the incident �scattering� electron and the second is the
energy of the N-electron QD in a particular configuration,

i.e., Ei=
�2ki

2

2m* +�i=
�2kn

2

2m* +�n, for different eigenstates of the QD
�i ,n=0,1 ,2 , . . . � or different scattering channels. These dif-
ferent channels appear because the incident electron can
probably be scattered inelastically, leaving the QD in a dif-
ferent state from its initial. A projection of Eq. �8� onto a
particular QD state ��m� leads to the following scattering
equation for the incident electron,

�2

2m* ��2 + km
2 ��mi�r� = �

n=0




Vmn�r��ni�r� , �9�

for i ,m=0,1 ,2 , . . ., where r=rN+1 and Vmn=Vmn
st +Vmn

ex , with
Vmn

st the static potential and Vmn
ex the exchange potential due

the nonlocal interaction, given by

Vmn
st �r� = VQD�r��mn +

e2

�0
*�

j=1

N 	�m
 e−
�r−rj�

�r − r j�

�n� �10�

and

Vmn
ex �r��ni�r� = �H0�r� −

�2km
2

2m* ���m�A���n�ni��

+
e2

�0
*�

j=1

N 	�m
 1

�r − r j�

A���n�ni�� ,

�11�

respectively, where A�=�p=1
N �−1�N+1−pPN+1,p. In Eq. �10�,

we have introduced a screening e−
�r−r�� on the direct Cou-
lomb potential for two reasons: �i� The ionized impurities in
the semiconductor nanostructure and/or the external elec-
trodes screen the direct Coulomb potential and �ii� at the
�r�→
 limit, the scattering potential should decay faster than
1/ �r�. The screening length is given by 
−1. Notice that we
do not consider the screening on the exchange potential be-
cause this potential is nonzero inside the QD only. Inclusion
of the screening on the exchange potential in Eq. �11�, is
possible, but it will not affect much our results and will
complicate the numerical calculation.

The scattering equation is a system of coupled integrod-
ifferential equations. The corresponding generalized LS
equation for such a multichannel scattering problem is given
by
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�mi�r� = �i�r��mi + �
n=0


 
 dr�G�0��km,r,r��

�Vmn�r���ni�r�� for i,m = 0,1,2. . . �12�

with an incident plane wave �i�r�=eiki·r=eikix in the x direc-
tion. The Green’s function G�0��k ,r ,r�� in the above equa-
tion is

G�0��k,r,r�� = −
2m*

�2 �i/4�H0
�1��k�r − r��� , �13�

where H0
�1� is the usual zero-order Hankel’s function.21

At the �r�→
 limit, the asymptotic form of Eq. �12� for
the scattered wave function in a 2D system is given by

�mi�r� ——→
�r�→


eikix�mi +
2m*

�2 � i

km

e+ikmr

�r
fkm,ki

��� , �14�

where fkm,ki
��� is the scattering amplitude

fkm,ki
��� = −

1

4
� 2

�
�km�T�E��ki� , �15�

with

�km�T�E��ki� = �
n=0


 
 dr�e−ikm·r�Vmn�r���ni�r�� .

The momenta of the initial and final states of the incident
�scattered� electron are ki and km, respectively, and � is the
scattering angle between them. It is evident from Eq. �12�
and its boundary condition �Eq. �14�� that the different scat-
tering channels are coupled to each other through the inter-
action potential Vmn.

In the above procedure in dealing with the electron scat-
tering through a QD, both the electron-electron exchange and
correlation interactions are presented. However, it is difficult
to include a complete correlation effect in a practical calcu-
lation. For that, besides an exact solution for the N-electron
QD, a full sum over all the intermediate states n in the scat-
tering equation �Eq. �9�� is needed, which is a formidable
task in a self-consistent calculation. In an alternative way, the
correlation effects can be considered by adding an effective
correlation potential in the scattering equation.15 In the
present work, we focus on the exchange effects in the scat-
tering process and limit the sum over n to a few lowest
energy levels of the QD. For this reason, we prefer to call the
nonlocal interaction potential Vmn

ex in Eq. �11� as an exchange
potential though the correlation is partially included in a
multichannel treatment.

The differential cross section �DCS� for a scattering from
initial state i �i.e., the incident electron of kinetic energy Ei

=
�2ki

2

2m* and the QD in state �i� to final state m �i.e., Em=
�2km

2

2m*

and the QD in state m� is given by

�mi��� =
km

ki
2 �fkm,ki

����2. �16�

The integral cross section �ICS�, which is an energy depen-
dent quantity, can be found by

�mi�Ei� = 

0

2�

�mi���d� . �17�

When the state of the QD remains the same, i.e, �m= i�,
before and after the scattering, the process is called elastic.
Otherwise, the scattering is inelastic. A possible scattering is
the so-called superelastic scattering �Em�Ei�, where the in-
cident electron is scattered out with a higher energy by a QD
initially in an excited state. Because the different scattering
channels are coupled to each other, we have to solve the
multichannel LS equation to obtain the scattering probabili-
ties through different channels simultaneously for the same
total energy of the system.

There are different numerical methods to solve the above
coupled integrodifferential LS equations. In this work, we
use the so-called MCF �see Appendix A� which was origi-
nally developed in a three-dimensional formulation for
electron-atom17,18 and electron-molecule19 scatterings at the
single- and multichannel levels of approximations. Here, we
apply this method to electron-QD scattering in a two-
dimensional semiconductor system. The MCF is an iterative
method to solve the LS equation. The advantage of this
method lies on its rapid convergency and its unnecessity for
a basis function for expansion of the continuum wave func-
tions. Using the MCF, we can obtain the T matrix and, con-
sequently, the DCS according to Eqs. �15� and �16�. The
two-dimensional integrations on the interaction potentials in
Eqs. �10�–�12� are simplified by using partial wave expan-
sion, which is described in Appendix B.

A. One-channel approximation

When a quantum dot is initially in its ground state and
remains in the same state after the collision, the scattering is
elastic and the scattering process associated with the ground
state of the QD is of dominant contribution to the scattering
cross section. In this case, a one-channel treatment can be a
reasonably good approximation to calculate scattering cross
section even if the incident electron is of enough energy, and
thus several inelastic channels are open during the collision.
When only the elastic channel is considered �i.e., i=m=n
=0�, Eq. �9� is reduced to

�2

2m* ��r
2 + k2���r� = V�r���r� , �18�

where ��r�=�00�r�, V�r�=V00�r�, and k=k0. The LS equa-
tion for the scattered electron becomes

��r� = �k�r� +
 dr�G�0��k,r,r��V�r����r�� , �19�

where �k�r�=eikx and the Green’s function is given by
Eq. �13�.

When the scattering potential in the above equation is
central, i.e., V�r�=V�r�, the LS equation can be solved easily
using the partial wave expansion technique as described in
Appendix B. Moreover, the scattering amplitude or the cross
section in this case can be obtained in terms of the phase
shifts of the partial waves. The DCS as a function of partial
wave phase shift �l is given as
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�00��� =
1

k
�fk,k����2 =

2

�k

�

l=0




�le
i�l sin �l cos�l��
2

,

and the ICS is given by

�00�E0� =
4

k
�
l=0




�l sin2 �l,

where �l=1 for l=0 and �l=2 for l�0.

B. Scattering by a one-electron quantum dot

Electron scattering and transport through a QD of a few
electrons are currently of great experimental and theoretical
interest. Here, we present the case of a QD with only one
confined electron. We focus on the exchange effect on the
electron scattering and the spin-flip scattering mechanism.
The total Hamiltonian �Eq. �2�� in the one-electron QD case
is given by

H�r1,r2� =
− �2

2m* �2
2 + VQD�r2� + HQD�r1� + Vint�r1,r2� ,

�20�

with

Vint�r1,r2� =
e2

�0
*

1

�r2 − r1�
, �21�

where r1 represents the localized electron in the QD and r2
the incident electron. As we have mentioned, to solve the
scattering problem, we need to know first the electron states
in the QD, which are determined by the following equation:

HQD�r��n�r� = �−
�2

2m*�2 + VQD�r���n�r� = �n�n�r� .

�22�

The solution of this one-electron QD is straightforward as
soon as the confinement potential VQD is defined.

According to Eq. �9�, there is an infinite number of quan-
tum states involved in the scattering. In performing a nu-
merical calculation, however, we have to truncate this to a
finite number of states. As a matter of fact, when the QD is
initially in its ground state and the incident electron has a
small kinetic energy, it is a good approximation to consider
only a few scattering channels associated with the low-
energy levels of the QD. In the present calculation, we con-
sider the channels associated with the ground state �0 and
two excited states �1 and �2 of the QD. When the incident
electron passes through the QD initially in the ground state
�0, the scattering can be either elastic, keeping the QD in the
same state, or inelastic, leaving behind the QD in an excited
state. According to Eq. �6�, the spatial part of the total wave
function of the two electrons �one incident and the other
confined� can be written as, within a three-level model,

�i�r1,r2� = �
n=0

2

��n�r1��ni�r2� ± �n�r2��ni�r1�� , �23�

where the signs ��� and ��� represent the singlet and triplet
total-spin states of the two-electron system, respectively. The
scattering equation �Eq. �9�� becomes

�2

2m* ��2
2 + km

2 ��mi�r2� = �
n=0

2

�Vmn
st �r2� ± Vmn

ex �r2���ni�r2� ,

�24�

with

Vmn
st = VQD�mn + ��m�Vint��n� �25�

and

Vmn
ex �ni = ��m�Vint��ni��n + ��n −

�2km
2

2m* ���m��ni��n, �26�

where i and m �i ,m=0, 1, and 2� indicate the initial and final
states of the system, respectively.

According to the conservation of the total energy of the
system, the relation between the kinetic energies of the inci-
dent �scattered� electron and the energies of the QD is given
as

�0 +
�2k0

2

2m* = �1 +
�2k1

2

2m* = �2 +
�2k2

2

2m* . �27�

The corresponding LS equation is reduced to

�mi�r� = �i�r��mi + �
n=0

2 
 dr�G0�km,r,r��Vmn�r���ni�r�� ,

�28�

where Vmn=Vmn
st ±Vmn

ex . The different channels are coupled
through the potential matrix elements Vmn of the same total
energy. In other words, the scattering for an incident electron
of momentum k0 �associated with the QD ground state �0�
couples to that for an incident electron of momentum k1 �as-
sociated with the first excited QD state �1�, satisfying Eq.
�27�. Because the two electrons can form both the singlet ���
and triplet ��� states, the scattering cross sections are differ-
ent for these two distinct cases,

�mi
s ��� =

km

ki
2 �fkm,ki

�+� ����2 �29�

for the singlet state and

�mi
t ��� =

km

ki
2 �fkm,ki

�−� ����2 �30�

for the triplet states, where the scattering amplitudes are
given by
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fkm,ki

�±� ���

= −
1

4
� 2

�
�
n=0

2 
 dr�e−ikm·r��Vmn
st �r�� ± Vmn

ex �r����ni�r�� .

�31�

The total differential cross section or the spin-unpolarized
�su� DCS is determined by a statistical admixture of the sin-
glet and triplet state scattering,

�mi
su ��� = 1

4 ��mi
s ��� + 3�mi

t ���� , �32�

where the factor 3 in the equation is due to the statistical
weight of triplet states. Another interesting quantity is the
spin-flip �sf� DCS, which describes the spin-flip scattering
probability of an incident electron resulting from the ex-
change interaction.15 The sf-DCS is given by

�mi
sf ��� =

km

4ki
2 �fkm,ki

sf ����2, �33�

where

fkm,ki

sf ��� = fkm,ki

�+� ��� − fkm,ki

�−� ���

= −
1

2
� 2

�
�
n=0

2 
 dr�e−ikm·r�Vmn
ex �r���ni�r�� .

�34�

IV. NUMERICAL RESULTS AND DISCUSSIONS

We model the confinement potential of the QD by a 2D
finite parabolic potential,

VQD�r� = � 1
2m*�0

2�r2 − r0
2� , r � r0

0, r � r0,
� �35�

where �0 is the confinement frequency and r0 is the radius
�size� of the dot. We will calculate in this section the scatter-
ing due to a one-electron quantum dot. For such a system,
the solution of Eq. �22� is straightforward. We expand the
eigenfunction �n in the Fock-Darwin basis23 and diagonalize
numerically the Hamiltonian. The eigenstates can be labeled
by a set of quantum numbers n= �j , l� with the radial quan-
tum number j=0,1 , . . . and the angular momentum quantum
number l=0, ±1, . . .. The state �j=0, l=0� is the ground state

n=0, and the first two excited states �j=0, l= ±1� are degen-
erate corresponding to n=1 and n=2 ��1=�2�.

In order to solve the LS equations, we use the partial
wave expansion in a two-dimensional system combined with
the MCF. All the involved functions are expanded in the
angular momentum basis so that we obtain a radial LS equa-
tion for each angular momentum. Numerically, we are able
to choose the components of the angular momentum which
contribute to the cross sections up to a desirable precision. In
Appendix B, we show how the partial wave expansion can
be applied to the multichannel LS equations in a two-
dimensional system.

A. Convergency of the method of continued fractions

The MCF was applied to the electron-atom scattering18

and electron-molecule scattering.19 In all those cases, it has
shown a rapid convergency. Here, we apply the MCF to the
electron-QD scattering in a two-dimensional semiconductor
nanostructure. First of all, we check the convergency of this
method for electron scattering through a QD. We consider a
one-electron QD with ��0=5 meV, r0=35 nm, and an inci-
dent electron of kinetic energy E0=�2k0

2 /2m*=0.6 meV. The
results are obtained within the one-channel approximation.
For simplicity, only the static scattering potential is consid-
ered, and the exchange potential is neglected in Eq. �31�.
Table I gives the calculated partial wave phase shifts, for
angular momenta up to l=4, of the first six iterations. Be-
cause the localization length of the confined electron wave
function in the QD is about a0=�� /m*�0, the screening pa-
rameter is taken as 
=a0

−1 throughout this paper �a0
=14.75 nm for a GaAs QD of ��0=5 meV�. We have per-
formed calculations with different values of 
. The calcu-
lated results have shown that although a smaller 
 has en-
hanced the static potential scattering, the exchange effects
and the spin-flip scattering are not affected significantly.
From Table I, we can see that the phase shifts converge at the
fifth iteration. It also shows that the first Born approximation,
which corresponds to our zeroth iteration calculation, is in-
deed a very poor approximation in dealing with the
electron-QD scattering. In order to obtain a correct scattering
cross section through a QD, it is necessary to use a robust
method such as the MCF. Although the results in Table I are
for a particular case, we have verified that all our calcula-
tions �with or without exchange interaction� in the present
paper are convergent within six iterations.

TABLE I. Tangent of the phase shift of different partial waves l=0, 1, 2, 3, and 4 for the first six iterations
within the MCF for an incident electron of kinetic energy E0=0.6 meV. The number in parentheses repre-
sents the power of 10, e.g., �−4�=10−4.

Iteration 0 1 2 3 4 5 6

tan �0 −7.2103 −6.0844 −1.7589 −1.6348 −1.6442 −1.6347 −1.6347

tan �1 −0.8833 −0.6862 −0.6874 −0.6305 −0.6305 −0.6305 −0.6305

tan �2 −0.0288 0.1838 0.2465 0.2495 0.2495 0.2495 0.2495

tan �3 5.43�−4� −2.62�−4� −3.66�−5� −3.64�−5� −3.64�−5� −3.64�−5� −3.64�−5�
tan �4 1.23�−4� −1.20�−4� −1.20�−4� −1.20�−4� −1.20�−4� −1.20�−4� −1.20�−4�
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B. One-channel scattering

Within the one-channel approximation, we calculated the
elastic DCS for electron scattering by the one-electron QD of
��0=5 meV and r0=35 nm at incident kinetic energies E0
=0.6, 1.7, and 4.2 meV. The obtained DCS’s are presented in
Fig. 1 as a function of the scattering angle. Figure 1�a� shows
the total or the su-DCS �00

su���. To illustrate the effect of
exchange interaction, the su-DCS’s due to the static potential
only �i.e., neglecting the exchange potential in Eqs. �24� and
�31�� are given by the dashed curves in the figure. We see
that the exchange interaction is of significant contribution to
the low-energy and/or small angle scattering. The exchange
effect on the scattering originates from the two different cou-
pling states between the incident and the QD electrons �i.e.,
the singlet and the triplet states� during the collision, as in-
dicated in Eq. �24�. The corresponding DCS’s due to the
singlet ��00

s ���� and triplet states ��00
t ���� defined by Eqs.

�29� and �30�, respectively, are shown in Fig. 1�b�. In Fig.
1�c�, we plot the spin-flip �sf� DCS �00

sf ��� given by Eq. �33�.
Comparing Fig. 1�a� with Fig. 1�b�, one can see that the

exchange interaction affects more strongly the su-DCS when
the difference between �00

s ��� and �00
t ��� is large. In Fig.

1�c�, we observe that the spin-flip scattering due to exchange
potential occurs mostly around ��90° at a lower incident
energy �E0=0.6 meV�. For higher energies �E0=1.7 and
4.2 meV�, the spin-flip scattering is more relevant at small
scattering angles.

Figure 2�a� shows the ICS as a function of incident elec-
tron energy E0 for the spin-unpolarized scattering and for
that considering the static potential only. We see that the
exchange interaction significantly affects the ICS at low E0.
At higher energies, however, the ICS is dominated by the
static potential. In Fig. 2�a�, we also present the spin-flip ICS
�the dashed curve�. A maximum spin-flip probability is found
at E0=1.1 meV, which is about 37% of the total scattering.
In Fig. 2�b�, we plot the ICS due to the singlet and the triplet
states. It shows a strong dependence of the ICS on the spin
states of two electrons in the system.

The scattering peaks in ICS due to the static potential �the
dotted-dashed curve in Fig. 2�a�� at E0=1.22 and 6.0 meV
are due to the occurrence of the so-called shape resonances,

FIG. 1. �Color online� The elastic DCS’s obtained within the one-channel model for electron scattering by the one-electron QD of
��0=5 meV and r0=35 nm. The incident electron energies are indicated in the figures. �a� The spin-unpolarized DCS with �the solid curves�
and without �the dashed curves� the exchange potential. �b� The DCS due to the singlet state �the solid curves� and the triplet state �the
dashed curves�. �c� The spin-flip DCS.
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resulting from a virtual confined state at the corresponding
energy. In order to clarify the origin of these features, we plot
in Fig. 3 the corresponding partial wave phase shifts �l �for
l=0, 1, 2, 3 and 4� due to the static potential. At E0→0, �0
and �1 are larger than � /2, indicating the presence of the
bound states of angular momenta l=0 and 1 in the QD. A
rapid increase of �2 ��3� at around E0=1.2 meV �6.0 meV�
corresponds to a virtual bound state of l=2 �l=3�, leading to
the shape resonance scattering peak in the ICS. Similarly,

peaks in the ICS at E0=1.72 meV �0.57 meV� for the singlet
�triplet� state scattering in Fig. 2�b� can be related to the
virtual bound states in the system. The broad peak in the ICS
of the triplet state possibly results from a virtual state of two
interacting electrons.

C. Multichannel scattering

The energy difference between the first excited state and
the ground state is 4.90 meV in the QD of ��0=5 meV and
r0=35 nm. When the kinetic energy E0 of an incident elec-
tron is higher than this energy difference, the inelastic scat-
tering channel is open, which leaves the QD in the excited
state �1 after scattering. In such a case, the multichannel
scattering process has to be considered. When the three low-
est states of a one-electron QD are included in the calcula-
tion, there are nine possible scattering channels. For the
present QD, as the first excited state is twofold degenerate,
i.e., �1=�2, we find the following scattering cross sections:
the elastic �00�E0� and inelastic scattering �10�E0� for the QD
initially in its ground state; the elastic scattering �11�E1� and
superelastic scattering �01�E1� for the QD initially in the first
excited state. There are also two excitation cross sections
�21�E1�=�12�E1� for the QD in the excited states of different
angular momenta, although in these cases the energy of the
scattered electron is the same as that of the elastic scattering
�11�E1�, i.e., �1=�2 and k1=k2 in Eq. �27�. In Fig. 4, we
show the different integral cross sections due to the singlet
and triplet states. Figures 4�a� and 4�b� give the elastic ICS
��00� and inelastic ICS ��10�, respectively, for the QD ini-
tially in its ground state. The inelastic cross section is 2
orders of magnitude smaller than the elastic one. Moreover,
the inelastic scattering due to the triplet state is very weak at
higher energies. Coupling between different QD levels �or
different scattering channels� leads to resonant scattering on
both the elastic and inelastic cross sections. The thin curves
in Fig. 4�a� are the previous results in Fig. 2�b� of the ICS
within the one-channel model. We see that the one-channel
approximation yields quite good results for the elastic scat-
tering.

Figures 4�c� and 4�d� show the elastic ICS for the QD in
the first excited state. At small incident energy E1, the scat-
tering due to the triplet state is much stronger than that due
to the singlet state in this case. If the QD remains in the same
excited state after the scattering, the ICS �11 �=�22�, as
shown in Fig. 4�c�, is large at higher energy and decreases
slowly with increasing E1. However, if the angular momen-
tum changes after the scattering, the ICS �21 �=�12� vanishes
rapidly �both due to the singlet and triplet states� at high
incident energies.

V. CONCLUSION REMARKS

We presented a general method to calculate the electron
scattering through an N-electron QD embedded in a two-
dimensional semiconductor system. The multichannel LS
equations are solved numerically using the iterative method
of continued fractions considering the electron-electron inter-
actions. We applied this method to the case where only one

FIG. 2. �Color online� The elastic ICS as a function of E0 for the
one-electron QD. �a� The su-ICS �the solid curve�, the sf-ICS �the
dashed curve�, and the ICS due to the static potential only �the
dotted-dashed curve�. �b� The ICS due to the singlet �the solid
curve� and triplet states �the dashed curve� during the scattering.

FIG. 3. �Color online� The phase shift as a function of E0 for the
partial waves l=0, 1, 2, 3, and 4 due to the static potential scattering
of the one-electron QD.
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electron is confined in the QD. The results indicate a rapid
convergency of this method for two-dimensional scattering
in a semiconductor nanostructure. It also shows that the first
Born approximation is so poor that it cannot yield correct
scattering cross sections.

We found that the exchange effects are relevant when the
kinetic energy of the incident electron is small, as shown by
the obtained DCS and ICS. The shape resonances were found
in the elastic ICS including or not the exchange potential.
The spin-flip cross section due to exchange interaction shows
a maximum both in the DCS as a function of the scattering
angle and in the ICS as a function of the incident electron
energy. The maximum spin-flip scattering reaches as high as
more than 30% in comparison to the total scattering. In mul-
tichannel scattering, including the excited states of the QD,
we obtained the inelastic scattering cross sections. They are
about 2 orders of magnitude smaller than the elastic ones.

In this paper, we emphasize the theoretical approach and
numerical method to calculate the electron scattering by a
charged quantum dot. The scattering cross sections were ob-
tained for a spin-unpolarized system. It can be extended to a
spin-polarized system, which is of great interest for electron
transport in semiconductor nanostructures. The application to
a spin-polarized system is straightforward as soon as the ini-
tial spin states of the system are defined. In the numerical
calculation, we presented the cross sections due to a one-
electron QD scattering. For a QD of two or more electrons,
we need to know first the eigenstates of the QD with
electron-electron interactions. Then, the scattering cross sec-
tions can be calculated according to the total wave function
defined by Eq. �6�, as what has been done for electron-atom

and electron-molecule scatterings where several electrons are
presented.19
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APPENDIX A: METHOD OF CONTINUED FRACTIONS

The MCF17 is an iterative method to solve the LS equa-
tion. To apply this method for a multichannel scattering, we
have to first rewrite Eq. �12� in a matrix form,

�̃ = �̃ + G̃�0�Ṽ�̃ . �A1�

In the first step to start the MCF, we use the scattering po-

tential Ṽ=V�0� and the free electron wave function �̃= ���0��
in Eq. �A1�. Afterward, we define the nth-order weakened
potential as

V�n� = V�n−1� −
V�n−1����n−1�����n−1��V�n−1�

���n−1��V�n−1����n−1��
, �A2�

where

���n�� = G̃�0�V�n−1����n−1�� . �A3�

The nth-order correction of the T matrix can be obtained
through

FIG. 4. �Color online� The multichannel integral cross sections �mi
s �the solid curves� and �mi

t �the dashed curves� as a function of Ei

�i=0,1� for the one-electron QD considering the three lowest energy states. The thin curves in �a� are the corresponding results within the
one-channel model.
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T�n� = ���n−1��V�n−1����n�� + ���n��V�n����n������n��V�n����n��

− T�n+1��−1���n��V�n����n�� . �A4�

Hence, we can stop the iteration when the potential V�N� be-
comes weaker enough. In the numerical calculation, we start
with T�N+1�=0 and evaluate T�N�, T�N−1� , . . ., and T�1�. There-
fore, the T matrix is given by

T = ���0��V�0����0�� + T�1� ���0��V�0����0��
���0��V�0����0�� − T�1� . �A5�

APPENDIX B: PARTIAL WAVE EXPANSION

In two dimensions, the angular momentum basis is given
by22

�l��� =� �l

2�
cos�l�� , �B1�

where l=0,1 ,2 , . . ., �l=2 for l�0 and �l=1 for l=0. In ap-
plying the partial wave expansion in the multichannel scat-
tering problem �Eq. �12��, we expand all functions, i.e., the
incident free electron wave function �i�r�, the Green’s func-
tion G�0��km ,r ,r��, and the scattered electron wave function
�mi�r�, in the angular momentum basis as follows:

�i�r� = �
l,l�=0


 � �l

2�
ilJl�kr��ll��l��r��l���k� �B2�

and

�mi�r� = �
l,l�=0




�mi
l,l��k,r��l��r��l���k� , �B3�

where �r and �k are the variables due to expansion on the
position r and momentum k, respectively. The expansion on
the Green’s function yields the following expression:

G�0��km,r,r�� = −
i�

2 �
l=0


 � �l

2�
Jl�kmr��Hl

�1��kmr��

��l��r��l��r�� , �B4�

where k=ki, r�=min�r ,r��, r�=max�r ,r��, Jl�kmr� �Yl�kmr��
is the Bessel �Neumann� function, and Hl

�1��kmr�=Jl�kmr�
+ iYl�kmr� is the Hankel function.21 Using the partial wave
expansion, the Lippmann-Schwinger equation can be re-
duced to a set of radial equations. The radial Lippmann-
Schwinger equation corresponding to Eq. �12� is given by

�mi
l,l��k,r� =� �l

2�
ilJl�kr��ll��mi

+ �
l�=0




�
n=0


 

0




r�dr�g0
l �km,r,r��Vmn

l,l��r���ni
l�,l��r�� ,

�B5�

where

g0
l �km,r,r�� =

− i�

2
� �l

2�
Jl�kmr��Hl

�1��kmr�� �B6�

and

Vmn
l,l��r�� = 


0

2�

d�r��l��r��Vmn�r���l���r�� . �B7�

We see that when the partial wave method is used, there is a
change in the continuum variable � to a partial wave l. Con-
sequently, the wave function �mi�r� becomes a matrix func-

tion with elements �mi
l,l��k ,r�.

The partial wave expansion for the exchange potential is a
little subtle due to its nonlocality. Here, we show some de-
tails of how the partial wave expansion is applied in this
case. We take as an example the exchange potential which
couples the channels n and m for a single-electron spin or-
bital �,

Vmn
ex �r��ni�r� = −

e2

�0
*��

n�r� 
 dr1��
m*�r1�

1

�r − r1�
�ni�r1� .

�B8�

The partial wave expansion of the spin-orbital function is
given by

��
n�r� = �

l=0




�n�
l �r��l��r� . �B9�

The product of two different functions can also be expanded
in the angular momentum basis as follows:

�ni�r���
m*�r� = �

l,l�

�ni;m�
l,l� �r��l��r��l���k� , �B10�

where

�ni;m�
l,l� �r� = �


,
�

�ni

,l��k,r��m�


�*�r�

2�2�
��
�
�

�l
��l,
+
� + �l,�
−
��� .

�B11�

Using the above relation, we obtain Eq. �B8� in the partial
wave expansion form,

Vmn
ex �r��ni�r�

= −
e2

�0
*��

n�r��
l,l�

�l��r��l���k�

0




r1dr1�ni;m�
l,l� �r1�

�

0

2� �l���d�

�r2 + r1
2 − 2rr1 cos���

, �B12�

where �=�r−�r1
. To solve the angular integral, we use the

generating function of the Legendre polynomials,21

1

�r2 + r1
2 − 2rr1 cos���

= �
j=0



r�

j

r�
j+1 Pj�cos �� , �B13�

where r�=min�r ,r1�, r�=max�r ,r1�, and Pj�cos �� are the
Legendre polynomials. Thus, the angular integral that we
need to solve is
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cl,j = 

0

2�

d��l���Pj�cos �� . �B14�

Substituting Eqs. �B13� and �B14� into Eq. �B12�, we obtain
finally the exchange potential

Vmn
ex �r��ni�r�

= −
e2

�0
*��

n�r��
l,l�

�l��r��l���k�

��
j=0


 

0




r1dr1�ni;m�
l,l� �r1�cl,j

r�
j

r�
j+1 . �B15�

In the numerical calculations, we first evaluate the coeffi-
cients cl,j given by Eq. �B14�. Then, the integration on r1 in
Eq. �B15� is performed for each iteration in the MCF. Fi-
nally, we multiply the result by − e2

�0
* ��

n�r�.
Within the one-channel approximation �i=m=n=0�, the

calculations can be further simplified by using the concept of
phase shift. Considering a central potential V�r� �l= l�= l��,
Eq. �B5� becomes

�l�k,r� =� �l

2�
ilJl�kr� + 


0




r�dr�g0
l �k,r,r��V�r���l�k,r�� ,

�B16�

where �l�k ,r�=�00
l,l �k ,r�. To define the phase shift, we write

the asymptotic form of the above equation as

�l�k,r� ——→
r→


Al� 1

kr
cos�kr −

l�

2
−

�

4
− �l� ,

�B17�

where �l is the phase shift. Comparing the coefficients of eikr

and e−ikr of Eq. �B17� with the asymptotic form of Eq. �B16�,
one can obtain the following relations:

Al = 2��l

�
ilei�l �B18�

and

ei�l sin �l =
− �

2il 

0




r�dr�Jl�kr��V�r���l�r�� . �B19�

On the other hand, from the definition of the scattering am-
plitude in Eq. �14�, we can express the scattering amplitude
fk0,k0

in terms of the phase shift22 �l,

fk0,k0
��� = 2�

l=0


 ��l

�
ei�l sin �l�l��� . �B20�

The corresponding DCS is �00���= �fk0,k0
����2 /k, and the ICS

is given by

�00 =
4

k
�
l=0




�l sin2 �l. �B21�
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