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Spin and orbital magnetic response in metals: Susceptibility and NMR shifts
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A DFT-based method is presented which allows the computation of all-electron NMR shifts of metallic
compounds with periodic boundary conditions. NMR shifts in metals measure two competing physical phe-
nomena. Electrons interact with the applied magnetic field (i) as magnetic dipoles (or spins), resulting in the
Knight shift, and (ii) as moving electric charges, resulting in the chemical (or orbital) shift. The latter is treated
through an extension to metals of the gauge-invariant projector augmented wave developed for insulators. The
former is modeled as the hyperfine interaction between the electronic spin polarization and the nuclear dipoles.
NMR shifts are obtained with respect to the computed shieldings of reference compounds, yielding fully
ab initio quantities which are directly comparable to experiment. The method is validated by comparing the
magnetic susceptibility of interacting and noninteracting homogeneous gas with known analytical results, and
by comparing the computed NMR shifts of simple metals with experiment.
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I. INTRODUCTION

Nuclear magnetic resonance (NMR) is a widely used and
powerful technique for structural determination, both in
chemistry and in solid-state physics.! It also yields valuable
information on the electronic structure of solids. For in-
stance, NMR was instrumental in determining the d,2_,> pair-
ing of high-temperature superconductors.” Empirical rules
have been determined which relate NMR quantities to physi-
cal and chemical properties. Unfortunately, such rules can
become inaccurate when subtle quantum effects are in-
volved. In this work, we provide a method for computing
NMR shifts from first-principles in metallic systems with
periodic boundary conditions.

Recent advances have made possible the computation of
NMR shifts in molecules® and insulating solids with periodic
boundary conditions,*> leading to a better interpretation of
experimental data in systems as diverse as zeolite® or vitre-
ous boron oxides.’

At present, to the best of the authors’ knowledge, there is
no complete ab initio theory of NMR shifts in metallic sys-
tems. Indeed, NMR shifts in metals result from two different
physical phenomena. The electronic structure can react to the
external magnetic field (i) as a distribution of magnetic spins,
giving rise to the Knight shift and (ii) as a distribution of
electronic charges, with the NMR orbital shift as a result. In
most metallic systems, the NMR shift is dominated by the
Knight shift contribution, sometimes by as much as two or-
ders of magnitude. As such, it has been the subject of many
theoretical studies.>® On the other hand, the development of
methods capable of computing orbital shifts in metallic com-
pounds has been lagging behind. Yet, experiments do not
distinguish between the shifts arising from these two phe-
nomena. Furthermore, experimental shifts are given with re-
spect to some insulating reference compound. As such, the-
oretical calculations must include both orbital and Knight
shifts in the material of interest and a reference compound
before being compared to experiment. The Knight shift is
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related to the density of s states at the Fermi level. As such,
there are a number of systems for which the Knight and
orbital contributions to NMR shifts and to the magnetic sus-
ceptibility are of similar magnitude. These systems include
semimetals such as graphene, graphite,'®!! intercalated
graphite,'>!3 and nanotubes,'* metals with strong d-character
such as platinum catalysts,'>!¢ or organic compounds ad-
sorbed upon metallic catalysts.!”~

The aim of the method presented here is to provide a
unified first-principles framework to compute both orbital
and Knight shifts in metallic systems with periodic boundary
conditions. The setting for the method is density functional
theory (DFT) as implemented in plane-wave, pseudopoten-
tial codes. The projector augmented wave (PAW) approach?”
allows us to obtain accurate results from pseudopotential
quantities. The problem of gauge invariance in periodic
pseudo potential systems is treated using the gauge-invariant
projector augmented wave (GIPAW) approach of Ref. 4. Our
method is entirely self-contained in the sense that we can
compute the NMR shielding of both metallic compounds of
interest and the NMR shielding of reference compounds. As
such, the resulting NMR shifts are directly comparable to
experimental results.

The paper is organized as follows. First, we go over the
physics involved in computing NMR shifts. Secondly, we
briefly review the so-called “smearing technique! which
allows an accurate and efficient treatment of the Fermi sur-
face. We then detail the computation of the orbital shift in
Sec. IV and of the Knight shift in Sec. V. In Sec. VI, we
discuss practical issues dealing with the actual implementa-
tion of the method. The next section is devoted to the study
of limit systems and numerical tests. Finally, the last section
presents results obtained on simple metals.

II. NMR SHIFTS IN METALS

A uniform external magnetic field B applied to a metallic
material generates two different electronic behaviors: (i) a
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so-called orbital response where electrons react to the field as
moving charges and (ii) a spin response where electrons re-
act as spinning charges.

In the following and throughout the paper, we use the
symmetric gauge A(r)=—-BAar, with A the gauge, B the
magnetic field, and r the position in real space. The applied
magnetic field induces an orbital current j,(r’). It can be
obtained as the expectation value of the current operator

J@r"),

J")=J(r") -

(1)

1
J(r')=- 5(p|r’>(l"| +[r'Xr'|p), 2)

c is the speed of light. The first term on the right-hand side of
Eq. (1) is the paramagnetic current operator. The second term
is the diamagnetic current operator as expressed within the
symmetric gauge. Note that at zero field, the expectation
value of J(r') is null.

The orbital current induces in turn an inhomogeneous
field B,(r’), which can be obtained from classical magneto-
statics
-r

B =1 [ ar,ma b o)
c | ~-rf

We will describe our approach to the calculation of an
all-electron induced orbital current j, using pseudopotentials
in Sec. IV. The method is an extension to metals of the
scheme proposed in Ref. 4.

The spin response results from a spin polarization of the
electronic cloud by the external magnetic field. To compute
the resulting net electronic magnetization m(r’), we make a
collinearity hypothesis, whereby m(r’) is supposed parallel
to the applied magnetic field. This hypothesis is used rou-
tinely in hyperfine parameter and Knight shift
calculations.®?>2 Hence, m(r’) can be obtained as

m(r) = Loy ()~ py ()] 4)

where p;(r’) and p (r') are the up and down spin densities.
The electronic magnetization induces a magnetic field B,
which can be obtained from classical magnetostatics

B(r') = fdr5(r -r)m(r)

.\ J i 3m(r) - (r' —r) ~ m(r) R
v’ —rf v’ —rf?

B,(r’) is composed of two terms: (i) an on-site term, called

the Fermi contact [first term in Eq. (5)] representing the di-

pole field at r’, and (ii) a long-distance dipolar term resulting

from the full magnetic dipole distribution m(r’). A method

to compute the electronic magnetization m(r) to first order in
B is given in Sec. V.

For field strengths in the range typical to NMR, the orbital

and spin responses can be computed separately and to first
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order in B. The resulting linear relationships between the
induced first-order fields Bf}l)(r’) and Bil)(r’) and the exter-
nal magnetic field B define the orbital and spin shielding
tensors, respectively, &,(r’) and o,(r’).

BV )=-5,(")-B; BVx)=-&@r')-B. (6)

The isotropic NMR shielding o(R) of the nucleus at position
R is given by the trace o(R)=Tr[7,(R)+7,(R)]/3. The iso-
tropic NMR shift 4, i.e., the experimental observable, is ob-
tained with respect to the isotropic shielding o of a so-
called zero-shift compound, with S(R)=~[d(R) - 0¢].

III. PSEUDOPOTENTIAL SYSTEM

Within a pseudopotential system, one must define the
Hamiltonian and operators with care. Following the projector
augmented wave method?® (PAW), and the gauge-including
projector augmented wave method* (GIPAW), the spin-
Hamiltonian of a system with a homogeneous magnetic field
becomes

_ 1 Bar\®
He=7\p+ +Vscr

2 2c

+ 2 e(l/2c)l‘-RABV]’l{l o~ (20r-RAB sgn(o) %:B ()
R C

o indicates the spin channel. p is the kinetic energy operator,
Vscr the magnetic-field-dependent self-consistent potential,
and an the nonlocal potential at position R. sgn(o) returns
+1 depending on the spin channel. g,=2.0023193 is the gy-
romagnetic ratio of the free electron. The bar above quanti-

ties such as ITI(r indicates pseudopotential reconstructed op-
erators. The above can be expanded to first order in B as

Ho=HO+HY +HD + 0(B?), (8)
1 7(0) 1 nl
H ——p+ F+EVR, 9)
_ 1
Hgl)=—<L+ER/\VIﬁI)~B, (10)
2c R
H') = sgn(0)B (4—+vg F(r)) (11)

Note that we are interested in systems which are spin degen-

erate at zero field, hence H'” is defined independent of spin
and does not carry a spin index. Van is a reconstruction term*
defined as

VR:—[r "l (12)

Square brackets indicate a commutator. L=r Ap is the orbital
momentum operator. In the expansion above first- order terms
are separated into a spin- dependent pertubation ’H and an
orbital-dependent term H . The former is given w1th1n the
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collinear hypothesis discussed in the previous section. Hiir) is
the only spin-dependent term in the expansion to first order

in B of H,. V(SIC)F is the linear part of the self-consistent
potential with respect to B. It is obtained from the functional
derivative of Vg 5 with respect to the first-order electronic
magnetization m!) at zero field,

1020, Vicr(r)
Videlr') = f dr_T(r)

In order to obtain all-electron NMR shifts, we should also
reconstruct the current operator and the electronic magneti-
zation. The former can be expressed to first order as in Ref.
49

mV(r). (13)

J)=JO0) + IV + 0(BY), (14)
with
JO@) =J@') + % AJR(r") (15)
and
10 = B2 e

+ AJR(r’)+—[B/\R r,AJR(r")]|.
R

(16)

The paramagnetic reconstruction operator AJ&(r") and dia-
magnetic reconstruction operator AJg(r') are defined as
follows:

AJR(") = 2 PR PRI (x") | D)

n,m

- <(f)R,n|Jp(r,)|q3R,m (17)
and
B "—-R
AN =~ RS @ e )
—( Dyt )1 | D ) PRl - (18)

The projector functions |pg,) are defined in Ref. 4 and sat-

isfy (PRl Br'm)= O k' Spms Where {[g,)} is a set of
pseudopartial wave functions corresponding to the all-
electron partial wave functions {|¢g )}

The electronic magnetization operator M(r') is recon-
structed using PAW?0

M(r') =2 sgn(a)z%g{lr'xwl + 2 [P [(Pror x|

><cI)R,m - <¢;R,n|r,><r,|¢;R,m>]<ﬁR,m|}- (19)

To linear order in B, the spin and orbital response are not

coupled. Hence M(r') can be reconstructed using PAW only,
rather than the gauge including method GIPAW.
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IV. METALLIC SYSTEM

In order to treat the Fermi surface accurately and effi-
ciently, we follow Ref. 21 and introduce a fictitious tempera-

ture 7 into the electronic system. Let |‘I_fl(,0)) and efo) be the

eigenvectors and eigenvalues of the Hamiltonian H©
defined in Eq. (9). Let f(x) be a smooth step function.

The occupation fr; of energy level i is defined as fr;
(0) (0)

= f( : ), where e( ) is the Fermi energy. The latter is
recovered from the conservation of the number 2N of elec-
trons in the system X, =2N, with i running over all eigen-
states.

It was shown by de Gironcoli®! that the first-order expec-
tation value 0" of an operator 0=0+0W, with © (V)
indicating the zero (first) order pertubation expansion, can be
recovered as

oM =23 Re{(FV|00G () HD W)}
~ - e(l) (0) 0)
+22 fr POV 422, %5< FT)

X (P 0O[F ). (20)

Re is the real value. The sum over i runs over all states. H!
is some pertubation [it will be either the orbital or spin per-
tubation of Egs. (10) and (11)]. The last term accounts for
variations of the Fermi energy to first order efpl). The linear
variation of the Fermi energy can be recovered from

the conservation of the number of electrons Zl-T‘l(e(Fl)

0)__(0)
—ef”)é(—%):& In this work we will always have ef,l)
=0. Function &(x) is defined as the derivative of f(x), &(x)
=—df(x)/dx. The Green functions G(e) is defined as

G(e) = 2 & |~P<°>><\If‘°>| (21)

l

The sum over j runs over all states. For i=j, the limit

(_fFj_fFl 0 (O))Hé(

contains a factor 2 for spin.

(0) (0)

5 ) is taken. Expression (20)

V. NMR ORBITAL SHIFTS

The method presented in this section is an extension to
metals of the scheme proposed in Ref. 4 to compute NMR
shifts in insulators. The Fermi surface is modeled using the
smearing scheme of Ref. 21. For the sake of simplicity, the
proof is given for an all-electron system (i.e., with Va=0).

We first compute the induced current to first order for a
finite system. The result is reexpressed in a form suitable for
extended systems using the sum rule of the Appendix. This
expression is then specialized to the case of periodic systems.
Finally, we give the expression of the orbital current for a
pseudosystem.

A. Finite systems

By setting V=0, the Hamiltonian of an all-electron sys-
tem is recovered from Eq. (8),
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H=HO+HY +0(B?, (22)
1
HO = EPZ + Vscr(r) (23)
1
H=—L-B. (24)
2¢

We denote |V;) the all-electron wave functions. The current
operator for an all-electron system is given in Eq. (1). Using
the linear response Eq. (20), the expectation value j"(r’)
can be recovered as

J0) =22 Ref(W 1 (r) G (Y H, )

BAr’
-— 00, (25)

In the above equation, we have used the assumption that
there is no linear order variation of the Fermi energy 6(1)
=0. Indeed, in a nondegenerate system the linear order
variation of the eigenvalues are e L B | v, ) for
a given field B. Since the zero- order system 1s 1nvar1ant upon
time reversal, the wave functions |\I’( ) can be chosen real.
Hence, we have e( =0. It follows from the condition on efp')
given in Sec. III that (1) =0.

Equation (25) is Valrd for a finite system only. Indeed, for
r'—o, BAr'p(r’) diverges in an extended system. There is
a similar divergence in the other term of Eq. (25), such that
the orbital current itself is finite. Yet, from a numerical point
of view, Eq. (25) cannot be used to compute j(r’).

B. Extended system

Following Ref. 4, Eq. (25) can be reexpressed using a
generalized f-sum rule (given in the Appendix) into a more
practical expression for an extended system. We have

BAr’

1
PO =2 fp,r(‘l’go)lz[B At 3 ()W),

(26)

where J” is an odd operator and BAr'-r an even operator.
Using the sum rule, Eq. (25) can be rewritten as

J6) = S RPN )G - ') A DI,

(27)

Since position quantities now enter as differences, it follows
that the above expressions are invariant upon translation of
the system. Furthermore, the Green function at finite tem-
perature is short ranged. It follows that contributions to the
orbital current vanish for large values of (r—r’) in Eq. (27).

C. Periodic system

At this point, we have a formalism adequate for obtaining
the current response in extended metallic systems. Of those,
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only translationally invariant periodic systems are computa-
tionally feasible. Hence, we now introduce these transla-
tional symmetries explicitly into the equations for the current
response. We write |\I’(0))—e’k"|u(0)) the electronic Bloch
states of crystal momentum k. eg is the corresponding ei-
genvalue. <r|u 0)) is a normalized cell-periodic function. In
the spirit of Ref. 4, we transform the real-space dependence
(r—r’) into a reciprocal space dependence by introducing the
limit

o1 ) ,

(r-r')=lim— 2, [ _mauar=r)] " (2g)
q—0 qa:x,y,z

where u,_, . is real- space basis. This transformation is sub-
ject to the condition |[r—r'| <C (C a vector) which is veri-
fied since contributions to the orbital current in Eq. (27) van-
ish for large values of (r—r’). The orbital current is then
recovered as a numerical derivative

@) = m— S0, =S = )], (29)
9—029

where

S(I’ ,6]) = 7 E 2 Re{ _<u |J£,k+qua(r,)

ka=x,y,z i,k

X Girgu (€10B A, (p+K)[u)) } (30)

N, is the number of k points in the discrete integration of the
Brillouin zone. We have introduced the k-dependent Green
function Gy (e€)

6(0)—6>
T D)

W —f<—
Gx(e) = 2 ()
J

ik~

(31

: P
and the k-dependent paramagnetic current operator J |,

Bl == S+ 0l - S+ K. (32)

Equation (29) allows us to compute the orbital current of
an all-electron system. In practice, it is more efficient to use
pseudopotentials when expanding the density on a plane-
wave basis set. We now give a general expression for the
orbital current in periodic pseudopotential systems using the
GIPAW reconstruction scheme of Ref. 4.

D. Periodic pseudopotential system

The orbital current can be obtained from a pseudosystem
using Egs. (8) and (14). Following Ref. 4 as well as the steps
given above, one can find an expression for the orbital cur-
rent suited to a periodic pseudosystem.

We find that the current is composed of three components.
(i) The bare current J (r’), (ii) the paramagnetic augmen-
tation current J Ap (r ), and (iii) the diamagnetic augmentation
current j, d(r’)
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FVE) = i) + 30" + ). (33)
The diamagnetic augmentation current is simply the ex-
pectation value of the operator given in Eq. (18),
(1) = 22 (VAT PY) (34)
Note that the projectors |, g) make AJ&(r’) short ranged.
Furthermore since position quantities enter as differences
JAd(r’) is translationally invariant.

The paramagnetic augmentation and bare currents are ob-
tained as numerical differences

-]bare(r ) - hm [Sbare(r ,6]) Sbare(r Q)], (35)

1 , ,
I =lim——[S,,(r'.q) =Sy, (r'.—q)].  (36)
q—02q

The two newly introduced functions are defined as

Sbare(r ’q = E ERC{— _(O) kk+qu (l‘l)
Nk a=x,y,z i,k «
><§k+qua(€ik)B AUy - Vk+qua,k|ﬁ:('l(?>} (37)
and
SAp(r q) =" 2 ER { uzk |AJL 7k k+qu,, (r’)
Nk a=x,y,z i,k
X §k+qua(6ik)B Al - Vk+qua,k|”7§l€>>} . (38)
|I/_l§l(z)> is the cell-periodic function such that |\f’l(.]2))
=e'kr| ﬁgg)). The Green function Gy (€) is redefined using the

pseudoeigenstates

(0)

) frow- f( - 6)
gk(ez('l(?) = E 0) | _(O)| (39)
j fjk — €

A k-dependent nonlocal pseudopotential V;’ik, is also de-

fined, which acts on k Bloch states on the left and k’ states
on the right

AR I R ) (40)

T nm

The periodic projectors |p7n) are obtained from the real-
space projectors |Py,,.,) as

P, =2 e K5 ), (41)
L

where the sum runs over the lattice vectors L. Cell-internal
atomic coordinates are noted with 7. The velocity operator is
also redefined as

PHYSICAL REVIEW B 76, 165122 (2007)

1
Vi =p+Kk’ + 7[r,V;1(1’k,]. (42)

. . P
Finally, a k-dependent paramagnetic current operator Jy ;.
and its affiliate pseudo-operator AJ}y sk are introduced:

1 1
Jop(r) =~ S+ K)[r' X' - 5|l"><l"|(p +k’), (43)

AW e = 20 1P A Braral I () bz )

A BLeral VO ProeadXFEL. (44)

The orbital shielding is then obtained from Eq. (3) and
from its definition B,=-¢,-B.

VI. KNIGHT SHIFT

We now turn to the Knight shift, which results from the
electrons interacting with the field as spinning charges. More
specifically, the magnetic field induces a net electronic-spin
which then interacts with the magnetic nuclear dipole
through the hyperfine interaction [Eq. (5)]. The Knight shift
measures this interaction.

The Hamiltonian to first order is given up to first order by
Eqgs. (8), (9), and (11),

1
HO =207+ Vidr., (43)
H(l) = sgn(o-)B(— + VSCF> (46)

The linear order wave functions |\I’( ) and eigenvalues 6(1)

are antisymmetric with respect to field direction, i.e., when B

is mapped onto B+—-B, we expect e(l) — e(l_) and

|\P§(IT)>H |\If§;) ), where & is the spin opposite to ¢. It follows
then that |\If§%)>=—|\lf§j)) and efpz—efi). From this last con-
dition, it follows that there is no variation of the Fermi en-
ergy to first order e =0.

For simplicity, the following is obtained directly for the
pseudosystem. Indeed, the reconstruction of the constant part
of Hffl) is zero. Furthermore, we neglect the polarization of
the core electrons by the valence spin density. In practice,
this is equivalent to neglecting the PAW reconstruction of the
self-consistent pertubation.

Exploiting the spin antisymmetry described above, the
electronic magnetization to first order in B can be obtained as

= ’ T NA (v \ (7 1

) =2 Re{mfﬁ‘”lM(r )G(e")> () = H “>)|~1f<°>>}
(47)

with the quantities defined previously. Once the electronic

magnetization is obtained, the Knight shift can be computed
from Egs. (5) and (6).

165122-5



D’AVEZAC, MARZARI, AND MAURI

VII. PRACTICAL IMPLEMENTATION

The goal of the method presented above is to provide a
practical and quantitative approach to computing NMR shifts
in metals. It was implemented in a parallel plane-wave
pseudopotential electronic structure code. We now outline
the features specific to the NMR method. We shall first dis-
cuss the application of the Green function, common to both
orbital and Knight shift computations, and then turn to the
specifics of each type of response.

A. Linear response

We are interested in computing first-order quantities [see
Egs. (35), (36), and (47)] such as

D=2 (TPl0g(e"yHI[FY), (48)
where O is an operator and H") some pertubation. The green
function is expressed as in Eq. (21). Both the sum over i
above and that over j in G(€) range over all states. Such an

expression cannot be calculated directly. It was shown by de
Gironcoli in Ref. 21 that o) can be computed via an alter-

nate first-order wave function |SW l(.l)),

o =23 Re{(P\V|0| sy}, (49)

such that the sum over i runs only over partially occupied
states. |5\Ifl(.1)> can also be computed without reference to
empty states:

[HO+ Q- o) = - [f, - NIHD|TO),

Q = 2 aj|\1_fj(0)><\1_f;0) ) N[ = E Bi,j| _j )
J J

a;= max(e(FO) +nT - 6}0),0) ,

Jri=frj
B fFlgl]+fF]gjl+aj Z)) 1(:0 g]z (50)

g(x) is a symmetric function such that g(x)+ g(-=x)=1. We
0)  (0)

define g;;= g(E—UL) Partially occupied wave functions are
defined such that E(o)< E(o) nT<0 (a;#0), where n is a
suitably large number We find that orbital and spin shield-
ings are converged for n=7.

B. Orbital shifts

The method presented above differs only slightly from the
prior method for insulators. We will address only these dif-
ferences and defer the interested reader to Ref. 4.

The macroscopic induced field Bf)l)(G=0), where G is a
vector of reciprocal space, is not a bulk property. Indeed it
results from the surface current in the sample, and hence
depends on the shape of the sample. Following Ref. 4, we
compute it through the so-called bare macroscopic suscepti-
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bility Xpare consistent with the on-site approximations for the
reconstruction current

2.
Bfll)(G = O) = 5477Xbare : B’ (51)

Xoare iS the contribution to the macroscopic susceptibility
from the bare current J(l) We adapt the ansatz of Ref. 4 to
the case of metallic compounds

S = iM—[F (@) + F— ) —2FO)],  (52)
q—04q

where F;;=(2-6;;)Q;,(¢). i and j are Cartesian indices:

0@)=-55-"0 2 ZRe{(ilu,A(p+k)
Nk‘Q‘ a=x,y,z i,k
X §k+qua( EEE))ua A vk+qua,k|”7§2)>} . (53)

When interested specifically in the susceptibility X,, we
use another ansatz from Ref. 4, with

- = - -
Xo= 1iH(1);[th(Q) +F(=q) = 2F*°(0)], (54)
qH
th(CI) == 2 E E Re{(”zk |ll A Vg k+qu
NkQ a=x,y,z i,k
ngﬂ]ua(ez('g))ua A Vk+qua,k|ﬁ§l(i)>} (55)
and Fj}'=(2-6,)Q;7'(q). At zero temperature, X, and Xpqe

above and the corresponding quantities of Ref. 4 are equiva-
lent.

C. Knight shift

The variation of the self-consistent potential V(SIC)F(I') is
evaluated using a simple self-consistent loop over the calcu-
lation of the first-order wave functions. In other words, the

spin density is recomputed at each step and V(Sl (r) updated.
In the case of local density approximations, VSCF(r) is sim-
ply

IVscp(r) o),

SIC)F(I')— py(r)

= ( [ )=V,  (56)

where Vlc and V}(C are the exchange-correlation potentials of
the up and down spin channels, respectively, computed from
the ground-state densities. pgl)(r):pﬁl)(r)—pi” (r) is the first-
order spin density at r. These derivatives are evaluated nu-
merically for each point of the real space mesh. The self-
consistent Hartree potential is not spin dependent, and hence
it is not modified by variations of the spin density.
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A pertubation using generalized gradient approximations
can be implemented in much the same way. We find that
convergence with respect to the number of iterations over
V(SIC)F(r) can be achieved efficiently without mixing.

VIII. NUMERICAL TESTS
A. Interacting homogeneous gas

NMR shifts require the computation of the macroscopic
susceptibility in order to account for the diamagnetic shield-
ing resulting from surface currents. We will now test these
calculations against available analytical results for the homo-
geneous electron gas. The orbital (y,) and spin (x,) suscep-
tibilities per unit volume of this model system are given by
the formulas®*

1
Xo=" @g(ep),

oS ey —
Xs= 4czg F Pe.’
1+g(€F) 9 ?
3 N 1/3
g(ep) = (?5) (57)

N is the number of electrons in the system, €. is the
exchange-correlation energy per unit volume as given by
PBE,” and g(€y) is the density of states at the Fermi energy.
The derivative of €, is evaluated numerically.

The fractional factor in y; results from the exchange cor-
relation. More specifically, the magnetic field induces a po-
larization of the electrons at the Fermi energy, which then
propagates to lower lying levels through exchange-
correlation interactions. Indeed, for a noninteracting homo-
geneous gas, the spin susceptibility reduces to
=g,/ (4c)g(ep), i.e., it is simply proportional to the available
degrees of freedom at the Fermi surface. This propagation
effect is rendered computationally by the self-consistency of
Eq. (47).

To simulate a homogeneous gas within a pseudopotential
code, we construct a pseudopotential with zero potential and
zero atomic charge. A temperature of 0.4 eV is introduced
into the system. We use an fcc unit cell with a cell parameter
of 3.61 A. The Brillouin zone is sampled with a 60X 60
X 60 Monkhorst-Pack grid. Different electronic densities are
obtained by varying the number of electrons in the cell.

Results are given for a range of densities [parametrized by
ria,=(3/4mp)’, where a, is the Bohr constant] in Fig. 1.
X’s represent the response computed with our approach and
solid lines are analytical results. The PBE? exchange-
correlation functional is used. Results agree to within nu-
merical noise.

IX. SIMPLE METALS

The object of the present work is to build a quantitative
method for computing NMR shifts in metallic compounds.
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FIG. 1. (Color online) Spin and orbital susceptibility per unit
volume of the interacting-electron homogeneous gas with respect to
rilay=(3/47p)>. Solid lines represent analytical results while dots
represent results computed with this code at 0.4 eV smearing. The
susceptibilities are dimensionless. The exchange correlation is mod-
eled with the PBE functional.

As such, we now study three simple metals: bulk aluminum,
bulk lithium, and bulk copper.

Experimentally, NMR shifts are obtained with respect to
the response of so-called zero-shift compounds. We will first
study this aspect of the problem, and compute the shielding
of these compounds. We will then give the computational
details for each metal, and finally examine the NMR shifts
and macroscopic magnetic susceptibilities.

A. Computational details

Computational details are reported in Table I. For all cal-
culations, we use the Marzari-Vanderbilt smearing function®®
and Troullier-Martins?’ norm-conserving pseudopotentials.
Following experimental conventions, we use a spherical
sample when accounting for surface currents. We use the
PBE? exchange-correlation functional.

Aluminum and copper are cubic face centered metals with
a=4.05 A and a=3.61 A, respectively. Lithium is body cen-
tered with a=3.49 A. We use experimental cell parameters
as given by Ref. 24.

TABLE 1. Computational details. Smearings are given in eV.
Plane wave cutoffs for both Knight and orbital shift calculations are
given in Ry. N, stands for the number of independent k points in the
irreducible wedge of the Brillouin zone. The Brillouin zone is rep-
resented with a discrete Monkhorst-Pack grid (Ref. 28). The
Marzari-Vanderbilt smearing function (Ref. 26) is used.

Cutoff Ny
Metal Smearing Knight Orbital Knight Orbital
Al 0.15 15 15 29 820 62 790
Li 0.2 15 15 8094 11 900
Cu 0.2 75 90 1300 5740
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TABLE 1II. Reference shifts ¢™f. The “compound” columns
gives the solid which is used to obtain the reference shift, its cal-
culated isotropic shielding o', and its experimental isotropic shift
Oexp- The reference shift is obtained using the relationship &,y,=
— (o= o""). Shieldings are converged to better than a ppm. Shield-
ings and shifts are given in ppm.

Compound
Atom Zero-shift compound Type ath Oexp ot
Al AlCl; in heavy water ~ AIPO; 519 45 564
Li Aqueous LiCl Li,O 86 10 96
Cu CuBr powder CuBr 424 0.0 424

B. Zero-shift compounds

Experimental NMR shifts are obtained as

u-s-u=-u-(F-y) - u, (58)

where u is the direction in which the external magnetic field
is applied, & is the shielding of the compound, and &, is the
shielding of the zero-shift compound.

Rather than evaluating &, directly, we will compute the
shielding of some compound for which the NMR shift is
well known experimentally, and then deduce &, from Eq.
(58).

The reference shifts for each element Al, Li, and Cu are
given in Table II. Note that all references are computed on
insulators, and hence that the shieldings result only from the
orbital response. The latter are computed using the method
for insulators described in Ref. 4.

C. Behavior with respect to smearing

The computation of NMR shifts requires a very fine de-
scription of the Fermi surface. Hence, one must take care that

1.05 —

1.03 |-
// N
1.01 f/ AN =

0.99 [~ =

097 =

Spin Susceptibility (normalized)

0.95 \ \ \ \
0 02 04 06 08 1.0

Smearing (eV)

FIG. 2. (Color online) Convergence with respect to smearing
(o) of the spin susceptibility of aluminum [green (triangles)],
lithium [red (squares)], and copper [blue (crosses)]. For comparison
purposes, the spin susceptibility of each metal is normalized to its
value at the lowest achieved smearing. The x axis represents smear-
ing in eV.
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FIG. 3. (Color online) Convergence with respect to smearing
(o) of the orbital susceptibility of aluminum [green (triangles)],
lithium [red (squares)], and copper [blue (crosses)]. For comparison
purposes, the orbital susceptibility of each metal is normalized to its
value at the lowest achieved smearing. The x axis represents smear-
ing in eV.

the computed shifts are indeed converged with respect to
smearing. Figures 2 and 3 report the convergence behavior
with respect to smearing of, respectively, the spin macro-
scopic spin susceptibility, and of the macroscopic orbital sus-
ceptibilities for aluminum, lithium, and copper. Figures 4 and
5 report the behavior of the Knight shift and of the orbital
shift, excluding the contribution of the macroscopic suscep-
tibility. We find that the orbital susceptibility is the hardest to
converge. This is coherent with the fact that as a second-
order derivative of the total energy, it depends on very fine
details of the Fermi surface. On the other hand, the spin
susceptibility is obtained as the average over the unit cell of
the spin density. As such, it is comparatively insensitive to
details of the Fermi surface, and converges much faster with
respect to the smearing parameter. A similar hierarchy is ob-

1.05 —

1.00

0.95

Knight Shift (normalized)

0.85

o

02 04 06 08 1.0
Smearing (eV)

FIG. 4. (Color online) Convergence with respect to smearing
(o) of the Knight shift (not including the spin susceptibility) of
aluminum [green (triangles)], lithium [red (squares)], and copper
[blue (crosses)]. For comparison purposes, the Knight shift of each
metal is normalized to its value at the lowest achieved smearing.
The x axis represents smearing in eV.
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Orbital Shift (normalized)

0.75 \ \ \ \
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FIG. 5. (Color online) Convergence with respect to smearing
(o) of the orbital shift (not including the orbital susceptibility) of
aluminum [green (triangles)], lithium [red (squares)], and copper
[blue (crosses)]. For comparison purposes, the orbital shift of each
metal is normalized to its value at the lowest achieved smearing.
The x axis represents smearing in eV.

tained for the convergence behavior of the Knight and orbital
shifts (not including their respective susceptibilities). It
should be noted that in the examples provided here, the
Knight shift is by far the largest component of the total NMR
shifts. Overall, we expect the total NMR shielding to be
converged to better than 4% with respect to smearing and
k-point density.

On the other hand, convergence of the magnetic suscep-
tibility can prove quite arduous. For instance, the orbital
susceptibility of aluminum varies from -0.3 to
+5.6107% cm? mol™! within the temperature range 0.3 to
0.1 eV. Aluminum presents the slowest convergence of the
three metals studied in this work.

D. Results and discussion

1. Macroscopic magnetic susceptibility

The computed magnetic susceptibilities are referenced in
Table III. Overall, agreement is very good. It contains a dia-
magnetic contribution from the core electrons. This contribu-
tion is constant within the frozen core approximation and is
computed once and for all from an atomic code for each
pseudopotential. Table IV compares the spin and orbital sus-

TABLE III. Isotropic magnetic macroscopic susceptibility (in
1070 cm? mol™!, moles of atoms). The susceptibility contains three
components: (i) the orbital susceptibility (x,), (ii) the spin suscep-
tibility (x,), and (iii) the diamagnetic susceptibility of the core elec-
trons (Xcore)- As shown in Fig. 3, we were unable to converge the
orbital susceptibility of aluminum.

Metal X Xo Xeore X" Exp.

Al 177402 19+5 -3.0 166  16.5 (Ref. 29)
Li 284+05 0.7+1 —0.7 284 245+0.3 (Ref. 30)
Cu 108402 —13.1+1 -45 —-68  —53 (Ref. 31)
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TABLE IV. Isotropic magnetic macroscopic susceptibilities (in
107° cm® mol™", moles of atoms). x” is the noninteracting spin sus-
ceptibility, x, the interacting spin susceptibility, and y, the orbital
susceptibility. For comparison, the susceptibilities of a homoge-
neous gas of the same mean density as the system is given.

System X? Stoner Xs Xo

Al 13.2 1.34 17.7 1.9
Gas 12.5 1.31 16.4 -4.2
Li 15.5 1.83 28.4 0.7
gas 10.2 1.48 15.1 -34
Cu 9.5 1.14 10.8 -13.1
Gas 15.3 1.18 18.1 -5.1

ceptibilities of each metal to an electronic gas of correspond-
ing mean density.

When examining the band structure of aluminum, one
finds that it is quite similar to that of a homogeneous gas of
equivalent density. As a result, the noninteracting spin sus-
ceptibility and the Stoner factor of these two systems are
remarkably close. This indicates that not only are their den-
sity of states at the Fermi level similar, but also the Pauli-
mediated behavior of the electrons with respect to a pertuba-
tion of the spin population. On the other hand, the orbital
susceptibilities of these two systems are quite different (note,
however, that for aluminum, we did not achieve good con-
vergence of this quantity with respect to smearing). Indeed,
in an ideal gas, the contribution of lower lying electrons
cancels out exactly. Thus, only electrons at the Fermi level
contribute to the orbital susceptibility. This is usually not true
in more complex systems. Even small differences between
the band structures of aluminum and the homogeneous gas
will result in appreciably different orbital susceptibilities.

Lithium presents a case very different from the one above.
Its noninteracting spin susceptibility is much larger than that
of the homogeneous gas. As a result, the large polarization at
the Fermi level yields a large polarization of the lower lying
electronic wave functions. The Stoner factor of lithium is
much larger than that of the homogeneous electron gas. In-
terestingly, lithium presents very little orbital susceptibility.

Copper presents a different picture still. Indeed, it has a
rather low density of states at the Fermi level compared to
the homogeneous gas. As a result, both noninteracting and
interacting spin susceptibilities are small. On the other hand,
the large number of lower lying electrons, including d elec-
trons, yield an appreciable diamagnetic orbital susceptibility.
As such, of the three metals studied here, it is the only one
with a diamagnetic susceptibility. It is worthwhile to note
that only the orbital susceptibility can explain such a behav-
ior, and that hence a complete understanding of the suscep-
tibility of copper requires the computation of both spin and
orbital contributions.

2. NMR shifts

The computed isotropic NMR shifts are reported in Table
V. Table VI also reports o/ 0'?, a quantity akin to the Stoner
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TABLE V. Isotropic NMR shifts of a few simple metals. For
comparison, the orbital shielding with respect to the reference and
the Knight shifts are given as well. The isotropic NMR shifts are
given by the relationship §=—(o,+0,— 0,). Estimates of the con-
vergence with respect to temperature and Brillouin zone sampling
are given in the first two columns.

Metal oy Ty— Oper 6 Exp.

Al —-1858+70
Li —266+5
Cu -2336+20

-16+8 1874
-15+1 281
-450+10 2786

1640 (Ref. 34)
260 (Ref. 29)
2380 (Ref. 29)

factor of the susceptibility, where o is the Knight shift com-
puted including self-consistency, and o"? the Knight shift
computed without self-consistency.

The NMR shift of aluminum results predominantly from
the Knight shift. It is worthwhile to note that the orbital and
Knight shielding tensors are of similar magnitude, —548 and
1862 ppm, respectively. Yet, whereas the Knight contribution
enters into the NMR shift as a whole, the orbital part enters
as a variation of the absolute orbital shielding tensor between
pure Al and ionic Al (which presents no Knight shift), yield-
ing a much smaller contribution. Previous theoretical
calculations®? predict a Knight shielding of o,=1707 ppm.
Although the authors of Ref. 32 do not compute NMR shifts
comparable to experiment, in the sense that they do not ref-
erence their results to a computed zero-shift compound, their
result is close to experimental value because of the predomi-
nance of the Knight shift. As will be the case for the other
metals studied here, the ratio o,/ (r? and the Stoner factor are
quite close in value. Indeed, both quantities represent the
same physical phenomena, namely, the interplay between the
Kohn-Sham potential of the valence electrons and the spin
polarization at the Fermi level.

Again, the orbital shift of lithium is by far smaller than its
Knight shift. As mentioned previously, the lower lying levels
are heavily polarized by electrons at the Fermi surface. The
authors of Ref. 33 estimated the Knight shift of lithium in-
cluding core polarization. Even in this case, where from Fig.
6 one would expect a rather high polarization, the contribu-
tion is only of the order of 5% of the whole (250 ppm). More
recently Mishra et al. estimate a Knight shift of 301.9 ppm.*?
Overall, our calculation agrees very well with experimental

TABLE VI. Isotropic NMR shifts of a few simple metals. aj? is
the noninteracting Knight shift computed without the self-consistent
part of the pertubation. The ratio o,/ 0'2 is the Knight shift equiva-
lent of Stoner factor of the spin susceptibility. Unsurprisingly, this
ratio is quite close to the Stoner factor. Indeed, both are a measure
of the interplay between the spin polarization at the Fermi level and
lower lying valence electrons.

Metal 0'? o,/ (7_? ) Exp.

Al -1330 140 -1858 -16 1874 1640 (Ref. 34)
Li -157 1.69  -266 -15 281 260 (Ref. 29)
Cu -2121 1.10 -2336  —-604 2940 2380 (Ref. 29)
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FIG. 6. (Color online) Band structure of lithium. The width of
the line is representative of its contribution to the isotropic Knight
shift. The Fermi energy is set to zero on the energy scale. Compu-
tations were done with a smearing of 0.2 eV, for which the lT de-
pendence is obvious at the Fermi energy. The “divergence” in T
disappears with the Brillouin zone integration.

values. The ratio o,/ crg is relatively smaller than the Stoner
factor. One should note that the latter is a ratio of the average
spin polarization over the whole unit cell, whereas the
former is the ratio over the spin polarization at a single point
of the unit cell, namely, the position of the lithium nucleus.
The discrepancy between the two quantities implies simply
that the effect of the spin polarization is smaller at the
nucleus than on average across the cell.

Of the three metals studied here, copper is the only one
which presents an appreciable orbital contribution to the
NMR shift. It is probably a result of the filled d bands. None-
theless, as large as the orbital contribution may be, the
Knight shift is larger still. Interestingly, the computed abso-
lute orbital shielding tensor (including both valence and core
contributions) is rather small (26 ppm). It would seem that a
substantial paramagnetic contribution from the valence elec-
trons cancels out the substantial diamagnetic contribution
from the core electrons (computed to be 2171 ppm). In other
words, whereas in Li and Al, the reference compound and
the metals had similar orbital shielding tensor, the orbital
behavior of metallic Cu is very different from that of copper-
bromide. As was the case for the magnetic spin susceptibil-
ity, the spin polarization at the Fermi level has little effect on
the lower lying levels, resulting in a relatively small a's/q?
ratio and Stoner factor.

X. CONCLUSIONS

We have presented a unified method for computing NMR
shifts in metals. Our approach yields shifts which are directly
comparable to experimental data, in the sense that both or-
bital and Knight shifts are computed. It was implemented
within a pseudopotential, plane-wave density functional
theory code. All-electron quantities were recovered using the
PAW approach. Gauge invariance was enforced with GIPAW.
We compared results given by our approach to known ana-
lytical solutions for the homogeneous gas. Finally we suc-
cessfully computed the NMR shifts of simple metals, with
good comparison to experimental results. In conclusion, we
have described a method which can accurately recover the
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NMR shifts of real metallic systems, thus allowing a better
interpretation of NMR data. Next, we expect to study semi-
metallic systems, such as graphite and nanotubes, for which
an accurate description of both orbital and Knight shifts is of
paramount importance.
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APPENDIX: THE GENERALIZED f-SUM RULE

Let O and &€ be odd and even operators, respectively, on
time reversal, i.e., for any real wave functions |¥) and |¥'):

(V|O[W") == (V'|O[W), (V[EW')=(V'|E[W).
(A1)

Let |¥,) be the eigenwave functions of the Hamiltonian
H, with eigenvalues ;. Let f(x) be a smearing function and
o the smearing. Then the occupation factors are defined as
Jii= f(%) (where i,j=F stands for the Fermi energy ey),
and finally, let

§= 2 Re{ <\I,i|0g(6i)%[g’H]|‘Pi>} > (A2)

; (A3)

6(e)= 3 L e ),
Jj i

]

where Re is the real part. Then, using the fact that H|W;)
=¢|W,), we arrive at the expression

§=- E (fF,j _fF,i)Re|:<\I,i|0|\Ifj><‘Pj|%5|\Pi>:| . (A4)
i.j

which can be separated into two sums
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1
§= EfF,i Re|:<\l,i|o|\pj><qu|15|q,i>:|

ij

(AS)

1
- E fF,j Re <\Pi|0|qu><qu|;g|q}i>:| .
i.j

Swapping dummy indexes in the second term
1
s = E Sr Re|:<\l,i|0|\lfj><qjj|15|qji>:|
i.j

1
- EfF,l Re|:<\1’j|0|q,j><lpi|Ig|\Fj>:|~ (A6)
ij

Then, using the parity of O and &:
1
5= fr Re{<wi|0|~vj><wjl;e|w,->}
)

1
+2fF,i Re|:<q,i|0|q}j><lpj|:g|qli>:|- (A7)
ij

After remarking that X[ W, ¥;|=1:

5= 22 fri Re{(‘lﬂ%(’)ﬂ‘l’i}]. (A8)

Expanding the real value, we arrive at the result

- 2 Re{ <\I,i|0g(5i)%[g’H]|qji> = 2fF,i<Wi|%[5, O]|q’i>-

(A9)

Expression (A9) and Eq. (A7) in the Appendix of Ref. 4
differ by the definition of the Green function and the range of
the sum over states. At zero temperature and in insulators,
the results are equivalent.
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