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By using the sparse-matrix canonical-grid method, we performed large-scale multiple-scattering calculations
to study band-edge states in large-sized two-dimensional photonic quasicrystals. We find that the band-edge
states evolve in an abrupt and irregular way when the sample size is increased. New states with reduced
symmetries can emerge at the band edge in large samples. Strong multifractal behaviors in the wave functions
are also observed. Our findings unveil important differences between quasiperiodic and periodic systems at
band edges.
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I. INTRODUCTION

The propagation of classical waves in quasiperiodic struc-
tures has attracted an increasing amount of attention in recent
years.1–23 Quasiperiodic composites, such as photonic quasi-
crystals, can offer more flexibility in designing the properties
of electromagnetic waves than their periodic counterparts. In
one dimension, the states in quasiperiodic multilayers and
the evolution of spectrum with sample size have been exten-
sively studied.1–4 Many interesting phenomena such as criti-
cal states and singular continuous spectrum have been
discovered.1,2 In two dimensions, recently, it has been shown
that large full band gaps can be opened in photonic quasic-
rystals with small dielectric contrast due to the high rota-
tional symmetry of a quasiperiodic structure.5–8 Various
wave phenomena that depend on the existence of band gaps,
such as defects and waveguides, have also been extensively
studied.11–15

Recently, a wide interest has been attracted to the band-
edge states in quasiperiodic composites.4,16–23 Firstly, the
property of wave functions at band edges in quasiperiodic
structures remains an interesting and unresolved topic.24 By
observing the liquid surface wave on a quasiperiodically
drilled bottom, the wave function at the band edge is shown
to be a plane wave with quasiperiodic modulation.16 Strongly
suppressed group velocity has also been observed at the
band-edge states of Fibonacci photonic quasicrystals by ul-
trashort pulse interferometry.4 Secondly, great achievements
have been made in the applications of the band-edge states in
photonic crystals.25–29 However, recent studies showed that
the band-edge states in photonic quasicrystals can support
various applications with novel and promising properties that
are unrealizable by using the band-edge states in photonic
crystals.17–21 For example, lasing action of tenfold rotational
symmetry at the band-edge states has been observed in pho-
tonic quasicrystals with a Penrose lattice.17 Higher-order har-
monic generations with more flexibility,18–20 even simulta-
neous phase matching of arbitrary optical frequency-
conversion processes,21 have been investigated in nonlinear
photonic quasicrystals.

However, previous studies on the band-edge states in qua-
siperiodic composites, especially in two dimensions, were
conducted in a limited number of samples.16,17 Thus, how the

properties of the band-edge states evolve with sample size
were not studied, and the effects due to the quasiperiodic
long-range order were not fully manifested in these studies.
In order to fully explore these effects, large-sized samples
are required. Theoretically, the bottleneck of this problem
lies in the difficulty in computing large-sized multiple-
scattering systems. The Born approximation which is valid
for small systems may become invalid.17,22

In this work, we study the properties of the band-edge
states for electromagnetic waves in large-sized two-
dimensional photonic quasicrystals by using the multiple-
scattering theory �MST� in conjunction with the sparse-
matrix canonical-grid �SMCG� method.30 On the one hand,
the SMCG method allows us to do large-scale calculations
efficiently so that the quasiperiodic long-range order effects
can be studied, as in the study of acoustic waves in large-
sized phononic quasicrystals;23 on the other hand, the MST
method allows us to calculate the wave functions of the
band-edge states. These wave functions are not only aca-
demically interesting, but also important in applications of
lasing and nonlinear optical effects in photonic quasicrystals.
As a result, we have observed an abrupt and irregular evolu-
tion of the band-edge state with increased sample size. The
wave functions exhibit repeated local resonances, which are
induced by repeated clusters in the quasiperiodic structure.
New states with reduced symmetries, which are absent in
smaller samples, can emerge at the band edge in a suffi-
ciently large sample. These findings show the important dif-
ferences between quasiperiodic and periodic systems at band
edges.

II. SYSTEM AND NUMERICAL METHODS

We consider a photonic quasicrystal consisting of a 12-
fold symmetric quasiperiodic lattice of dielectric cylinders
placed in air. The 12-fold quasiperiodic lattice is composed
by the vertices of a square-triangle tiling, which is generated
from a dodecagonal seed structure by using the Stamfli in-
flation rule.7 In the inset of Fig. 1�a�, we show a quasiperi-
odic lattice sample in solid circles, as well as the seed struc-
ture in red solid lines. Previous studies showed that such a
quasiperiodic structure can support large photonic band
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gaps.7,8 Here, we consider the s-polarized waves, which are
described by the following wave equation:

− �2��r��E�r�� = c2�2E�r�� , �1�

where �, ��r��, and E�r�� are, respectively, the angular fre-
quency, dielectric constant, and electric field.

Equation �1� is solved by using the MST. The MST is a
well-established numerical method and has been generally
used to solve systems with hundreds of cylinders in the
literature.8,22 However, in this paper, we have to solve much
larger systems with tens of thousands of cylinders. The MST
gives rise to a set of linear equations. The operation cost of
solving these equations is O�Nm

3 �, while the memory cost is
O�Nm

2 �. Here, Nm is the number of cylinders N multiplied by
�2m+1�. m is the cutoff angular momentum quantum num-
ber used in the calculations. Thus, the calculations become
extremely difficult when the number of cylinders is large.
However, the difficulty can be overcome by incorporating
the so-called SMCG method into the MST.23,30 The SMCG
method is an efficient algorithm based on the decomposition
of strong and weak interactions among cylinders. Here, the
strong and weak interactions denote the interactions between
near and distant cylinders, respectively. Basically, the idea is
to utilize a two-dimensional uniform canonical grid which
covers the sample. Every cylinder is associated with its near-
est grid point. Then, the weak interactions, which accounts
for the majority of the required CPU time and memory, can
be calculated by using the grid points. With the successive
use of the addition theorem, the weak interactions between
two distinct cylinders are calculated indirectly from one cyl-
inder to its associated grid point, then from the grid point to
the grid point associated with the other cylinder, and finally

from the second grid point to the other cylinder. This facili-
tates the use of fast Fourier transform, which reduces the
operation cost from O�Nm

3 � to O�Nm log Nm�.23,30 In our cal-
culations, we have used an iterative method called the gen-
eralized minimal residue �GMRES� method31 to solve the
coupled linear equations given by MST. The GMRES
method is very robust and accurate even for dense matrices,
and it reduces the memory cost from O�Nm

2 � to O�Nm�. We
have also checked the convergence of our results by increas-
ing m to 6 and reducing the normwise backward error in
GMRES to 10−6. After parallelization, we can solve large
systems with tens of thousands of cylinders in a PC cluster.23

III. RESULTS AND DISCUSSIONS

Firstly, we calculate the radiation power spectrum of the
photonic quasicrystal. The radiation power is obtained by
placing a line source of frequency f inside a circular sample
with radius R and integrating the output energy flux. The
position of the source is deliberately placed beside the center
of the sample such that states of any angular momentum
quantum number can be excited. The dielectric constant and
radii of the dielectric cylinders in the photonic quasicrystal
are taken as 4 and 0.4a, respectively. Here, a is the distance
between two nearest cylinders. In Fig. 1�a�, we plot the ra-
diation power spectra near the first major band gap of the
photonic quasicrystal for small samples of radii R=2a
�black�, 4a �red�, 6a �green�, 8a �blue� and 10a �purple�,
respectively. When the sample radius is gradually increased,
we see that the radiation power in the band gap is reduced
exponentially, indicating a quite robust band gap. We also
notice that the frequency of the lower band-edge state is
shifted toward the band gap with increased sample size, but
in an abrupt and irregular way. Since the band-edge state in
periodic systems is always shifted smoothly when the sample
size is increased, this phenomenon indicates a fundamental
difference between quasiperiodic and periodic systems at
band edges.

To understand the origin of this phenomenon, we investi-
gate the wave function of these band-edge states. The wave
function E�r�� can be characterized by its intensity map
�E�r���2, as well as its phase map, i.e., arg�E�r���� �−� ,��. In
Figs. 1�b� and 1�c�, we plot, respectively, the intensity map
and the phase map for the band-edge state in a sample of
R=10a, marked as “a” in Fig. 1�a�. The intensity map is
plotted in a log scale such that a local resonance of diameter
dres�16a is clearly shown. The local resonance is induced
by the local environment within the sample. The phase map
exhibits a distinct phase pattern composed of alternating re-
gions with a phase difference �, similar to that of a standing
wave. The structure of the phase pattern can also be used to
identify the local resonance. In Fig. 1�c�, it is interesting to
point out that the local phase patterns within the seed struc-
tures at different locations can be very different from each
other, as is clearly shown in the three seed structures marked
by red lines. This implies that the size of the local resonance
can be larger than that of the seed structure, which has a
diameter of dseed=3.8a. The sudden appearance of this local
resonance when sample radius R�10a explains the abrupt

FIG. 1. �Color online� �a� The radiation power spectra for the
photonic quasicrystal samples of radii R=2a �black�, 4a �red�, 6a
�green�, 8a �blue�, and 10a �purple�. The inset graph shows the
sample of R=10a. �b� and �c� show, respectively, the intensity map,
ln�E�r���2, and phase map, arg�E�r���, of the band-edge state marked
as “a” in �a� for the sample of R=10a.

LAI et al. PHYSICAL REVIEW B 76, 165132 �2007�

165132-2



and irregular shift of the band-edge state in Fig. 1�a�.
When the sample size is further increased, however, the

size of the local resonances does not increase with the
sample size. Here, we plot in Fig. 2�a� the band-edge spectra
of some large-sized photonic quasicrystal samples of radii
R=24a �black�, 36a �red�, 48a �green�, and 60a �blue�. There
are 12187 cylinders in the sample of R=60a. In Figs. 2�b�
and 2�c�, we plot, respectively, the intensity map and phase
map of the band-edge state in a sample of R=36a, which is
marked as “A” in Fig. 2�a�. The symmetry of this state ob-
viously coincides with the quasiperiodic structure. In the

phase map, we have observed many repeated local phase
patterns as those marked by red and yellow circles in Fig.
2�c�. These local patterns are the same as the one shown in
Fig. 1�c�, apart from a constant phase difference. The local
phase patterns marked by the red circles only have a differ-
ence of � from those marked by the yellow circles. Their
structures coincide with the phase map shown in Fig. 1�c�. In
Figs. 2�d� and 2�e�, we plot, respectively, the intensity map
and phase map of the second state from the band edge, which
is marked as “H” in Fig. 2�a�. This state has a reduced two-
fold symmetry. From the local phase patterns marked by the
red and yellow circles in Fig. 2�e�, we can see that it is
actually antisymmetric. According to Conway’s theorem,
when the sample size is increased, any local environment
will always repeat itself.32 For states A and H, we have ob-
served that more local resonances are induced in the in-
creased part of the sample, while the already existing local
resonances are not changed. Both states A and H shift con-
tinuously toward the band gap when the sample size is in-
creased.

However, when the sample size is increased to R=48a,
we have observed the sudden emergence of two new states,
which are marked as “B” and “C” in Fig. 2�a�. The previous
band-edge state in the sample of R=36a has now shifted to
“D” in Fig. 2�a�. In Figs. 2�f� and 2�g�, we show, respec-
tively, the corresponding intensity map and phase map of
state B. Obviously, this new band-edge state has a twofold
symmetry like state H. However, its intensity map is very
different from that of H. To the best of our knowledge, band-
edge states with reduced symmetry have not been reported
before. In the previous studies on lasing17 and surface wave
functions16 in quasiperiodic structures, only symmetric band-
edge states have been observed. This case shows that band-
edge states with reduced symmetry is possible in quasiperi-
odic systems when the sample size is sufficiently large. In
Fig. 2�g�, there are still many local phase patterns with the
same structure as that in Figs. 2�c� and 2�e�. However, many
of them exhibit a phase difference of � from those at the
same position in Figs. 2�c� and 2�e�, as indicated by the
yellow circle. In fact, we have checked that the phase pattern
in Fig. 2�g� is different from that of any state near the band
edge in the smaller sample of R=36a. This confirms that it is
a new state. In Figs. 2�h� and 2�i�, we plot, respectively, the
intensity map and phase map of state C, which also exhibits
a twofold symmetry. The local phase pattern marked by the
yellow circle shows a phase difference of � from those at the
same position in Figs. 2�c�, 2�e�, and 2�g�. State C is also
confirmed to be a new state that emerges in the sample of
R=48a.

When the sample size is further increased to R=60a, we
find that state B disappears, but state C remains and is only
slightly shifted to “F” in Fig. 2�a�. A new state with a two-
fold symmetry emerges near the band edge, as marked by
“G.” The original band-edge state in the smaller sample of
R=36a is further shifted from D to “E” and becomes the
band-edge state again.

The above example shows the complicated situation near
the band edges in photonic quasicrystals. Briefly speaking,
the band-edge states in photonic quasicrystals are composed
of many local resonances whose size could exceed that of the

FIG. 2. �Color online� �a� The radiation power spectra for larger
photonic quasicrystal samples of radii R=24a �black�, 36a �red�,
48a �green�, and 60a �blue� near the band edge. �b�, �d�, �f�, and �h�
show, respectively, the intensity maps, ln�E�r���2, of the states
marked as “A,” “H,” “B,” and “C” in �a�. �c�, �e�, �g�, and �i� show,
respectively, the phase maps, arg�E�r���, of the states marked as “A,”
“H,” “B,” and “C” in �a�.
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seed structure. However, when the sample is further in-
creased to a sufficiently large size, new states with reduced
symmetry can emerge at the band edge. It is undoubted that
the quasiperiodic long-range order has played a key role in
generating these new states. The new states observed here
are different from the previously observed states emerging in
the gaps of phononic quasicrystals, which are induced by the
formation of new local resonances and exhibit the same sym-
metry as the quasiperiodic structure.23 The observed new
states here do not change the local resonances, but seem to
support a new kind of coupling among themselves. They
could be either sensitive �e.g., state B� or nonsensitive �e.g.,
state C� to the further increase of sample size.

Here, we have shown that the appearance of new states at
the band edge is caused by the couplings of local resonances
induced by the local environment in quasiperiodic structures.
In a recent paper by Yannopapas et al., it was shown that
new states near the band edge of an inverted opal could also
be produced by introducing stacking faults, which are a com-
mon type of defect, into the inverted opal.33 A periodic ar-
rangement of the stacking faults can give rise to a narrow
band immediately above the lower edge of the original fre-
quency gap. Large transmittance is found for this narrow
band due to the periodic coupling of local resonances created
at the stacking faults. However, when the stacking faults are
arranged randomly, the transmittance becomes very small,
negligible for practical purposes. In our work, the local reso-
nances are quasiperiodically arranged inside the sample.
Thus, the new band-edge states we have found are interme-
diate between those created by the periodic stacking faults
and those created by random stacking fault in Ref. 33.

The existence of states with reduced symmetries at the
band edge might have some useful implications. For ex-
ample, in Kerr nonlinear photonic crystals, it is known that
gap solitons can be excited near the band edge.34,35 The gap
solitons have the same symmetry as that of the band-edge
state. Thus, one could expect a gap soliton with reduced
symmetry to appear near the band edge when the cylinders
are made of materials with Kerr nonlinearity. In Fig. 2�a�, we
have also noticed that the new states emerging at the band
edge often exhibit quite narrow linewidths. A narrower line-
width in spectrum indicates a longer photon lifetime and a
higher quality factor. In the previous studies of optical states
near band edges, it has been found that the threshold gain is
inversely proportional to a photon lifetime, implying that the
long photon lifetime is advantageous for achieving low-
threshold band-edge lasing action.28,29 Thus, these news
states observed here might be good candidates for low-
threshold lasing applications. Because of the reduced sym-
metry, the light emitted by such states will also be less iso-
tropic.

We have shown the intensity maps of states at the band
edge in Fig. 2. Their intensity distributions could be further
studied by using the method of the multifractal analysis.36,37

In the multifractal analysis, the singularity spectrum f���
characterizes the scaling properties of the multifractal, where

� characterizes the type of singularities and f��� the fractal
dimension of the set on which singularities of this type are
defined. In Fig. 3, we show the calculated f��� for the states
marked as B, C, and D in Fig. 2�a�, which exist in the sample
of R=48a. For comparison, the f��� for the first band-edge
state in a triangular photonic crystal sample of the same
sample size and cylinders is also shown in the inset graph.
The calculations are based on the parametric representations
of f�q� and ��q� with the same range of moment q from −3
to 4.37 It is obvious that f��� and � for the states in the
photonic quasicrystal span a much wider range than those in
the photonic crystal. This indicates that the fluctuations of
the wave functions at band edges in photonic quasicrystals
are much larger than those in photonic crystals. We also no-
tice that states B and C exhibit a wider range of � than state
D. This indicates that fluctuations of new states are even
larger than those of original band-edge states.

IV. CONCLUSIONS

In conclusion, we have studied the nature of band-edge
states in large-sized photonic quasicrystals. We have ob-
served the abrupt and irregular evolution of band-edge states
as the sample size is increased. The wave functions of the
band-edge states exhibit repeated local resonances, which are
induced by the repeated clusters in the quasiperiodic struc-
ture. New states with reduced symmetry can occur at the
band edge in a sufficiently large sample. A strong multifrac-
tal behavior and large fluctuations in wave functions are also
observed. Our findings unveil some unique properties of the
band-edge states in quasiperiodic systems, which are of sci-
entific interests and could be important in applications that
utilize these states such as lasing and certain nonlinear opti-
cal effects.
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FIG. 3. �Color online� The singularity spectra f��� for the states
“B,” “C,” and “D” in the photonic quasicrystals of R=48a. The
inset shows f��� for the band-edge state in a triangular photonic
crystal of R=48a, which is composed of the same cylinders as those
in the photonic quasicrystal.
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