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We study the system of a dilute gas of fermions in three dimensions, with attractive interactions tuned to the
unitarity point, using the nonperturbative restricted path-integral Monte Carlo method. The pairing and super-
fluid properties of this system are calculated at finite temperature. The total energy at very low temperature
from our results agrees closely with that of previous ground-state quantum Monte Carlo calculations. We
identify the temperature T*�0.70�F, below which pairing correlations develop, and estimate the critical tem-
perature for the superfluid transition Tc�0.245�F from a finite size scaling analysis of the superfluid density.
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The recent experiments, starting with generating a degen-
erate gas of cold atoms,1 the use of Feshbach resonance to
tune the effective interaction between the fermions,2,3 the
measurements of the gap to identify a pairing scale,4 and the
measurements of vortices5 to identify the superfluid state,
have all given an impetus to the study of superfluidity in the
BCS Bose-Einstein condensation �BEC� crossover regime.

The nature of superconductivity or superfluidity in a
many-particle system with an increasing pairing attraction
was shown6,7 to interpolate smoothly between the BCS re-
gime for weak attraction between the fermions and the BEC
regime for strong coupling. In the weak coupling regime, the
Cooper pair size is much larger than the interparticle spacing,
and the simultaneous pairing and condensation of fermions
are well described by the BCS theory. In the strong coupling
regime, fermions form strongly bound bosonic molecules at
a pairing temperature scale T* that is considerably higher
than the BEC temperature Tc.

In a two species system of fermions with an attractive
interaction between them, the unitary point is defined by the
divergence of the zero energy s-channel scattering length as
for two particles in free space. The unitary point is interest-
ing since it describes a strongly correlated system with uni-
versal properties.8 In general, there are two length scales that
define the system: the interparticle spacing �n−1/3 and the
scattering length as, which contains information about the
interaction potential. At the unitary point, however, since as
diverges, all the properties of the system are described by a
single length scale kF

−1 or energy scale �F, where kF
= �3�2�3n�1/3 is the Fermi momentum of the corresponding
noninteracting system.

At the unitarity point, there is no small parameter; there-
fore, well controlled numerical methods are needed to calcu-
late the properties of the system. Here, we present the first
calculation of the superfluid density and other pairing corre-
lations as a function of temperature at the unitary point in a
continuum model of a two component fermion gas with at-
tractive pairwise interaction between the species. Our main

results are �i� an accurate determination of the temperature
dependent internal energy which makes it a viable tool for
thermometry for cold atoms, �ii� determination of the pairing
scale T*�0.7�F from growth of density correlations of op-
posite spin fermions, and �iii� determination of the conden-
sation scale Tc�0.25�F from a finite size scaling analysis of
the superfluid density. We use the restricted path integral
Monte Carlo �R-PIMC� technique, which is the fixed-node
extension of the continuum PIMC method to fermionic
systems.9,10 This technique has recently been used to study
helium-3, electron-hole liquids, and many body hydrogen.11

We consider an unpolarized system of two spins �or two
hyperfine species� of particle density n. For the bare two-
particle interaction at unitarity, we use the potential �also
used in Ref. 14�

v�r� = −
2�2

m

�2

cosh2��r�
, �1�

where 2/� is the effective range of the potential. This poten-
tial has its only bound state at zero energy, with the eigen-
function given by tanh��r� /r, and a divergent scattering
length as. We measure distances in units of r0, the average
interparticle spacing, which gives the density n=3/ �4�r0

3�
�0.238 and kFr0=1.919. The energy scale is �0=�2 /mr0

2,
and the Fermi energy �F=1.841�0. All the following results
were obtained with �r0=12. In the dilute limit, with the
interparticle spacing much larger than the range of the poten-
tial �r0�1, the exact form of the potential is unimportant;
only the scattering length matters.

Method. For a system of distinguishable quantum par-
ticles, the density matrix in configuration space can be writ-
ten as a path integral over coordinate space variables at dis-
crete imaginary-time intervals as

PHYSICAL REVIEW B 76, 165116 �2007�

1098-0121/2007/76�16�/165116�6� ©2007 The American Physical Society165116-1

http://dx.doi.org/10.1103/PhysRevB.76.165116


��R0,RM ;	� =� dR1 ¯ dRM−1 exp�− �
m=1

M

Sm� . �2�

Here, Rm denotes a configuration of N /2 up �labeled with ↑�
and N /2 down �labeled with ↓� fermions at the mth time
slice. The total extent in the imaginary-time direction, 	
=1/kBT, is divided into M time slices each of size 
 so that
	=M
. The link action Sm is the sum of the kinetic-action
terms and potential action Um given by

Sm =
3N

2
ln�4��
� +

�Rm − Rm−1�2

4�

+ Um, �3�

with �=�2 /2m. Equation �2� is the basis for a quantum-
classical isomorphism between a system of quantum par-
ticles and a classical system of interacting polymers. Each
particle path is interpreted as a polymer, with the beads of
the polymer connected with springs described by the kinetic
action. The potential action describes the interaction between
beads of different polymers.

For indistinguishable quantum particles, the density ma-
trix when evaluated in configuration space requires to be
symmetrized for bosons and antisymmetrized for fermions
over the particle permutations. For fermions, this antisymme-
trized permutation sum is

�F�R,R�;	� =
1

N!�P �− 1�P��PR,R�;	� . �4�

In the classical picture, a permutation P involving n particles
corresponds to the cutting and combining of the correspond-
ing n polymers into one large polymer. As paths extend in
space at low temperatures, these quantum exchanges become
more likely.

For fermions, however, a straightforward evaluation of
the fermion density matrix given by Eq. �4� leads to the
fermion sign problem. It arises due to the cancellation, at low
temperature, of approximately equal contributions from the
positive and negative sign permutations, leading to an expo-
nentially vanishing signal-to-noise ratio in the Monte Carlo
calculation.10 In particular, the efficiency of the simulation �
decreases with particle number N and inverse temperature 	
as ��exp	−2N�2��	�3/2
.

The R-PIMC method starts from the observation that the
path-integral evaluation of the density matrix �4� is the solu-
tion to the Bloch equation which governs the imaginary-time
evolution of �F�R ,R� ;
�,

−
�

�

�F�R,R�;
� = 	− ��R

2 + V�R�
�F�R,R�;
� . �5�

This second order partial differential equation can generally
be solved in a region of “space-time” by specifying the ini-
tial condition at 
=0 and the boundary conditions for 

0.
The initial condition given by �F�R ,R� ;0� is

�F�R,R�;0� =
1

N!�P �− 1�P��PR − R�� . �6�

It can further be shown10 that it is sufficient to provide the
exact boundary conditions on the surface of this region of

space-time to obtain the exact solution of the fermion density
matrix inside. The density matrix is a function of 2dN+1
variables �the end configurations and time�. To define the
region of integration of the Bloch equation, we fix one of the
configurations R as the reference point R* and, for the result-
ing dN+1 dimensioned space-time, choose the initial condi-
tion �6� at 
=0 and zero-boundary conditions for all 

0.
Inside this integration region, the solution is given by the
usual Boltzmannon path-integral �2�. Incorporating the
above, the fermion density matrix takes the form10

�F�R*,R�;	�

=� dR0�F�R*,R0;0��
R0→R���R*

d�R�
�
e−S	�R�
�

.

�7�

The reach �R*,
 of R* is the region of configuration space
occupied by boundary-avoiding paths starting from R* and
extending in time to 
. The solution �7� is clearly compli-
cated by the dependence of the reach on �F�R* ,R ;
�, the
very quantity we are trying to compute. At any given time 
,
the boundaries of the reach, called the nodal surfaces, are
complicated dN−1 dimensioned hypersurfaces, and not gen-
erally known.

To enable the computation, we utilize a trial density ma-
trix constructed to have reasonable physical and topological
properties, which defines the nodal surfaces to restrict the
paths. The R-PIMC method evades the sign problem for cal-
culations which involve the diagonal elements of the fermion
density matrix. Due to the positivity of the density matrix on
the diagonal, �F�R ,R ;
�
0, we can disregard any paths that
start at a negative permutation of R since such paths have to
cross a node at least once to end at R. We sum over only the
positive �even� permutations and keep only the positive node
avoiding paths, thus overcoming the sign problem. The per-
mutation sum, as well as the integrals in Eq. �4�, is evaluated
with the Metropolis Monte Carlo method.

In the high-temperature limit, it can be shown12 that the
interacting density matrix is well approximated by the free
particle density matrix

�F�R,R*;
� = �4��
�−dN/2 det�exp�− �ri − r j
*�2

4�

�� . �8�

In the low-temperature limit, the contributions of the excited
states in the spectral expansion of the fermion density ma-
trix,

�F�R,R�;
� = �
n

�n�R��n
*�R��exp�− 
En� , �9�

are exponentially damped relative to the ground state. The
density matrix can then be approximated for a nondegenerate
ground state as

�F�R,R�;
 → �� = �0�R��0
*�R�� . �10�

For the ground-state trial wave function, we use a BCS-like
antisymmetrized product of pairing functions.13 Denoting the
two fermion species with the ↑ and ↓ symbols, this trial
function is given by
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�0�R� = A	��r1
↑ − r1

↓���r2
↑ − r2

↓� ¯ ��rN/2
↑ − rN/2

↓ �
 = det	��ri
↑

− r j
↓�
 . �11�

The BCS-like trial function allows permutation moves which
involve the exchange of a pair of the ↑ and ↓ fermion species
with another such pair. Since this is the mechanism for pair
condensation in the path-integral formalism, it is important
to use this trial function rather than the Slater-Jastrow-type
functions which have zero measure for pair exchanges. For
the pairing function ��r�, we choose a Gaussian,

��ri
↑ − r j

↓� = exp	− ��ri
↑ − r j

↓�2
 , �12�

with � the one free parameter to be optimized.
Results. In discussing the results, we give temperature T

in units of the Fermi energy �F and energy in units of �FG,
the average energy per particle of the noninteracting Fermi
gas, with �FG= �3/5��F. For a given observable, the length of
the discrete time interval 
 in Eq. �2� results in a time-step
error due to the nonexact link action used. The time step also
affects the statistical error of the observable by affecting the
efficiency of Monte Carlo sampling.9 In general, both the
time step error and the efficiency decrease with 
 so that it is
important to choose a time step that satisfies these competing
considerations. We use the total energy as the observable,
and Fig. 1 shows the energy for different 
 at temperature
T=0.0543�F. We choose the time step 
=0.009 57�F

−1 �with
M =1920 time slices� since it is in a range where the change
in energy estimate with 
 is within the statistical error and
also allows for efficient calculation.

The R-PIMC method obeys a variational principle that the
free energy calculated at any temperature is a functional of
the trial density matrix nodes and is minimized when the trial

nodes coincide with those of the exact density matrix. This
minimum value is also the true free energy of the given
Hamiltonian. At very low temperatures, the thermodynamic
relation F=E−TS allows us to use the energy E to improve
the nodal surfaces. For the trial function �11�, we optimize
the parameter � which controls the width of the Gaussian
pairing function �12�. The lower panel of Fig. 1 shows the
energy for different � at T=0.0543�F with time step 

=0.009 57�F

−1. The energy has a rather broad minimum for
�=10–18, leading to our choice of �=10.

The total energy vs temperature is shown in Fig. 2 for
N=10 and N=20. The BCS-like trial density matrix, in ad-
dition to its enabling the physics of pairing and condensa-
tion, is further justified because it gives the lowest total en-
ergy at low temperature of all the trial density matrices that
we have tested. We also find good agreement of our energy
extrapolated to T=0 with the value of Eo /N=0.44�1��FG

=0.26�F obtained from the fixed-node Green’s function
Monte Carlo method.14,15

We can further calculate the quasiparticle energy as the
energy difference between a system with an extra particle of
one species and a system with equal number of particles of
the two species. Taking N to be an even number so that there
are N /2 pairs in the system, the energy gap is obtained as

�E = �N + 1��N+1 −
1

2
	N�N + �N + 2��N+2
 , �13�

where �N, �N+1, and �N+2 are the energy per particle of sys-
tems with N, N+1, and N+2 particles, respectively. The trial
density matrix for the system with N+1 particles is con-
structed from antisymmetrized trial wave functions with N /2
pair states and one extra particle in a plane-wave state given
by
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FIG. 1. �Color online� The upper panel shows the energy per
particle for N=10,20 in units of �FG= �3/5��F for different choices
of the imaginary time step 
. These results obtained for a tempera-
ture T=0.0543�F indicate that the time step 
=0.009 57�F

−1 opti-
mizes the competing requirements of small time step error and ef-
ficient computation. The lower panel shows the energy as a function
of the parameter � in the pairing function at a temperature of T
=0.0543�F and time step 
=0.009 57�F

−1. The energy has a broad
minimum at �=10–18, leading to our choice of �=10.
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FIG. 2. �Color online� The energy per particle as a function of T
for N=10 and 20 �dashed line; error bars not shown but comparable
to N=10.� The upper inset magnifies the energy at low temperature,
obtained using the BCS-like nodes. The lower inset shows the en-
ergy for N=10 in the temperature region where the lowest energy is
obtained by changing from free-fermion nodes �“Free”� to the BCS-
like nodes �“BCS”�.
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�n�R� = A	��r1
↑ − r1

↓� ¯ ��rN/2
↑ − rN/2

↓ �exp�− ikn · rN/2+1
↑ �
 .

�14�

These trial functions are used in the spectral expansion �9� to
obtain the trial density matrix for this system. Table I shows
the quasiparticle energy calculated at a temperature T
=0.0543�F with N=10 and N=20. The second column shows
the momentum of the plane-wave states of the extra particle
in systems of size N+1. These states correspond to the low-
est momentum shells of the system with periodic boundaries.
The lowest value of the energy gap is obtained when the
extra particle is allowed to occupy the first three momentum
shells in the trial density matrix. With N=20 and larger sys-
tem sizes, the error bar of the energy gap is rather large. At
N=10, however, our value of �E=1.110�0.1766��FG agrees
with the value of �E=0.9�FG from earlier GFMC
calculations.14

Estimation of Tc. The first indication of the crossover pair-
ing scale T*�0.70�F is obtained from a comparison of the
energy obtained by using the free particle trial density matrix
and the BCS-like density matrix as shown in Fig. 2. For T
�T*, the free particle density matrix gives the lowest energy,
whereas in the opposite regime T�T*, the BCS density ma-
trix gives the lowest energy.

Further evidence of the pairing scale comes from g↑-↓
pairing correlations as seen in Fig. 3. As the temperature is
lowered, there is a strong enhancement of the on-site density
correlations for opposite spins at T�0.67�F �see inset�,
which identifies a pairing scale below which strong pairing
correlations exist at temperatures well above the actual su-
perfluid transition.

In previous work,16 a functional integral approach was
used to estimate T* as a function of 1/ �kFas� from a saddle
point analysis of the gap and number equations. At unitarity,
they found T*�0.57�F. Upon including fluctuations to qua-
dratic order around the saddle point, the transition was sup-
pressed, especially around unitarity and beyond, to a lower
Tc. They estimated Tc�0.22�F at unitarity. The inclusion of
the fluctuations around the saddle point to fourth order

showed that the variations of Tc are controlled by the coher-
ence length kF�0. In the BCS regime, kF�0 is exponentially
large, while in the BEC regime, for a dilute Bose gas, kF�0
grows as a power law. In both these regimes, Tc variations
are small. However, around the unitary point, kF�0�O�1�
and the fluctuations in Tc /�F are of order unity. This is pre-
cisely where simulations are of greatest value since the sys-
tem is in a strongly correlated regime inaccessible to pertur-
bation theory.

We compute the superfluid density to directly estimate the
critical temperature Tc for the superfluid transition. The su-
perfluid density �s for an N-particle system, shown Fig. 4, is
calculated from the winding number estimator,17

�s

�
=

�W2�
2�	N

. �15�

Here, W is the winding number defined as the number of
times periodic boundary conditions are invoked as paths start
from Ri and end at a periodic image RPi. For our system, the

TABLE I. Calculation of the quasiparticle energy gap with dif-
ferent trial functions.

N
kn

�kF�
�N

��FG�
�E

��FG�

10 0.425 �0.0125�
11 0 0.615 �0.0155� 2.111 �0.1973�
11 0, 0.913 0.528 �0.0138� 1.155 �0.1812�
11 0.913 0.543 �0.0127� 1.315 �0.1717�
11 0, 0.913, 1.291 0.524 �0.0133� 1.110 �0.1766�
11 1.291 0.592 �0.0139� 1.861 �0.1823�
12 0.421 �0.0126�
20 0.403 �0.0119�
21 0, 0.736 0.460 �0.0126� 1.058 �0.3383�
21 0, 0.736, 1.041 0.436 �0.0137� 0.538 �0.3568�
22 0.416 �0.0157�

0

20

40

60

80

100

120

0 0.1 0.2 0.3 0.4 0.5 0.6

g(
r)

r

T=1.81 [εF]
T=0.90 [εF]
T=0.77 [εF]
T=0.67 [εF]
T=0.18 [εF]

0
20
40
60
80

100
120

0 0.5 1 1.5 2

g(
r=

0)

T [εF]

FIG. 3. �Color online� The pair correlation function of the two
species of fermions at different values T. Note the sharp increase in
pair correlation from 0.67TF to 0.54TF.
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FIG. 4. �Color online� The superfluid fraction �s /� as a function
of T for N=20.
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winding number is given by W=W↑+W↓. The estimator
�15� for the superfluid density might, however, be biased by
the fixed-node approximation. The winding number estima-
tor is the integration over imaginary time of the momentum-
momentum correlation, but observables are only unbiased at
the reference point �the zero of imaginary time�: the time
slice that defines the nodal region. It is not known how this
bias will affect the calculation of the critical properties.

We start by reviewing the Josephson relation which is a
hyperscaling relation between the correlation length expo-
nent � defined by �� t−� and the superfluid density exponent
� defined by �s� t�, where t= �T−Tc� /Tc is the reduced tem-
perature. The singular part of the free energy density near the
transition is fs�t���−d, and since �s����2� fs, we obtain
�s��−�d−2�� t��d−2�, which directly gives the Josephson
relation18 � /�=d−2. In a finite system, the scaling
hypothesis18 fs�t ,L�=L−dF	L /��t�
 states that the free energy
depends on t only through the ratio of the system size L and
the bulk correlation length �. Using the Josephson relation,
this implies that �s�t ,L�=L2−dQ	L /��t�
. In d=3, linearizing
the function Q near t=0 and using L�N1/3 lead to

Q� L

��t�� = N1/3�S�t�
�

� Q�0� + qN1/3�T − Tc

Tc
, �16�

where q is a constant. In Fig. 5, we plot N1/3�s�t� /� vs T for
several system sizes N. At the transition temperature Tc, the
size dependence vanishes and all the curves meet at a point
which determines the critical temperature Tc�0.255�F. Our
result agrees well with the estimate of Tc�0.22�F �Ref. 16�
obtained by including fluctuations around the saddle point.

The transition temperature has also been calculated using
lattice Monte Carlo techniques.19,20 Our estimate is, however,
higher than the lattice Monte Carlo estimate of Burovski et
al. of Tc�0.15�F.20 The main distinction of our path-integral
Monte Carlo is that we work directly in the continuum so the
unitary limit is perfectly well defined. The lattice simulations
have to extrapolate Tc to the zero filling factor limit in order
to get the correct behavior in the unitary limit. On the other
hand, for the attractive-U Hubbard model, there is no sign
problem,21 which is a definite advantage. However, given the
good agreement of our finite temperature R-PIMC method

with the zero temperature GFMC results for the energy, we
believe we have an accurate description of the nodal surface.
The R-PIMC method can further be used to study the com-
petition between superfluidity and magnetization in unequal
fermion populations.

One of the difficulties in the experiments is determining
the temperature precisely. Usually, a Maxwell-Boltzmann fit
to the excited atoms yields an estimate. However, at low
temperatures when the number of atoms in the excited states
is greatly reduced, such an estimate becomes unreliable.22

The strong dependence of the energy on temperature above
Tc seen from our results indicates that measurements of the
mean field energy can be converted to a temperature scale,
with appropriate corrections for a trap using a local density
approximation.
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